MS36-P36

Reactions of C-halogen Bond Activation Mediated by a Rhodium POP Complex

Laura Andrea de las Heras Martín¹, Sheila G. Curto¹, Miguel A. Esteruelas¹, Montserrat Oliván¹, Enrique Oñate¹

 Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza – CSIC, 50009, Zaragoza, Spain

email: laandelash@gmail.com

The reactions of C-halogen bond activation are fundamental steps in organic transformations mediated by transition metal complexes, such as cross-coupling reactions, las well as in the chemical destruction of halogen-containing organic pollutants, among other processes.

Recently we have shown that the complex RhH{x-ant(PiPr2)2} (xant(PiPr2)2= 9,9-dimethyl-4,5-bis(diiso-propylphosphino)xanthene) reacts with fluoroarenes to give products resulting from processes of C-H bond activations,2 while in the case of chloroarenes the C-Cl bond activation takes place (Figure 1).3 In the present contribution, we will show the preliminary results of the reactivity of the related complex RhCl{xant(PiPr2)2} towards halogenated hydrocarbons. The X-ray diffraction analysis of the products obtained have helped us confirm its reactivity.

Financial support acknowledgment: MINECO of Spain (CTQ2017-82935-P and Red de Excelencia Consolider CTQ2016-81797-REDC), Diputación General de Aragón (E06 17R), FEDER, and the European Social Fund.

References:

- [1] See for example: Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Chem. Rev. 2018, 118, 2249-2295.
- [2] Esteruelas, M. A.; Oliván, M.; Vélez, A. Organometallics 2015, 34, 1911-1924.
- [3] Curto, S. G.; Esteruelas, M. A.; Oliván, M.; Oñate, E.; Vélez, A. Organometallics 2017, 36, 114-128

Keywords: POP-Rhodium Complex, C-Cl bond activation, Cross-couplinga

MS36-P37

Solid State Thermochromism in an Octahedral Co(ii) Complex Studied by X-Ray Powder Diffraction

Rosario Pedrero Marín¹, Fernando José Barros-García¹, Álvaro Bernalte-García¹, Francisco Luna-Giles¹

 Organic and Inorganic Chemistry Department. University of Extremadura, Badajoz, Spain

email: rospema@unex.es

Thermochromism is the phenomenom known as the reversible change in the colour of a compound when it is heated or cooled [1]. This process can take place over a wide (continuous thermochromism) or a narrow (discontinuous thermochromism) range of temperature. The latter, typical of inorganic substances, may be associated to a structural phase transition [2].

In the present work, we have studied the colour change in the pink octahedral cobalt (II) complex [CoCl2(PyT-n)]·2H2O [PyTn: 2-(pyrazol-1-yl)-2-thiazoline] [3] in the solid phase over a temperature range from 30°C to 160°C by means of powder X-ray diffraction. This compound, previously studied in solution, transforms into the blue dinuclear asymmetrical complex [CoCl2(μ-Cl)2Co(PyTn)2]. The thermochromic transition temperature is considerably higher in the solid state than in solution, as it was expected.

Colour transformation was monitored by means of in-situ X-ray powder thermodiffraction with the aim of discovering reaction intermediates. The X-ray experiment was carried out on a Bruker D8 Advance powder diffractometer equipped with a temperature chamber, using $CuK\alpha1$ radiation. Measurements were made in the $10\text{-}30^{\circ}2\theta$ range and collected at temperature intervals of $5^{\circ}C$.

Reaction product was identified by comparing the measured patterns to the simulated one for known single crystal structure using Mercury CSD software. In additon, TG-DTG curves were obtained in a dynamic air atmosphere in the same temperature range, as well as a DSC curve. From these, it can be concluded that only the two crystallization water molecules are released, keeping the compound its integrity

References:

- [1] Day, J. H. (1968). Chem. Rev., 68, 649-657
- [2] Van Ooort, M. J. M. (1988). J. Chem. Ed., 65, 84.
- [3] Bernalte-García, A., Lozano-Vila, A. M., Luna-Giles, F. & Pedrero-Marín, R. (2006). Polyhedron, 25, 1399-1407.

Keywords: thermochromism, X-ray powder thermodiffraction, cobalt (II) complex