08.3-15 THE NEW TERNARY INTERMETALLIDE WITH GIGANT UNIT CELL Tb₁₁₇Fe₅₂Ge₁₁₂. By O.I.Bodak, E.I.Gladyshevsky, V.K.Pecharsky and P.K.Starodoob, Faculty of Chemistry, Lvov State University, Lvov, USSR. Crystal structure of the new ternary compound Tb₁₁₇Fe₅₂Ge₁₁₂ solved by combined direct and Patterson methodes (SHELX-76, XTISM). All calculations were performed on SM-4 mini-computer Adaptation of programs was done by V.K.Pecharsky, P.Yu.Zavalij, L.G.Akselrud, Yu.N.Gryn' and E.I.Gladyshevsky. Unit cell is cubic: sp.gr. Fm3m, a=28.580(6)A. Intensities (475 non-equivalent, observed reflections) were measured on P3 NICOLET diffractometer. Final R-factors are 0.054 (isotropic) and 0.047 (anisotropic approximation). List of atomic parameters is given below. | - | | _ | | | |--------------|-------------|--------|-----------------|--------| | Atom | Position | x | y | z | | Tb1 | 96k | 0.1793 | 0.1793 | 0,4084 | | Tb2 | 96k | 0.1995 | 0.1995 | 0.0663 | | Тъз | 96k | 0.0681 | 0.0681 | 0.1557 | | T b 4 | 96 j | 0.2550 | 0 .1 036 | 0 | | Tb5 | 48 i | 0.1158 | 0.1158 | 0.5 | | T b6 | 24e | 0.3384 | 0 | 0 | | ть7 | 8 c | 0.25 | 0.25 | 0.25 | | Тъ8 | 4 a | 0 | 0 | 0 | | Fe1 | 96k | 0.1676 | 0.1676 | 0.2302 | | Fe2 | 32 £ | 0.3983 | 0.3983 | 0.3983 | | Fe3 | 48 h | 0.0723 | 0.0723 | 0 | | Fe4 | 32 f | 0.4503 | 0.4503 | 0.4503 | | Ge1 | 48h | 0.1447 | 0.1447 | 0 | | Ge2 | 48i | 0.2906 | 0.2906 | 0.5 | | Ge3 | 24e | 0.2150 | 0 | 0 | | Ge4 | 32 f | 0.1464 | 0.1464 | 0.1464 | | Ge5 | 32 £ | 0.3088 | 0.3088 | 0.3088 | | Ge6 | 96k | 0.1071 | 0.1071 | 0.2423 | | Ge7 | 24e | 0.1152 | 0 | 0 | | Ge8 | 48g | 0.25 | 0.25 | 0.1395 | | Ge9 | 96k | 0.0738 | 0.0738 | 0.3228 | | | | | | | Co-ordination polyhedra of small atoms (Fe and Ge) are distorted trigonal prisms, tetragonal antyprisms, cubooctahedra and icosahedra. The structure one can build from the polyhedra, mentioned above. Authors thanks to Dr. Belsky V.K. for help in the experimental part of the present investigation. 08.3-16 THE CRYSTAL STRUCTURES OF THE RARE EARTH BINARY GALLIDES. By E.I.Hladyshevsky, Ya.P.Yarmolyuk, Yu.N.Hryn', Chair of Inorganic Chemistry, Lvov State University, Lvov, USSR. During the investigation of the phase equilibria in the ternary systems RE - Ga - 3d-tran - sition metal we found 21 new binary gallides of rare earths. Their crystal structures have been studied by X-ray single crystal and powder methods. They belong to 5 structure types: | Compound | Structure
type | Space
group | a,A | ь,Я | c,A | |---------------------------------|---------------------------------|----------------|--------|-------|--------| | Tm ₃ Ga ₅ | Tm ₃ Ga ₅ | Pnma | 6.001 | 9.651 | 11.293 | | Sm ₉ Ga ₄ | Sm ₉ Ga ₄ | I4/m | 11.940 | | 5.081 | | Gd ₃ Ga ₂ | Gd ₃ Ga ₂ | I4/mcm | 11.666 | | 15.061 | | Ho5Ga3 | Cr ₅ B ₃ | I4/mcm | 7.590 | | 14.001 | | YGa ₆ | PuGa6 | P4/nbm | 5•947 | | 7•549 | | | | | | | | The isotypic to Im₃Ga₅ compounds were obtained in the systems with Y, Tb, Dy, Ho, Er, Lu. The Tm3Ga5 structure is closely related to Bi3Y5, \$-Sb3Yb5, UPb2Se5 (these four structures relate to one another due to small deformation) and together with Pu₃Pd₅ formes the new series of homogeneous linear structures. The structures of this series have the symmetry of 6 orthorhombic and monoclinic space groups: Cmcm, Pnma, Pma2, Pmn2, P2,/m, Pm. The Sm₉Ga₄ structure is the substructure to Nb₅Cu₄Si₄. The unit cell of SmoGa4 contains the big details of closest packed structure of AuCuz type. The isotypic phases occur with Pr and Nd. The full structure determination of Gd₃Ga₂ establishes that its real unit cell has four times greater cell volume, as has been reported in former publications. The Gd₃Ga₂ structure is built from some fragments as Pu31Sn20, Y₃Rh₂, W₅Si₃, Sm₂₆(Ga,Co)₁₇. The isotypic phases have been found in the systems with Nd, Sm, Tb, Dy, Ho, Er, Tm, Y. The formerly unknown phases with $\mathrm{Cr_5B_3}$ structure type are the high-temperature modifications of Ho₅Ga₃ and Er₅Ga₃ compounds existing at 600°C. The YGa₆ compound finishes the series of rare earth hexagallides with PuGa6 structure type. The PuGas structure is related to a well known structure AlB2 by means of double substitution of the part of R atoms by the pairs of X atoms (R and X are atoms with different radii: \mathbf{r}_{R} \mathbf{r}_{X}). The rare earth atoms in the described structures have in most cases big coordination numbers (13 - 20), The gallium atoms have 9 - 12 nearest neighbours, its coordination polyhedrons are icosahedron, cubooctahedron and their related variants.