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The atomically resolved real-space structure of a long-range-ordered dodeca-

gonal quasicrystal is determined based on scanning tunnelling microscopy. For

the BaTiO3-derived oxide quasicrystal which spontaneously forms on a Pt(111)

surface, 8100 atomic positions have been determined and are compared with an

ideal Niizeki–Gähler tiling. Although the Niizeki–Gähler tiling has a complex

three-element structure, the abundance of the triangle, square and rhomb tiling

elements in the experimental data closely resembles the ideal frequencies.

Similarly, the frequencies of all possible next-neighbour tiling combinations are,

within the experimental uncertainty, identical to the ideal tiling. The angular and

orientational distributions of all individual tiling elements show the character-

istics of the dodecagonal quasicrystal. In contrast, the analysis of the orientation

of characteristic and more complex tiling combinations indicates the partial

decomposition of the quasicrystal into small patches with locally reduced

symmetry. These, however, preserve the long-range quasicrystal coherence. The

symmetry reduction from dodecagonal to sixfold is assigned to local interaction

with the threefold substrate. It leads to atomic flips which preserve the number

of quasicrystal tiling elements.

1. Introduction

A real-space analysis of quasicrystal (QC) tilings is in general

a very difficult task. For icosahedral QCs, that are aperiodic in

all three dimensions, averaging methods like high-resolution

transmission electron microscopy (HRTEM) cannot be

applied. Instead, the information on the QC tiling has typically

been obtained from atomically resolved scanning tunnelling

microscopy (STM) measurements (Cai et al., 2002; Papado-

polos et al., 2008; McGrath et al., 2010). However, systematic

statistical studies of icosahedral tilings based on atomic vertex

positions have not been reported so far. Dodecagonal QCs

exhibit aperiodic order within the dodecagonal plane, but

periodic order in the perpendicular direction. This reduced

complexity allows the averaging along atomic rows perpen-

dicular to the dodecagonal plane which has led to dodecagonal

structure determination in intermetallic alloy QCs (Ishimasa et

al., 1985, 2015; Chen et al., 1988; Krumeich et al., 1998; Iwami

& Ishimasa, 2015). For an Mn–Cr–Ni–Si alloy, Ishimasa et al.

recently pushed the limit of QC tiling analysis to the 10 nm

range using HRTEM (Ishimasa et al., 2015). In their work QC

domains of roughly 2000 vertices have been analysed in

physical and phason space. Besides intermetallic systems,

dodecagonal structures are also observed in soft matter (Zeng

et al., 2004; Hayashida et al., 2007; Talapin et al., 2009; Steurer,

2012; Chanpuriya et al., 2016; Fischer et al., 2011; Iacovella et

al., 2011; Engel & Trebin, 2007; Dotera et al., 2014) as well as in
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ultrathin 2D adlayers on ideal metal surfaces (Förster et al.,

2013; Urgel et al., 2016; Paßens et al., 2017).

Here we present a large-area real-space analysis for the

2013-discovered oxide quasicrystal (OQC), which is derived

from an ultrathin BaTiO3 layer on a single-crystal Pt(111)

substrate (Förster et al., 2013). Its atomic structure is imaged

directly by means of scanning tunnelling microscopy (STM).

This technique is used for the first time to analyse a QC on an

atom-by-atom basis and to address local defects as well as

structural coherence on a 50 nm length scale. 8100 atomic

positions within a dodecagonal OQC are analysed and

compared with high-resolution electron diffraction from the

same structure.

2. The dodecagonal Niizeki–Gähler tiling

2D OQCs as derived from BaTiO3 and SrTiO3 on the Pt(111)

surface are constructed from three tiling elements of common

edge length, namely equilateral triangles, squares and rhombs

inclining 30� and 150� angles. Using these elements an ideal

dodecagonal tiling can be constructed as introduced inde-

pendently by Niizeki & Mitani (1987) and Gähler (1988). We

will refer to this tiling as Niizeki–Gähler tiling (NGT). The

NGT exhibits a characteristic higher-order building block,

which is a dodecagon, that consists of 12 triangles, five squares

and two rhombs as drawn in white in Fig. 1.

The NGT can be generated by recursion (Liao et al., 2013)

starting from one of the elementary tiling elements or, as

shown in Fig. 1, from the characteristic dodecagon. In a single

deflation step, each triangle is replaced by seven triangles and

three squares of smaller length. Each square is replaced by 16

triangles, five squares and four rhombs, whereas each rhomb is

replaced by eight triangles, two squares and three rhombs.

These substitutions give rise to the blue tiling in the upper

right of Fig. 1. According to the recursion rule, the symmetry

of squares and rhombs is reduced. The squares have only

mirror symmetry due to their decoration with rhombs in the

next generation of the tiling. This reduced symmetry is

emphasized by the shaded grey and blue areas in Fig. 1. The

presence of squares inside the rhombs upon recursion likewise

lowers the symmetry of the rhombs to C1.

The substitution can be expressed mathematically using a

deflation matrix T:

T ¼

7 16 8

3 5 2

0 4 3

0
@

1
A: ð1Þ

In this representation of T the rows of the matrix are assigned

to the number of triangle, square and rhomb tiles, respectively,

and thus every vector operation on T depends on this repre-

sentation. The eigensystem solution of T reveals two impor-

tant properties of the NGT. Firstly, one can derive the scaling

factor of self-similarity in the NGT of (2þ 31=2) from the

square root of the eigenvalue. Secondly, the corresponding

eigenvector of the deflation matrix T

ð1þ 31=2
Þ; 1; ð1þ 31=2

Þ
�1

� �
’ 2:73; 1; 0:37ð Þ ð2Þ

represents the tiling element ratio in the NGT: the numbers of

triangles relative to the numbers of squares and of rhombs. For

a finite tiling from any start configuration, the number of tiling

elements will converge to these values upon multiple deflation

iterations. By deflating the white dodecagon in Fig. 1 twice,

one derives a tiling consisting of 2708 vertices, which contains

2640 triangles (gold), 953 squares (black) and 338 rhombs

(red). The corresponding tiling frequency of 2.75 :1 :0.38

already closely resembles the ideal value.

3. Experimental

Ultrathin BaTiO3 films were grown on Pt(111) by radio-

frequency-assisted magnetron sputter deposition as reported

elsewhere (Förster & Widdra, 2010). The OQC develops upon

annealing the BaTiO3 films at temperatures above 1150 K in

ultrahigh vacuum (UHV) (Förster et al., 2013). The long-range

order has been confirmed by low-energy electron diffraction.

For low-temperature STM measurements the sample has been

transferred into a home-built STM chamber using an UHV

suitcase. The data have been recorded at 77 K.

For conducting the statistical analysis of the length and

angular distributions, the STM images have been corrected for

piezo-scanner creep and thermal drift in the scanning

tunnelling microscope. The background-subtracted data have

been corrected by using a plugin to the opensource software

ImageJ (Schneider et al., 2012) developed by Michael Schmid

(TU Vienna). This plugin applies higher-order non-linear

corrections to remove the creep-induced distortions from the

STM data by maximizing the intensity of selected spots in the

Fourier transform of the image. Subsequently, linear correc-

tions have been applied using Gwyddion (Nečas & Klapetek,

2012). The final STM image has been scaled to meet an

average next-neighbour distance of 6.85 Å. This length has

308 Sebastian Schenk et al. � Full real-space analysis of a dodecagonal quasicrystal Acta Cryst. (2019). A75, 307–313

aperiodic 2018

Figure 1
Niizeki–Gähler tiling on different length scales as generated from
recursion, emphasizing its self-similarity. The white lines represent a first-
generation tiling. In the upper right part the substitution rule for the three
elements is given. The symmetry of rhombs and squares is reduced as
indicated by the shaded areas. The blue lines represent the tiling deflated
once, which scales with ð2þ 31=2Þ

�1. The smallest scale tiling, indicated by
black squares, golden triangles and red rhombs, results from a second
deflation.



been previously evaluated from low-energy electron diffrac-

tion (Förster et al., 2013). The further analysis was done with

the help of the image and mesh processing capabilities of

Mathematica (Wolfram Research).

4. Statistical analysis

Fig. 2(a) shows an atomically resolved STM image of the

BaTiO3-derived OQC. Two terraces are present in this region

separated by a monoatomic step [white line in the lower left

part of Fig. 2(a)]. The contrast has been adjusted to make the

detailed atomic structure of each terrace visible. A purely

background-subtracted version of this image is available in the

supporting information. The bright protrusions in the STM

image arise from the Ti grid of the OQC as previously

demonstrated for the sigma phase approximant (Förster et al.,

2016).

The few large white features on the upper terrace are

adsorbates that might decorate defects. For all Ti atoms, the

atomic coordinates have been determined by fitting the

protrusion with 2D Gaussian profiles. From these coordinates

the Fourier transform (FT) has been calculated as depicted in

Fig. 2(b). The FT shows a pronounced long-range order in the

OQC tiling due to the presence of a large number of high-

order reflections. Based on the atomic positions, the OQC

tiling is extracted as shown in Fig. 2(c). The structure is

determined by triangles, squares and rhombs, but also a small

number of shield elements can be recognized [grey in Fig.

2(c)]. The latter element results from one missing Ti atom in

the structure, which would otherwise be filled by two triangles,

one square and one rhomb.

The tiling elements in Fig. 2(c) sum up to 7773 triangles,

2806 squares and 981 rhombs. These numbers correspond to a

ratio of 2.77 :1 :0.35, which is close to that of the ideal NGT. If

one additionally takes the 57 shield defects into account,

which equal 114 triangles, 57 squares and 57 rhombs, the tiling

element ratio will change to 2.75 :1 :0.36. This even more

closely approaches the NGT ratio of 2.73 :1 :0.37.

Besides counting the tiling elements, an analysis of the

angular distribution of the Ti neighbours around each vertex

has been conducted. This distribution is plotted in Fig. 3.

It gives a statistical measure of the interior angles of

triangles, squares and rhombs. The angular distribution of the

interior angles for triangles is well described by a Gaussian

centred at 60.1� with a full width at half-maximum (FWHM) of

8.3�. For squares, the distribution is asymmetrically broadened

to higher angles. From fitting with a Gaussian, the maximum is

found at 89.2� and the FWHM is 9.4�. The interior angles of

the rhombs strongly deviate from their expected values of 30�

and 150�. Instead, two Gaussians can be fitted at 32.7� and

147.3�. Their widths have been determined to 5.2� and 11.5�,

respectively. The angular variations as expressed by the

broadening of all distributions reflect local distortions of all

elements. In the case of triangles and squares, the distortions

are balanced. However, the shift of the maximum in the

angular distribution of rhombs reflects a systematic deforma-

tion. The shift by 2.7� corresponds to a change in the aspect

ratio of the diagonals of 9% when assuming constant edge

lengths.

The distributions of side lengths which are shown in Fig.

4(a) for three combinations of neighbouring tiling elements

also reveal small deviations from the ideal tiling.

From fitting the histograms with Gaussian distributions,

average side lengths of 6.95, 6.72 and 6.79 Å are determined

for the combination of triangles with squares, triangles and

rhombs, respectively. With an FWHM of 0.95 Å these distri-

butions are again quite broad. The

average triangle–square side length

is slightly longer than the others.

However, its distribution also contains a

few short distances around 5.7 Å, which

are not covered by the Gaussian. In

total, these variations are well within

the scattering of the data.

Neighbouring tiling elements in an

ideal NGT contain only a negligible

number of rhomb–rhomb, rhomb–

square or square–square contacts.

The only relevant combinations are

triangle–square, triangle–rhomb and

triangle–triangle, where the first of

these has the highest abundance as

indicated in Fig. 4(b) as a grey bar

chart. The experimentally determined

frequencies for the OQC are marked by

crosses for all six tiling combinations.

The experimental values are in perfect

agreement with those of an ideal

NGT. This includes the correct

relative frequency of the triangle–
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Figure 2
(a) STM measurement of BaTiO3-derived OQC on Pt(111) showing the sublattice of the Ti atoms.
The region marked in black is discussed in more detail in Fig. 8. (b) Fourier transform of the atomic
positions extracted from (a). (c) The OQC tiling as extracted from the atomic coordinates showing
triangles (gold), squares (black), rhombs (red) and shields (grey). (a) 52 � 67 nm, 15 pm, �1 V.



square, triangle–triangle and triangle–rhomb edges as well as

the absence of rhomb–rhomb, rhomb–square and square–

square edges.

Besides the tiling statistics, the rotational alignment of the

different elements with respect to the h1�110i Pt(111) substrate

directions has been analysed in detail. Figs. 5, 6 and 7 show

the orientation of squares, rhombs and the characteristic

dodecagons, respectively. In all cases the results taken from

the STM image are compared with the arrangement of these

units in an ideal NGT.

The detailed analysis for the squares is given in Fig. 5(a) in

which their orientational distribution and the variations in the

length of their diagonals are plotted. Within each type of

square, a spreading of the orientation and of the lengths is

observed, which might emphasize distortions within the tiling.

However, the distribution reveals no correlation between the

fluctuations in length and bond direction. From diffraction, the

orientation of the OQC with respect to the underlying

substrate is known (Förster et al., 2013). It turns out that the

diagonals of the squares are rotated by 15� with respect to the

atomic rows of Pt(111) along the h1�110i directions. Corre-

spondingly, each square is oriented with one edge along this

high-symmetry direction.
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Figure 3
Distribution of interior angles in the triangles, squares and rhombs as
derived from the drift-corrected STM data of the OQC tiling in Fig. 2.

Figure 4
(a) Side length distribution of the OQC tiling elements as derived from
Fig. 2. The histograms show the lengths of edges shared between adjacent
triangles, between triangles and squares, and between triangles and
rhombs in classes of 0.1 Å. The representation in classes causes an off-
centring of blue and green bars. (b) Number of neighbouring tiling
combinations: crosses and absolute numbers mark the experimental
values, whereas the grey bar chart indicates the ideal NGT values.

Figure 5
(a) The distribution of squares from Fig. 2. The length of the diagonals is
determined and their rotational distribution relative to the ½1�110� substrate
direction is given in classes of 30�. (b) Superposition of differently
oriented squares to a cut of Fig. 2(a) for comparison with (c) the ideal
NGT.



Fig. 5(a) reveals a 10% variation in the frequency of

differently oriented squares. In the ideal NGT the orientation

of squares is homogeneously distributed as shown in Fig. 5(c)

with the same frequency in all three rotations. In contrast, the

OQC data in Fig. 5(b) show an arrangement where locally one

orientation is suppressed. In the ideal NGT and in the

measured data, no square shares a corner with a second one of

the same orientation. In the ideal NGT a square is never

connected to more than two squares of common orientations,

and up to four neighbours of identical orientation are found in

the real OQC tiling.

The rhombs occur in six different orientations every 30�.

Their distribution has been determined from their long axis

which is shown as raw data in Fig. 6(a). The variations of

lengths and bond angles are similar to the case of squares

discussed before.

Note that the frequency of the six different orientations as

given by the numbers in Fig. 6(a) reveals deviations up to 30%

from the mean value. By comparing the local orientation of

rhombs within the real OQC data in Fig. 6(b) with that of the

ideal NGT (Fig. 6c), three major differences can be recog-

nized. Firstly, in the OQC isolated rhombs are present, which

is not the case in the ideal NGT. Secondly, the rhombs in the

OQC tiling tend to arrange in lines with two edges parallel to

the h1�110i directions. Along these lines their long diagonals are

alternately oriented in �150�. In the ideal NGT, those chains

do not occur; instead the rhombs tend to form circles or occur

in isolated pairs. Thirdly, the distribution of rhombs within the

ideal NGT is equal in all directions for symmetry reasons.

Finally, the orientation of the characteristic dodecagons of

the NGT tiling has been evaluated. We define the orientation

of the dodecagon based on its mirror symmetry axis with a

direction given as shown schematically in Fig. 7(a). The

symmetry of the dodecagon allows 12 orientations.

The histogram of Fig. 7(b) shows the orientational distri-

bution of dodecagons in the OQC and reveals clearly a

preference for six out of the 12 directions. Almost all

dodecagons are found under 30� rotations against the h1�110i

substrate directions. Two orientations at 30� and 210� relative

to the ½1�110� direction occur only half as often in the OQC tiling

of Fig. 2(a) as compared with 90�, 120�, 270� and 330�, which

emphasizes a correlation of dodecagons with opposite orien-

tations. This becomes more obvious when superimposing the

dodecagons to the STM data as shown in Fig. 7(c). The lines

that have been recognized in the distribution of rhombs are a

consequence of an overlapping of adjacent dodecagons of

opposite orientations. This is in strong contrast to the cluster
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Figure 6
(a) Raw data of the rotational distribution of rhombs from Fig. 2. The
frequency of rhomb orientations taken from their long axes in classes of
30� relative to the ½1�110� direction of Pt(111) is given. (b) Superposition of
differently oriented rhombs to a cut of Fig. 2(a) for comparison with (c)
the ideal NGT.

Figure 7
(a) Definition of the orientation in the characteristic dodecagon of
the NGT. (b) Frequency of dodecagon orientations in the OQC in classes
of 30� relative to the ½1�110� direction of Pt(111). (c) Superposition of
differently oriented dodecagons to the measured STM data for
comparison with (d) the ideal NGT.



distribution in the ideal NGT, which must again be equally

balanced along every 30� shown in Fig. 7(d).

5. Discussion

In the previous section we have presented a detailed statistical

analysis for a large area of the dodecagonal BaTiO3-derived

OQC on Pt(111). The structure has only a very small number

of defects and consists mainly of triangle, square and rhomb

configurations. Their frequency and rotational orientation are

very close to those of the NGT. In addition, the frequencies of

the six possible nearest-neighbour configurations, as domi-

nated by triangle–triangle, triangle–square and triangle–

rhomb configurations, match perfectly those of the NGT.

However, a number of deviations from the ideal NGT are

also reported here. Variations of the average side lengths of

the three tiling elements by roughly �2% around the value of

6.85 Å have been observed. The average spreading of these

side lengths is in the order of �0.5 Å, which is quite

substantial. From evaluating the angles between adjacent

edges a stretching along the short diagonal of the rhombs by

9% is expected. These deviations from an ideal geometry most

likely relate to an adaptation to preferential adsorption sites

on the atomic level. These are hard to determine precisely,

since only the Ti grid of the BaTiO3-derived 2D structure is

imaged in STM. The information about the positions of Ba

and O atoms is still lacking.

In addition, a clear sixfold signature is found in the rota-

tional distribution of dodecagons in the OQC tiling. This

symmetry reduction is accompanied by the formation of rows

of dodecagons in opposite orientations as seen in Fig. 7(c). As

a consequence, the circular arrangements of rhombs within the

NGT are transformed into a row-like structure. The detailed

analysis of the local OQC tiling along these rows identifies

individual unit cells of a giant approximant structure that was

recently reported for the SrTiO3–Pt system (Schenk et al.,

2017). Fig. 8(a) shows a close-up of the STM image of Fig. 2(a).

In this area three approximant unit cells are marked by black

lines. Their short unit-cell vector is aligned parallel to the ½1�110�

direction. Additionally, the 36 tiling elements within the

approximant unit cell are indicated. Interestingly, the unit cell

includes one of the characteristic dodecagons discussed in

Fig. 1. Whereas the unit cell is a motif of the ideal NGT, the

periodic repetition is not. Therefore, a larger periodic repeti-

tion of this unit cell would correspond to an approximant

domain embedded in the OQC. In the area given in Fig. 8(a),

this motif is repeated a few times along the short unit-cell

vector, which produces the row-like structure of the rhombs

and oppositely oriented dodecagons. Therefore, it is important

to compare the tiling statistics for the ideal NGT, the ideal

approximant structure and the experimentally observed

structure. The triangle :square :rhomb ratios for the NGT are

2.73 :1 :0.37, whereas the approximant ratios are 2.66 :1 :0.33.

In the approximant are fewer triangles and fewer rhombs in

comparison with the NGT. The experimentally observed ratios

are 2.75 :1 :0.36 and are very close to those of the NGT. In fact,

the small deviations cannot be explained by approximant

domains within the NGT, since the frequency of triangles is

slightly higher in the experiment as compared with the NGT.

Note that the triangle frequency is lower in the approximant.

Therefore, we conclude that the approximant patches are in

the limit of vanishing domain size. A second proof of the very

local nature of the symmetry reduction to a sixfold structure

comes from the comparison of the FT of the atomic grid as

determined in the STM image and the global diffraction

pattern obtained by spot-profile analysis of low-energy elec-

tron diffraction (SPALEED) as shown in Fig. 8(b). Whereas

the FT has been calculated from 3500 nm2, the diffraction data

are collected from an area of 5 mm � 5 mm. The major

difference between both patterns is the intensities of the

h1110i higher-order spots, marked by red circles in Fig. 8(b).

Their intensity distribution implies a local symmetry reduction

to sixfold in the FT of this STM image. However, the real

diffraction data in Fig. 8(b) show clearly the long-range

coherence for a dodecagonal quasicrystal.

On the one hand, the giant approximant structure is very

locally present in different orientations. On the other hand,

the long-range dodecagonal order and coherence are globally

maintained despite the observed local fluctuations. One

scenario which can combine both aspects arises from an
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Figure 8
(a) Close-up STM image of the BaTiO3-derived OQC tiling taken within
the black square of Fig. 2(a). Locally, patches of an approximant unit cell
can be identified, which consists of 36 tiling elements. (b) SPALEED
image of the OQC in comparison with the FT from Fig. 2(b).



initially very well developed QC at growth temperatures. At

these higher temperatures, the QC can be additionally stabi-

lized by the enhanced QC entropy. Upon cooling, the inter-

action with the substrate favours specific adsorption sites.

The QC structure transforms locally into approximant-like

geometries if these structures match the substrate lattice.

However, these changes can occur only without significant

mass transport, e.g. by local site changes. In fact, such local

changes of atomic positions in a QC that leave the number of

tiling elements unchanged, as we observe here, are known as

phason flips.

6. Conclusion

An in-depth statistical analysis of the dodecagonal tiling of the

BaTiO3-derived oxide quasicrystal on the Pt(111) substrate is

presented. The tiling ratio which is determined from almost

11 500 elements created from 8100 vertex positions unam-

biguously identifies the ideal NGT formed from equilateral

triangles, squares and rhombs as the host structure of the

BaTiO3-derived OQC. For different elements of the OQC

tiling strong distortions are found, both in their interior angles

and their edge lengths, which most likely occur due to local

preferences to specific adsorption sites on an atomic scale. The

rotational distribution of squares, rhombs, and the character-

istic dodecagons of the NGT reveal a clear preference for an

alignment of edges parallel to the h1�110i directions of the

hexagonal substrate. This is a consequence of individual unit

cells of an approximant structure. These approximant patches

are locally reducing the symmetry in the 2D layer. Despite

these local features, the dodecagonal symmetry remains on

global scales as confirmed by the tiling element ratio and by

diffraction.
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