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Single-wavelength X-ray anomalous diffraction (SAD) is a frequently employed

technique to solve the phase problem in X-ray crystallography. The precision

and accuracy of recovered anomalous differences are crucial for determining the

correct phases. Continuous rotation (CR) and inverse-beam geometry (IBG)

anomalous data collection methods have been performed on tetragonal

lysozyme and monoclinic survivin crystals and analysis carried out of how

correlated the pairs of Friedel’s reflections are after scaling. A multivariate

Bayesian model for estimating anomalous differences was tested, which takes

into account the correlation between pairs of intensity observations and

incorporates the a priori knowledge about the positivity of intensity. The CR and

IBG data collection methods resulted in positive correlation between I(+) and

I(�) observations, indicating that the anomalous difference dominates between

these observations, rather than different levels of radiation damage. An

alternative pairing method based on near simultaneously observed Bijvoet’s

pairs displayed lower correlation and it was unsuccessful for recovering useful

anomalous differences when using the multivariate Bayesian model. In contrast,

multivariate Bayesian treatment of Friedel’s pairs improved the initial phasing

of the two tested crystal systems and the two data collection methods.

1. Introduction

X-ray crystallography is one of the most frequently used

techniques in structural biology to solve molecular structures

at the atomic level. It is suitable for a wide range of molecular

sizes, starting from a few atoms to many thousands, and has

allowed the structures of more than 135 000 macromolecules,

such as proteins, to be solved (Berman et al., 2000).

A typical single-crystal diffraction experiment consists of

exposing a rotating crystal to an incident X-ray beam and

collecting the relative reflection beam intensities from the

recorded diffraction patterns. Reasonably accurate starting

phase information is essential for the many steps leading to

the final structural model. Molecular replacement is the most

commonly used method to determine the structure of

biomolecules by X-ray diffraction (Hendrickson, 2014).

However, de novo structure determination requires experi-

mental phases.

One of the experimental methods to obtain initial phases is

single-wavelength anomalous X-ray diffraction (SAD)

(Hendrickson, 1991). This technique is gaining popularity

(Hendrickson, 2014) and requires atoms with anomalous

X-ray diffraction (often heavy atoms), which causes a small

difference in the intensities between reflections related by

Friedel’s symmetry.

The experimental observations are different diffraction

intensities recovered near simultaneously or at different time

points. Because of absorption by atoms in the structure,
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Friedel’s pairs will have different intensity, but this is not the

only factor that affects the difference. Radiation damage

makes it difficult to determine the anomalous difference and

mean non-anomalous intensity. For the purposes of SAD, only

the anomalous difference is useful to localize the anomalous

scattering atom in the unit cell. For this reason, it is important

to reduce radiation damage using cryogenic cooling, opti-

mizing exposure time and beam intensity.

Friedel’s pairs are not observed simultaneously. It is

frequently assumed that decreasing the time between

recording one of the Friedel’s pair and the other improves the

anomalous data quality. This led to the development of the

inverse-beam geometry (IBG) method (Hendrickson et al.,

1985; Dauter, 1997; Rice et al., 2000). According to de Sanctis

et al. (2016), a systematic study on the beneficial use of IBG is

not available, but there are numerous reports where IBG was

used successfully (Liu et al., 2012, 2013; Akey et al., 2014;

Jungnickel et al., 2018; Noble et al., 2018; Rozov et al., 2019).

An alternative strategy focuses on increasing the occurrence

of Bijvoet’s pairs on the same diffraction image and thereby

minimizing the effect of radiation damage difference and the

effect of other time-dependent systematic errors between

them (Dauter, 1999).

Diffraction intensities are recorded as a difference between

integrated Bragg peaks and the surrounding diffuse back-

ground. As the Bragg peaks become weaker at higher

diffraction angles, the level of diffuse scattering can occa-

sionally be higher than that of the Bragg peak, leading to

negative recorded intensity. In serial femtosecond crystal-

lography data, even at low-angle, strong reflections have a

substantial fraction of negative intensity observations (Sharma

et al., 2017). Negative intensities have no place in diffraction

theory; therefore, French and Wilson developed an ingenious

Bayesian treatment for these reflections (French & Wilson,

1978). This method represents the first use of Bayesian

statistics in physical sciences and it is still widely used in

programs such as truncate (French & Wilson, 1978), ctruncate

(Zwart, 2005; Dauter, 2006) and XDSCONV (Kabsch, 2010).

French & Wilson’s method was adapted to the interpretation

of just a single set of observations (univariate model). More

recently, we suggested a multivariate method based on

Bayesian statistical modelling and probabilistic machine

learning (Salvatier et al., 2016). Using Markov chain Monte

Carlo (Gilks et al., 1995) sampling, we model the joint prob-

ability of two reflection intensities in order to yield more

accurate differences between the underlying structure-factor

amplitudes and to determine the uncertainty of differences

(multivariate model) (Katona et al., 2016). This method retains

the most important a priori belief about diffraction intensities:

they cannot be negative (Katona et al., 2016). The main

difference between the univariate and multivariate treatment

of difference structure-factor amplitudes is that the latter

incorporates the concept of covariance (correlations) between

the paired observations. Correlation is often overlooked and

arises from the fact that the two measurements are not inde-

pendent. For example, two non-independent diffraction

measurements can be made on the same crystal volume in the

forward and the reverse direction. This volume will share the

same molecules, with their characteristic mosaic misalign-

ments, crystal defects etc. If the experiments and comparisons

are done carefully, correlations will arise naturally and it is

counterproductive to make efforts to eliminate them.

It is important to emphasize that the multivariate treatment

does not substitute scaling procedures in its current form.

Standard crystallographic scaling protocols for example in

HKL2000 (Otwinowski & Minor, 1997), XDS (Kabsch, 2010),

SCALA/AIMLESS (Evans, 2011; Evans & Murshudov, 2013)

software take into account many of the systematic errors

affecting data collection. It is also recognized that matching of

equivalent reflections could be beneficial for anomalous

scaling purposes (local scaling), which is implemented for

example in the Madsys suite (Hendrickson, 1991). Many

scaling methods, including local scaling, can be used in

conjunction with the multivariate Bayesian method. The point

estimate of the scaled, unmerged intensity is treated as a fixed

observation and these observations are the starting point for

pairing and multivariate analysis. The errors of the scaling

model are taken into account by the covariance matrix toge-

ther with the experimental variations.

Theoretically, the univariate, standard treatment of

diffraction intensities is only correct if the measurements are

truly independent and there is no correlation between the

measurements. Fortunately, the maximum likelihood estimate

of the mean parameter is the same with and without taking

correlations into account. From this it also follows that the

difference between the means is identical at any level of

correlation. But, the uncertainty of the estimates will strongly

depend on the correlation. The higher the correlation, the

narrower the confidence interval of the difference estimate

will get; in other words, high correlation in the observations

yields more precise difference estimates. The uncertainty of

anomalous difference measurements is important information

for phasing algorithms when they rank the potential solutions.

Unfortunately, not only the uncertainty estimates are affected:

the univariate French/Wilson and our multivariate method use

an a posteriori rather than a maximum likelihood estimate,

which makes the univariate and multivariate methods not

interchangeable at all. This is especially apparent when

comparing weak reflections.

Although the multivariate method was shown to work well

on synthetic data (Katona et al., 2016), experimental data

often contain unexpected contributions of systematic and

random errors. Here, we test the multivariate Bayesian

method on a well known experimental problem of crystal-

lography where success or failure can be confidently eval-

uated.

The test proteins used in this study are human survivin and

hen egg-white lysozyme. In order to test the influence of

moderate resolution, small, elongated survivin crystals were

used [Fig. 1(a)]. Survivin is a small human protein of 16.5 kDa

and is a member of the Inhibitor Apoptosis Protein (IAP)

family involved in cell cycle division and in apoptosis (Sun et

al., 2005). In the Baculovirus Inhibitor of Apoptosis (BIR)

domain, a Zn2+ ion is coordinated by cysteine and histidine
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residues [Fig. 1(b)] and the wavelength was optimized for the

element zinc in the anomalous X-ray diffraction experiment.

While zinc has relatively strong anomalous signal at 9.66 keV,

these crystals diffracted weakly, reaching only to 3.2 Å reso-

lution.

Lysozyme forms well diffracting crystals [Fig. 1(c)], which

contain sulfur atoms natively in eight cysteine and two

methionine amino acid residues. In addition, the solvent

region contains eight chloride ions at well defined positions in

the unit cell [Fig. 1(d)] (Evans & Bricogne, 2002). These two

elements yielded weak anomalous diffraction when irradiated

with 8 keV X-rays. These crystals also have a sodium ion

which was described previously in other lysozyme structures,

such as Protein Data Bank (PDB) entries 5apd (Lundholm et

al., 2015) and 193l (Vaney et al., 1996). The sodium ion is

stabilized by the Ser60–Leu75 loop.

These two crystal systems represent different SAD phasing

scenarios. Survivin crystals are weakly diffracting and have

lower symmetry, but they have potentially stronger anomalous

signal due to the presence of Zn2+. They also have 69% solvent

content, which tends to facilitate density modifications and

SAD phasing. The properties of lysozyme crystals are diag-

onally opposite: strong diffraction and high symmetry, but

they contain weak anomalous scatterers and their solvent

content is lower at 41%.

In this work, we analysed continuous rotation (CR) and

IBG collection methods for two different protein crystals

(lysozyme and survivin) with different symmetry and resolu-

tion. We were interested in determining the best way of

pairing anomalous reflections and whether or not structure-

factor calculations based on a multivariate Bayesian model

improve experimental phasing in practice.

2. Methods

2.1. Protein purification and crystallization

Tetragonal lysozyme crystals [Fig. 1(c)] were grown

according to the method described previously (Lundholm et

al., 2015), using lyophilized hen egg-white lysozyme (Sigma–

Aldrich, St Louis, Missouri, USA). The crystals were cryo-

cooled in liquid nitrogen.

Survivin was expressed in Escherichia coli and purified

according to the protocol described previously (Garcia-

Bonete et al., 2017). The His-tag was removed by thrombin

digestion and a subsequent gel-filtration purification step.

The crystallization conditions were discovered in the PACT

crystallization screening (Molecular Dimensions) using a

Mosquito LCP robot (TTPLabtech). The protein was

concentrated in a buffer containing 50 mM Tris pH 8.0,

150 mM NaCl and 1 mM DTT (dithiothreitol) to 20 mg ml�1

and mixed 1:1 with the precipitation solution (0.2 M sodium

citrate pH 6.5, 0.1 M bistris propane and 20% PEG 3500). The

crystals were grown using the sitting-drop vapour diffusion

method at room temperature (20�C). The rod-like crystals

[Fig. 1(a)] appeared in approximately 1–3 days and were cryo-

cooled in liquid nitrogen using 20% glycerol as additional

cryoprotectant on micro-loops (MiTeGen).

2.2. X-ray diffraction data collection

The data were collected at beamline ID30B at the

European Synchrotron Radiation Facility (ESRF, Grenoble,

France). This beamline is a tunable-wavelength end-station,

which covers the energy range of 6–20 keV (de Sanctis et al.,

2016; McCarthy et al., 2018). The zinc X-ray absorption edge

was identified by an X-ray fluorescence scan performed

prior to the diffraction data collection. The beamline is

equipped with a DECTRIS Pilatus 6M-F detector and an

MD2-S X-ray Microdiffractometer. The diffractometer has a

maximum speed of 720� s�1 (dynamic precision 2.3 mdeg).

The maximum speed was 120� s�1 during the experiment when

the crystal was reoriented during IBG data collection. At this

speed, the dynamic precision is approximately 0.3 mdeg. The

sphere of confusion at kappa 0� is 1 mm at the maximum

speed. The X-ray beam is controlled by a vacuum-compatible

rotary shutter developed at the ESRF. The shutter is

controlled by the MD2-S control software and it is synchro-

nized to the detector with an accuracy of 1 to 3 ms.

Two different types of data aquisition were tested: CR and

IBG data collection (Fig. 2). The CR data collection consisted

of collecting 360� rotation range in a single sweep. During IBG

data collection, after every 10� rotation wedge the crystal was
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Figure 1
(a) Rod-like survivin crystal with approximate dimensions 150 � 30 �
30 mm. (b) Survivin dimer structure obtained from the CR multivariate
analysis. In the left monomer, the dark blue colour represents the
�-helices including the long C-terminal �-helix and yellow colour the
�-sheets. In the right monomer, the BIR domain is shown in light blue
and the C-terminal domain in grey. The Zn2+ ions are represented as a
grey sphere in the BIR domains. In the right monomer, the coordinating
amino acids are represented in pink (Cys-57, Cys-60, His-77 and Cys-84).
(c) Tetragonal lysozyme crystal with approximate dimensions of 200 �
200� 200 mm. (d) Lysozyme structure obtained from the CR multivariate
analysis containing a sodium ion represented as a pink sphere, eight
chloride ions represented as grey spheres, three ethylene glycol molecules
in orange and two acetate ions in yellow.



reoriented by a 180� rotation and a complementary inverse

rotation wedge was collected containing the Friedel’s pairs of

the first wedge. In both cases, the crystals were initially

randomly oriented. The IBG collection was performed using

the beamline control software to assign starting angles, image

and run numbering for each data set. The data collection

parameters were determined with the help of EDNA software

(Incardona et al., 2009). The individual data sets and the

estimated absorbed doses are summarized in Table S1 in the

supporting information. The absorbed dose was estimated

with the program RADDOSE-3D (Bury et al., 2018). RD

values for the individual data sets were calculated with the

program XDSSTAT (Diederichs, 2006) and they are plotted in

Figs. S1, S2 and S3.

The X-ray wavelengths were adjusted according to the

different scattering elements in the survivin and lysozyme

crystals, Zn [� = 1.273 Å (9.66 keV)] and S, Na and Cl [� =

1.550 Å (8.00 keV)], respectively. The beam size was always

the same, 50 mm (horizontal) � 30 mm (vertical), and the

estimated flux after attenuation is listed in Table S1. The X-ray

beam in all cases intersected the spindle axis.

X-ray diffraction data were collected from four survivin

crystals (two CR and two IBG collections) and nine lysozyme

crystals (four CR and five IBG collections).

2.3. Univariate treatment of reflection intensities

The IBG data wedges were pooled into two complementary

data sets and were processed separately using the XDS

package (Kabsch, 2010). The data from the half rotations of all

crystals were scaled together using XSCALE (Kabsch, 2010).

For univariate data reduction, X-ray diffraction images from

CR and IBG merging were also treated by the program

XDSCONV (Kabsch, 2010). The resolution was restricted to

3.2 Å and 1.61 Å for the survivin and lysozyme diffraction

data, respectively.

2.4. Pairing of anomalous reflections and multivariate
Bayesian machine learning

Unmerged reflections were generated by XDS and were

scaled using XSCALE. The pairing of reflections was based

on two criteria: either by their direct matching of Friedel’s

pairs (up to 1� difference in IBG mode or 180� rotation � 1�

difference in CR mode) or by attempting to pair Bijvoet’s

pairs up to 10� in the CR mode. If there were no valid pairs

found, the reflection intensity was treated as a univariate

observation. With every observation, pairing was attempted

with any complementary observations. This was performed in

two sweeps: first collecting I(�) complementary pairs of I(+)

observations, then the complementary I(+) pairs of I(�)

reflections. Once the best of the acceptable I(+)–I(�) pairing

was found, both observations were flagged and they were

never reused. After the two pairing sweeps, the still unpaired

reflections were collected in unpaired I(+) and I(�) categories

in addition to the naturally unpaired centric reflections.

The pairing of acentric anomalous reflections was

performed by an algorithm developed in the Python

programming language with the libraries cctbx, pandas,

NumPy and SciPy. cctbx and iotbx packages were used to map

the scaled, unmerged, anomalous reflections to the asym-

metric unit of the corresponding space groups of survivin (C2)

and lysozyme (P43212) crystals. The pandas library was used to

store and search among the large number of paired and

unpaired reflection data obtained from the different crystals

and data collection methods.

2.5. Bayesian machine learning of structure-factor ampli-
tudes and their anomalous difference

The paired intensities were the basis of the Bayesian

multivariate machine learning protocol developed with the

help of the pymc3 library (Salvatier et al., 2016). The a priori

distribution of the structure-factor amplitudes was assumed to

be uniform (from 0 to 108). If the number of reflection pairs

was more than or equal to five, then the paired anomalous

reflections were analysed according to the method described

previously (Katona et al., 2016) and any additional unpaired

reflections were ignored. LKJ log-likelihood (� = 1) (Lewan-

dowski et al., 2009) and the lognormal (� = 0, � = 1) a priori

distributions were used to generate the correlation matrix and

individual variances, respectively. The covariance matrix of

the multivariate normal distribution was calculated as

described previously (Barnard et al., 2000). While the addition

of unpaired observations (assuming univariate distribution)

could improve the mean and variance estimates of F(+) or

F(�), frequent numerical instabilities were observed during

Markov chain Monte Carlo (MCMC) (Gilks et al., 1995)

sampling when using mixed univariate/multivariate like-

lihoods. This limitation forced us to abandon the univariate

fraction of the reflections. Very few reflections were lost in the

Friedel’s pairing mode in this way. Successful pairing is less

probable when targeting Bijvoet pairs observed in rapid

succession, especially when starting with randomly oriented

crystals. This resulted in a substantial drop in effective

multiplicity when multivariate Bayesian inference was used in

the Bijvoet pairing mode. If the number of reflection pairs was

less than five, the pairs were split up and added to the unpaired

I(+) and I(�) reflections. They were treated as independent,

univariate, truncated normal distributions. Centric reflections,

I(+) with no corresponding I(�) observations and I(�) with
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Figure 2
Comparison of CR and IBG collection approaches. The crystal is
represented in yellow and the I(+) and I(�) reflections as plus and minus
symbols.



no corresponding I(+) observations, were always estimated as

univariate, truncated normal distributions and no anomalous

differences were estimated. Empirical Bayes priors such as

Wilson’s were not used when treating the reflections with a

non-standard method (Wilson, 1949). For all models, the

MCMC sampling (Gilks et al., 1995) was performed with the

Metropolis stepping method (Metropolis et al., 1953). Of the

100 000 total samples, the first 90 000 were discarded. The

density of the posterior probability distribution was estimated

using a multivariate kernel density estimation method for

visualization purposes (Parzen, 1962).

The multivariate analysis was not performed on the Bijvoet

pairing of the survivin data set due to the low multiplicity in

the CR or IBG data. However, because of the high symmetry

of lysozyme crystals and high multiplicity of reflections, it was

also possible to analyse the Bijvoet pairing using multivariate

analysis.

From the multivariate analysis, two files were generated,

one log file and one structure-factor file (hkl), mimicking the

CCP4 (F,SigF,DF,SigDF,isym) output format of XDSCONV.

The log file contained diagnostic information regarding the

multivariate Bayesian analysis and the hkl file contained

the structure-factor and anomalous difference information

necessary for further analysis. Bayesian analysis of approxi-

mately 1% of the reflections did not converge, generating an

improbably high correlation parameter, high autocorrelation

and drifting in the MCMC parameter traces. These reflections

were reprocessed and, if the analysis repeatedly failed to

converge, they were discarded from further analysis.

2.6. Phasing, model building and refinement of the structures

The data file was transformed to a structure-factor file (mtz)

using the F2MTZ and Cad utility and an Rfree flag was

generated using the program Sftools of the CCP4 package

(Winn et al., 2011). The phases were obtained using default

options of Autosol (Terwilliger et al., 2009) in the PHENIX

suite by selecting the most relevant scattering element for

each protein (Zn for survivin and S for lysozyme) and the

number of molecules per asymmetric unit was estimated

according to the Matthews coefficient calculated by Xtriage

(Table 1). The anomalous peak heights are summarized and

compared in Table S2. For initial model building, Autobuild

(Terwilliger et al., 2008) was used and the resulting initial

model was manually rebuilt and refined using Coot (Emsley &

Cowtan, 2004) and phenix.refine (Afonine et al., 2012),

respectively.

2.7. Correlation between the paired reflections

The paired intensities were also the basis of the maximum

likelihood Pearson coefficient calculations using the library

SciPy. Only reflections with more than five observation pairs

were included in this analysis and the correlation between I(+)

and I(�) values was determined. The d spacing (Å) was
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Table 1
Data collection and experimental phasing results.

Survivin Lysozyme

CR IBG CR IBG

No. merged data sets 2 2 5 4
Space group C2 C2 P43212 P43212
Cell dimensions
a, b, c (Å) 115.0, 71.2, 81.3 115.0, 71.2, 81.3 78.9, 78.9, 36.9 78.9, 78.9, 36.9
�, �, � (�) 90.0, 127.9, 90.0 90.0, 127.9, 90.0 90.0, 90.0, 90,0 90.0, 90.0, 90,0
Wavelength (Å) 1.27265 1.27265 1.54980 1.54980
Resolution (Å) 14.31–3.20 (3.28–3.20) 14.31–3.20 (3.28–3.20) 7.20–1.61 (1.65–1.61) 7.20–1.61 (1.65–1.61)
Observed reflections 112872 (8392) 225601 (16986) 1438053 (21401) 1075082 (4675)
Unique reflections 16783 (1248) 16738 (1227) 28771 (2102) 28213 (1392)
Multiplicity 6.7 (6.7) 13.5 (13.8) 39.2 (5.8) 38.1 (3.4)
Completeness (%) 99.1 (99.1) 99.1 (98.6) 99.9 (99.2) 97.3 (65.7)
Rmerge (%) 12.2 (79.5) 24.1 (143.6) 7.9 (22.3) 6.4 (27.7)
hI/�Ii 12.04 (2.03) 7.53 (0.92) 47.53 (8.84) 44.83 (3.19)
CC(1/2) (%) 99.6 (78.7) 99.7 (81.3) 100 (98.5) 100 (91.5)
Anomalous correlation (%) 24 (�7) 21 (12) 54 (49) 46 (26)
SigAno 1.03 (0.70) 1.03 (0.71) 1.56 (1.10) 1.43 (1.05)

Survivin Lysozyme

CR CR IBG IBG CR CR IBG IBG

Analysis Univariate Multivariate Univariate Multivariate Univariate Multivariate Univariate Multivariate
Rwork (%) 46.80 41.88 47.95 46.15 19.07 18.60 20.82 19.76
Rfree (%) 53.45 45.06 53.45 52.99 20.26 20.14 23.51 21.51
No. fragments 14 12 34 14 1 1 1 1
No. amino acids 112 136 163 118 125 127 122 124
Water 0 0 0 0 147 138 144 140
Sites 4 3 10 5 18 18 20 20
Figure of merit 0.24 0.26 0.25 0.21 0.48 0.47 0.49 0.48
Initial phase error (�) 59.84 54.63 59.89 61.14 20.00 19.71 24.57 21.86
PDB entry 6sho 6sik 6sij 6sim 6sil



calculated using cctbx and uctbx packages. The resolution

binning used to plot the Pearson correlation results was

manually selected to keep similar bin sizes and to show how

the correlation differs at higher resolution for each protein.

Pearson correlation coefficients were calculated for the two

data collection methods in each protein, except for the Bijvoet

pairing of CR survivin diffraction data, which was not possible

due to the low reflection multiplicity.

3. Results and discussion

3.1. Comparing the correlation of paired observations of IBG
versus CR collection

Fig. 3 represents a weak reflection (h = 36, k = 18, l = 8) of

lysozyme for Friedel pairing [Fig. 3(a)] and Bijvoet pairing

[Fig. 3(b)] of CR data. The Friedel pairing of IBG data is

shown in Fig. 3(c). This example illustrates that Friedel pairing

typically resulted in a greater number of observation pairs

than Bijvoet pairing and therefore the posterior estimate of

means is better defined. When comparing Friedel pairing of

CR [Fig. 3(a)] and IBG data [Fig. 3(c)], both have a high

number of I(+)–I(�) pairs; however IBG appears to be less

correlated than the CR data. This is in line with the general

tendency shown in Fig. 4 where CR data have a higher

correlation than the IBG data. The elongated elipses in Figs.

3(b) and 3(c) are the consequence of different scale para-

meters in the multivariate distributions of F(+)2 and F(�)2

rather than correlation. The intensity difference due to

anomalous diffraction is represented by the distance of the

posterior density of the means from the diagonal. In practice,

the mean and standard deviation of posterior samples of F(+)–

F(�) is reported as the DANO and SIGDANO columns,

respectively. All panels in Fig. 3 show that F(+)2 is slightly

higher than F(�)2; in Fig. 3(b) the posterior distribution of the

means is less defined, whereas in Fig. 3(c) the uncertainty of

the anomalous difference is the best of three. In this weak

reflection, the number of negative observations is high, and

the posterior density of means is also more complex. The

density is concentrated above the x axis due to the zero a priori

probability of negative F(�) amplitudes, but the peak (and

mean) of the density is well separated from the diagonal. This

results in a large anomalous difference even for this weak

reflection.
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Figure 3
Distribution of intensity observations of a single reflection for lysozyme crystal structure (36, 18, 8). (a) Friedel pairing of CR data. (b) Bijvoet pairing of
CR data. (c) Friedel pairing of IBG data. I(+) and I(�) observation pairs are represented as blue dots and posterior density of the mean [F(+)2, F(�)2]
location parameters of the multivariate normal distribution is represented by red contour lines (arbitrary units). Each MCMC sample of the joint
posterior distribution is represented by a transparent 95% isodensity ellipse, which gradually adds up to darker and darker grey. The length and direction
of the ellipse axes are determined from the diagonalized covariance matrix of each MCMC trace sample.

Figure 4
Pearson correlation coefficient between the Friedel’s pairs of reflections of lysosyme (a) and survivin (b). The mean and standard deviation of all unique
acentric reflections that belong to the same resolution bins are displayed. Red and blue represent the CR data and the IBG data, respectively.



Fig. 4 shows the maximum likelihood point estimates of the

Pearson correlation coefficients (CC) between I(+)–I(�)

pairs. When the pairing principle was based on direct Friedel’s

pairs [Fig. 4(a)] generally higher correlation between I(+) and

I(�) pairs was observed and the choice of data collection

mode had little influence. Friedel’s pairs in survivin data [Fig.

4(b)] show less correlation than in lysozyme data. It is

surprising how small an influence radiation damage (at this

attenuation level) has on the CC. Between Friedel’s pair I(+)

and I(�) [or I(�) and I(+)] observations, up to 18 times more

X-ray dose is deposited in the CR mode than in the IBG mode.

Assuming that X-ray radiation typically decreases diffraction

intensity, this effect alone would lead to a decrease in the

correlation as it could be either a positive or a negative

influence on the anomalous difference, depending on which of

the Friedel’s pair is observed first: I(+) or I(�). It is important

to note that we used scaled reflections and scale factors tend to

compensate for the general decrease in intensity due to

radiation damage; nevertheless a similar argument is valid for

site-specific radiation damage.

Survivin Friedel’s pairs are slightly less correlated in the

IBG data than in the CR data, but this small difference can be

attributed to the uneven sampling of the crystals with differing

quality. Towards higher resolution, CC decreases both for the

lysozyme and survivin data sets, most likely because counting

errors become more important and they tend to be uncorre-

lated.

In Table S3 and Fig. S4, the different treatments for CR data

are compared. Bijvoet’s pairing of lysozyme CR data shows a

substantially lower CC (Fig. S4), indicating that the systematic

errors are shared to a lesser degree between (non-Friedel)

Bijvoet’s pairs than Friedel’s pairs. This may indicate that

systematic errors originating from crystal shape (for example,

absorption) are more important for (non-Friedel) Bijvoet’s

pairs or symmetry equivalents are not perfectly equivalent

because of pseudosymmetry in the unit cell. Although the

comparison of CCs does not directly reveal the anomalous

differences between I(+) and I(�) pairs, it gives an indication

of whether or not multivariate treatment and the introduction

of a covariance matrix have a chance to improve the inference.

Schiltz et al. suggest keeping data unmerged for phasing

purposes (Schiltz & Bricogne, 2010). This strategy aims to

facilitate the detection of site-specific radiation damage during

the X-ray measurements and using the broken symmetry from

the polarization anisotropy of anomalous scattering. The low

CC of non-Friedel Bijvoet’s pairs in contrast to the genuine

Friedel’s pairs also supports this recommendation (Fig. S4).

We also speculate that assuming crystallographic symmetry

often disguises subtle pseudosymmetries in crystal systems

and reflections may not be truly symmetry equivalent. It may

be tempting to keep all symmetry-related reflections separate,

but this would result in a multiplicity of one for a full rotation

of a single crystal, thus increasing the uncertainty of anom-

alous difference estimates enormously. Merging data from

multiple crystals becomes even more important and multi-

variate Bayesian analysis could make especially good use of

the limited number of observations.

3.2. Experimental phasing

Table 1 describes the data quality and phasing information

about the survivin and lysozyme crystal structure. Survivin

data have a lower signal-to-noise ratio and weaker anomalous

signal than lysozyme using conventional measures (hI/�Ii,

SigAno). This could be rationalized by the fact that the

number of merged crystals is higher in lysozyme than in

survivin. Lysozyme crystals have higher symmetry than

survivin crystals; therefore the multiplicity is higher. An

important consequence of the lower signal-to-noise ratio is

that the diffraction resolution of survivin data is only 3.2 Å in

contrast to 1.6 Å of lysozyme data.

Autosol phasing statistics (Table 1) suggest that CR multi-

variate analysis works better for both types of crystals since

the initial R factors are lower than in univariate treatment of

CR data or IBG data irrespective of the treatment. The

number of fragments is also the lowest in survivin phasing,

indicating a better continuity of the main-chain electron

density. For lysozyme phasing all methods found a single

fragment. The largest number of amino acids was also found

by the multivariate treatment of CR data in the lysozyme

system, thus providing slightly better statistics than the

univariate treatment of the same CR data. In the survivin

system, most amino acids were detected in the univariate

treatment of IBG data, but this solution has much worse R

factors, indicating that many of the numerous (34) peptide

fragments were probably built into noise electron density. The

number of sites is also closest to the expected number in the

multivariate treatment of CR data in both protein systems.

The initial phase errors are consistently lower when the data

are treated by the multivariate protocol (both for CR and

IBG). Among the lysozyme structures the final phase error is

also lower when refined against multivariate Bayesian data

(both for CR and IBG). The figure of merit was the highest in

the multivariate treatment of survivin CR data, but among the

lysozyme data sets the highest figure of merit was associated

with the univariate treatment of IBG data. Since the number

of amino acids was lower in this case, the better figure of merit

may simply be the result of a more incomplete, but better

defined model.

When we also consider the Bijvoet pairing of the lysozyme

CR data, the phasing failed completely with R factors greater

than 50% and resulted in an uninterpretable experimental

electron density (Table S3 and Fig. S4). Such dramatically

worse phasing could result from the reduced multiplicity of

Bijvoet phasing, but more importantly by focusing on the

non-Friedel Bijvoet’s pairs we also enhance any differences

due to pseudosymmetry, possibly at the expense of anomalous

differences.

In the case of survivin diffraction, the contrast between CR

multivariate analysis and the other approaches was the

greatest. Fig. 5 shows the initial electron-density maps after

density modification as calculated by Autosol. Although the

same set of starting observations was used, multivariate

analysis provided a more continuous electron-density map of

the C-terminal �-helix of survivin and fewer noise peaks in the

solvent than a univariate approach. It is more difficult to
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appreciate the improvements of the

electron-density maps in lysozyme data

sets, but specific amino acids, such as

R147 at the C-terminal, show better

initial electron density derived from the

multivariate analysis [Figs. 6(a), 6(c)] in

comparison with univariate analysis

[Figs. 6(b), 6(d)].

3.3. Refinement

The different structures were refined

using phenix.refine and the statistics of

refinement are shown in Table 2. The

initial automatically built structures

derived from the lysozyme data sets

were straightforward to manually

rebuild and refine using the experi-

mental maps. In contrast, experimental

phases of the survivin data sets were

less accurately determined. After the

unsupervised Autobuild procedure of

PHENIX, the structure of the survivin

dimer was only recognizable when the

multivariate CR data set was used. Only

this data set was used for further manual

rebuilding and refinement. When the

heavy-atom locations from the multi-

variate CR protocol were transferred to

other data sets, phasing was also

successful, indicating that the multi-

variate protocol assists the crucial

heavy-atom search step the most.

Regarding the number of sites found

during experimental phasing, in all cases

there were more sites detected than

expected. In the lysozyme crystal

structure, the expected number of sulfur

atoms was ten, corresponding to eight

cysteine and two methionine amino acid

residues in the sequence range 19–147.

In contrast, Autosol detected 18 and 20

sites in the CR and IBG data sets,

respectively. The type of data treatment

did not affect the number of sites in the

case of lysozyme. The remaining heavy

atoms were found in the solvent. These

were unlikely to be sulfur, because the

precipitant solution did not contain any

sulfur-containing compounds. In spite of

that, chloride has similar f 0 and f 00 at

8 keV X-ray photon energies and the

crystallization condition contained

sodium chloride. Eight of the extra

heavy-atom sites were changed to

chloride in all the structures, the rest

were removed from the model due to

858 Garcia-Bonete and Katona � Machine learning improves SAD Acta Cryst. (2019). A75, 851–860
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Figure 6
Comparison of electron-density maps after density modification in Autosol (Terwilliger et al., 2009)
of the R147 residue from lysozyme data sets. (a) and (b) correspond to the CR data set treated by
the multivariate (� = 1.0, 	 = 0.48 e Å�3) and univariate (� = 1.0, 	 = 0.48 e Å�3) methods,
respectively. (c) and (d) correspond to the IBG data set using multivariate (� = 1.0, 	 = 0.45 e Å�3)
and univariate (� = 1.0, 	 = 0.45 e Å�3) analysis, respectively. The figure was generated by the
program PyMOL (Schrodinger, 2015) by setting up the r.m.s.d. (root mean square deviation) level
to 1.0 and is visualized in an orthoscopic view. The extra electron density surrounding R147 (black)
corresponds to symmetry-related molecules (grey).

Figure 5
Comparison of electron-density maps after density modification in Autosol (Terwilliger et al., 2009)
of the CR survivin data using multivariate (� = 1.0, 	 = 0.26 e Å�3) (a) and univariate (� = 1.0, 	 =
0.29 e Å�3) (b) analysis. Multivariate analysis of CR data gives the most accurate electron-density
map. The figure was generated by the program PyMOL (Schrodinger, 2015) by extending the initial
electron-density map of CR multivariate (a) and univariate (b) analysis with fast Fourier transform
software (fft) from the CCP4 package (Winn et al., 2011). Both images are equally oriented and
visualized in an orthoscopic view. The survivin structural model (black) corresponds to the final
refined model obtained from the CR multivariate data set.

Table 2
Refinement statistics for survivin and lysozyme structures.

RMS = root mean square.

Survivin Lysozyme

CR CR CR IBG IBG

Analysis Multivariate Univariate Multivariate Univariate Multivariate
Rwork (%) 20.08 13.53 14.06 14.60 14.35
Rfree (%) 25.88 16.27 16.73 17.38 16.90
RMS bond lengths (Å) 0.01 0.01 0.01 0.01 0.01
RMS bond angles (�) 1.18 0.81 0.83 0.78 0.79
Average B factors (Å2) 106.67 16.06 15.03 18.92 18.30
Ramachandran outliers (%) 0 0 0 0 0
Ramachandran favoured (%) 93.23 98.43 98.43 98.43 98.43
Rotamer outliers (%) 0 0 0 0 0
Clashscore 13.79 2.85 1.90 4.27 3.28
Final phase error (�) 33.72 15.96 15.20 18.58 16.12
PDB entry 6sho 6sik 6sij 6sim 6sil



poor electron density. The most accurate number of sites was

found when the anomalous differences and structure-factor

amplitudes were generated from the CR data set. Published

lysozyme structures also show the presence of chloride ions in

the solvent, such as PDB entries 1gwd (seven chlorides)

(Evans & Bricogne, 2002) and 1dpx (two chlorides) (Weiss et

al., 2000).

In the survivin crystal structure, only two zinc ions were

expected, one for each BIR domain. However, Autosol found

three to ten sites and this could explain why Autosol could not

always determine accurate phases. The multivariate treatment

of CR survivin data yielded the most accurate estimate of the

number of sites (three) when using Autosol. In this case, two of

the Zn2+ ions were correctly placed, but even in this case the

third one was not supported by the electron density and was

removed by the automated model building and refinement

steps.

4. Conclusions

The main conclusion of this work is that Friedel’s pair obser-

vations are not independent and it is important to take into

account the correlations between measurements as this can

improve phasing. Multivariate analysis of the same data

consistently outperformed the univariate analysis. We

observed the largest contrast between the two methods when

their performance was compared on weak diffraction data.

Multivariate Bayesian machine learning uses more computa-

tional resources, but this is still favourable compared to

improving crystal quality and collecting new data when

working with a difficult protein system. With weak data,

exemplified by our survivin data sets, multivariate treatment

of Friedel’s pairs may make the difference between a solved

and unsolved structure.
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