MS13- New insights on diffraction studies of minerals and related materials

Chairs: Dr. Catherine Dejoie, Prof. Giuseppe Cruciani

MS13-P01

Crystal chemical features in the row of phosphates and vanadates with alkaline and transition metals

Galina Kiriukhina¹, Olga Yakubovich¹

 Department of Crystallography, Lomonosov Moscow State University, Moscow, Russia

email: g-biralo@yandex.ru

New crystals were synthesized under hydrothermal conditions, simulating natural middle-temperature hydrothermal zones (T = 230–280 °C; P = 70–100 atm) using complex vanadate/phosphate systems with transition M = Mn, Co, Ni, Cu and alkaline cations A = Na, K, Rb, or NH_4 , and Cl⁻, F⁻, CO₃²⁻ mineralizers. The X-ray spectral analysis (JEOL SEM with EDS) provided the chemical composition of the crystals. The crystal structures were determined by single-crystal X-ray diffraction (XCalibur-S-CCD diffractometer). Most of new compounds were found out to be new synthetic modifications of minerals alluaudite KCuMn₃(VO₄)₃, niahite NH₄MnPO₄×H₂O, mahnertite $K_{2.5}Cu_5Cl(PO_4)_4(OH)_{0.5}(VO_2)\cdot H_2O$, phosphoellenbergerite $Na_{0.91}Co_6[HPO_4][H_{0.36}PO_4](OH)_3$, elpasolite Rb_2NaAlF_6 , and $(NH_4)_2[(V,P)_2O_6]$ with pyroxene structure type; others are «mineralogically probable» phosphates RbCuAl(PO₄)₂, $Na_2Ni_3(OH)_2(PO_4)_2$, $Rb_2Mn_3(H_2O)_2[P_2O_7]_2$, $(Al,V)_4(P_4O_{12})_3$.

In accordance with Sandomirsky-Belov principles [1], applied to classification of phosphates with amphoteric oxo-complexes [2], the crystal chemical function of amphoteric metal atoms in all new structures was revealed [3]. In five crystal structures the octahedral complexes of amphoteric metals in the lowest oxidation state build the cationic part of the structure, forming structure fragments of different dimensionality. These are isolated 0D (Al,V)O₆ polyhedra in tetraphosphate (Al,V)₄(P₄O₁₂)₃, 1D columns of MnO₆ octahedra in diphosphate Rb₂Mn₃(H₂O)₂[P₂O₇]₂, 2D layers of MnO₆, or NiO₆ octahedra in new polymorphic modification of niachite NH₄MnPO₄·H₂O and Na₂Ni₃(OH)₂(PO₄)₂, respectively, and 3D framework of CoO₆ octahedra in synthetic phosphohellenebergerite Na_{0.91}Co₆[HPO₄][H_{0.36}PO₄](OH)₃.

In the compounds containing several types of amphoteric metals, its coordination environment and crystal chemical function depends on electronegativity. Thus, in the Rb-Cu[Al(PO₄)₂] structure the mixed-type anion framework is built of the AlO₅ and PO₄ polyhedra, while the columns of CuO₆ octahedra form the cationic part of the structure. The main fragment of the alluaudite KCuMn₃(VO₄)₃ structure is the cationic framework of MnO₆ octahedra and flat CuO₄ groups, which is reinforced with anionic VO₄ orthotetrahedra.

In the vanadyl-phosphate analogue of mahnertite $K_2 {}_5Cu_5Cl(PO_4)_4(OH)_0 {}_5(VO_2) \cdot H_2O$, the copper and vanadi-

um operate as anion formers and build the anionic framework of mixed type together with PO_4 tetrahedra. The anion-forming function of amphoteric vanadium is also established in the structure of vanadate analogue of pyroxene $(NH_4)_2[(V,P)_2O_6]$.

The reported study was funded by RFBR according to the research project № 18-35-00623.

References:

- [1] Sandomirsky P.A., Belov N.V. (1984). Crystal chemistry of the mixed anionic radicals. M: Science.
- [2] Yakubovich O.V. (2008). Z. Kristallogr. 223. 126-131.
- [3] Kiriukhina G.V. (2016). PhD thesis, Lomonosov Moscow State University, Moscow, Russia.

Keywords: Transition metal phosphates and vanadates, amphoteric oxo-complexes