MS29-P2 Complex cubic structures: mixed zincides/cadmides/mercurides $CaM_{\square 6}$ and $SrM_{\square 6}$ Caroline Röhr¹, Marco Wendorff¹, Michael Schwarz¹ 1. Universität Freiburg, Institut für Anorganische und Analytische Chemie ## email: caroline@ruby.chemie.uni-freiburg.de In a systematic synthetic, crystallographic and bond theoretical study, the stability ranges as well as the distribution of the isoelectronic late *p*-block elements Zn, Cd and Hg in the polyanions ('coloring') of the recently reported new mercurides (Sr/Ba)Hg₆ [1] and the prominent YCd₆-type phases (Ca/Sr)Cd₆ [2] have been investigated. The stability range of the YCd₆-type structure of CaCd₆ and SrCd₆ (Im-3, $a\approx$ 1500-1600 pm) could be continously extended to considerable high Hg contents of CaCd_{0.89}Hg_{5.11} and SrCd_{0.83}Hg_{5.17}, respectively. All Ca compounds of this series form the original stoichiometric YCd₆-type structure with a type 2 triple split disorder (d2) of the M(2) tetrahedra in the pentagondodecahedra (cf. figure top right). For SrCd₆-Hg_x a cubic 2×2×2 superstructure of the YCd₆-type (Fd-3, a \square 3200 pm, Eu₄Cd₂₅-type [3]) appears. Herein, the [$M(2)_4$] tetrahedra are no longer disordered, but 34 of the cubes, which are not occupied in the aristotype and partially occupied in the new Hg-rich ternary Ca-Zn mercurides like e.g. CaZn_{1.74}Hg_{4.40}, are filled in an ordered fashion. The shape and filling of the cubes is evidentially connected with the orientation of the [$M(2)_4$] tetrahedra inside the pentagondodecahedra (cf. figure). At the section $\text{CaZn}_{6\text{-}x}\text{Cd}_x$, larger amounts of smaller Zn atoms cause the formation of ternary variants of the cubic $\text{Mg}_2\text{Zn}_{11}$ -type structure [4] $(\text{Ca}_2\text{Zn}_{5\text{-}2}\text{Cd}_{5\text{-}8}; Pm\text{-}3 \ a\text{=}918.1 \ pm; R1\text{=}0.035)$. For Ca-Zn-Hg, the new likewise complex cubic 1:5 (20:100) phase $\text{CaZn}_{1.3}\text{Hg}_{3.7}$ (F-43m, a=2145.4 pm, R1=0.0704), which is closely related to $\text{Ba}_{20}\text{Hg}_{103}$ and it's ternary Zn/Cd derivatives [5], is formed in addition The results of the FP-LAPW DFT bandstructure calculations like the *Bader* charges and volumes are used to rationalize the Zn/Cd/Hg distribution in the new mixed metallides. For the calculation of an YCd₆-type representative, a model compound 'CaHg₆' was set up using the crystal data of CaCd_{0.80}Hg_{5.11}, which has been transformed into the subgroup I23 to resolve the disorder of the $[M(2)_4]$ tetrahedra (fig. bottom right). - [1] M. Wendorff, C. Röhr, J. Alloys Compd. **546**, 320 (2013). - [2] G. Bruzzone, Gazz. Chim. Ital. 102, 234 (1972). - [3] C. P. Gomez, S. Lidin, *Chem. Eur. J.* **10**, 3279 (2004). - [4] V. Mihajlov, C. Röhr, Z. Anorg. Allg. Chem. **636**, 1792 (2010). - [5] M. Wendorff, C. Röhr, Z. Naturforsch. **67b**, 893 (2012). **Figure 1.** Details of the disorder (top right) and several ordered variants of the cubic YCd₆-type structure in mixed calcium and strontium Zn/Cd/Hg compounds. **Keywords:** Intermetallics, Zinc, Mercurides, Cadmides, Bandstructure calculation