C — 458

where G1

C, is generated by plane reflections in the

is generated by a 31 screw rotation,

side planes of a regular trigonal prisma and

hence C is isomorphic to the plane crystallo-

2
graphic group above. Combining these, we get a
presentation
R3m= (m, s - 1 = mz = s—3ms3m == (snlmsm)3)

belonging to a concave topological polyhedron
F. This polyvhedron F has only three faces.

The face fm corresponds to the plane reflec-

ion m £ - £ d th face £
ti m n and the curved faces S_l
fs are identified by the 31 screw-rotation
s : £ _, - f_ with screw-rotation angle 5 .
s

The presentation ig minimal, i.e. F has the

minimum number of faces. F is a topological

polyhedron, i.e. the bodv of F is homeomorphic

to a 3-dimensional simplex, each face of F

to a 2-simplex and so on.

This geometric presentation of the described
space groups, illustrated also by Figures, can
give a more complete information on the

structure of each group.

20.2-8 ON CONSISTENT SETS OF ASYMMETRIC UNITS.
By W. Fischer, Institut fir Mineralogie, Philipps-
Universtat, 3550 Marburg, FRG

An asymmetric unit of a space group G is a smallest part
of 3-dimensional space from which the entire space may
be generated by the action of G. Therefore, all inner
points of an asymmetric unit are symmetrically inequiva-
lent to each other with respect to G. Different defini-
tions have been used so far concerning points on the
boundaries. Normally, an asymmeiric unit is supposed to
be simply connected and convex, then it is a polyhedron.
These additional conditions can always be fulfilled,
because the asymmetric unit may be constructed as
Dirichlet domain of a point out of any general point
configuration of G. In this case, adjacent asymmetric
units share entire faces {the corresponding space

tiling is called normal), but the polyhedron may be
unnecessarily complicated in shape.

Two sets of asymmetric units have been published, one for
all space groups by H. Arnold (in: International Tables
for Crystallography, Vol. A (1983), D. Reidel), the other
only for cubic ones by E. Koch & . Fischer (Acta Cryst.
(1974), A30, 490). Arnold's set is chosen in such a way,
that Fourier summation can be performed conveniently.

It contains asymmetric units with non-normal space ti-
lings (cf. e.g. P4,). This is not the case with the Koch-
Fischer set which 'is derived from Dirichlet domains and
uses polyhedra with minimal numbers of faces. Both sets
do not take care of group-subgroup relations.

For comparative studies (e.g. of relations between crys-
tal structures) sets of asymmetric units would be use-
ful where the asymmetric unit of any space group G is
composed of entire asymmetric units of any supergroup
HDG. This, however, seems unachievable because of the
complexity of subgroup relations between space groups.
Especially for studies of geometrical properties (for a
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list of references cf. W. Fischer & E. Koch, Acta Cryst.
(1983), A39, 907), however, a less severe restriction

is helpful: A set of asymmetric units will be called
consistent, if the asymmetric unit of any G is com-
posed of entire asymmetric units of the Euclidean norma-
lizer (Cheshire group) NE(G). The Euclidean normalizers
of space groups belong to 30 types either of space groups
or of their degenerations with continuous translations
(F.L. Hirshfeld, Acta Cryst. (1968), A24, 301). As a
space group occuring as Euclidean normalizer may itself
have a Euclidean normalizer of another type, consistent
sets of asymmetric units have to be based on a suitable
choice for a smaller number of summits (Im3m, la3d,
P6/mmm, P6222-P6422, R3m, P4/mmm, Pmmm, P2/m, PT;

216/mmm, 214/mmm, Z1mmm, 212/m, Zzz/m, Z3T).

Qutside the cubic crystal system Arnold's set differs

from a consistent one only for space groups P2/m, 14,/a,
P4222, R3, P3112—P3212, R32 and R3c. Within the cubié

system both published sets are far from being consistent.
Summit Im3m poses no problems: the unique asymmetric

unit of Pm3m may be subdivided by a plane containing the
twofold axis at 1/2-x, 1/4, x. Consistent sets for cubic
space groups other than Ia3d and its subgroups result if
this plane is chosen either at x+z=1/2 (case 1) or at
y=1/4 (case 2). In both cases, the asymmetric units of
some space groups may be selected in different ways.

Only in case 1 it is possible to restrict to normal space
tilings. The number of differently shaped asymmetric
units is smaller for case 1 than for case 2. Two other
specialized positions of the subdividing plane, i.e.
x-2y+z=0 (case 3) and x+y+z=3/4 (case 4}, do not give
rise to consistent sets, because the asymmetric units of
Fd3m, Fd3, and F4,32 cannot be made convex. - For la3d
and its subgroups apparently no consistent set of convex
asymmetric units can be constructed, but the impossibi-
lity of such a set could not be proved so far.

20.3-1 THE POLYTYPES OF THE ORTHOROMBIC
CARBIDE M,Cz. By M.Kowalski and W.Dudzinski,
Institute of Material Science, Technicsl
University of Wrociaw, Poland.

The stacking order of the atomic layers
in the real crystals of the orthorombic car-
bide /Cr,PFe/,Cz was studed by means of the
transmission electron microscopy. The ortho-
romblc carbides of the type M,;C3 can be re-
garded as built up of identical layers of
structure stacked parallel to (110) planes,
The information about stacking order of the
layers is contained in the intensity distri-
bution of diffraction spots observed along
[110]" direction of the reciprocal lattice.

In the real crystals regions with completly
digordered structure /fig.1/ and ordered se-
quence of the layers /fig.2/ can be observed.
In our earlier paper /XI-th Conference of Ma-
terial Science, 1983, Czestochowa, Poland/ we
described the stacking order using the con-
cept of the polytypism, and we presented the
structure of the 20 polytype. Systematical
study of the ordered regions in the/Cr,Pe/,C,
carbides let us determine the structure of
the other polytypes. Lattice parameters wase
determined by analisys of the geomeiry of dis
tribution of the diffraction spots in the
planes (hk1)*® of the reciprocal lattice. The
stacking sequence in the unit cell was iden-
tified by comparision of the observed inten~
sity distribution of diffraction spots with
the intensity calculated for theoritically
agssumed sequence of the layers. The polyty-
peg found in studed carbides have a follo-
wing crystalographic dates:



