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The epitaxial growth of molecular crystals at single-crystalline surfaces is often

strongly related to the first monolayer at the substrate surface. The present work

presents a theoretical approach to compare three-dimensional lattices of

epitaxially grown crystals with two-dimensional lattices of the molecules formed

within the first monolayer. Real-space and reciprocal-space representations are

considered. Depending on the crystallographic orientation relative to the

substrate surface, proper linear combinations of the lattice vectors of the three-

dimensional unit cell result in a rhomboid in the xy plane, representing a two-

dimensional projection. Mathematical expressions are derived which provide a

relationship between the six lattice parameters of the three-dimensional case

and the three parameters obtained for the two-dimensional surface unit cell. It is

found that rotational symmetries of the monolayers are reflected by the epitaxial

order. Positive and negative orientations of the crystallographic contact planes

are correlated with the mirror symmetry of the surface unit cells, and the

corresponding mathematical expressions are derived. The method is exemplarily

applied to data obtained in previous grazing-incidence X-ray diffraction

(GIXD) measurements with sample rotation on thin films of the conjugated

molecules 3,4;9,10-perylenetetracarboxylic dianhydride (PTCDA), 6,13-

pentacenequinone (P2O), 1,2;8,9-dibenzopentacene (trans-DBPen) and di-

cyanovinyl-quaterthiophene (DCV4T-Et2) grown by physical vapor deposition

on Ag(111) and Cu(111) single crystals. This work introduces the possibility

to study three-dimensional crystal growth nucleated by an ordered monolayer

by combining two different experimental techniques, GIXD and low-

energy electron diffraction, which has been implemented in the second part

of this work.

1. Introduction

Crystal structure identification of thin organic films attracts

considerable interest in organic electronics and pharmaceu-

tical science (Jones et al., 2016). The presence of a single-

crystalline surface during the crystallization process can

induce new types of molecular packing because the substrate

acts as template for the crystallization process. In the

following, some selected examples are given. In pentacene/

Cu(110) molecular reorientation from planar adsorption

geometry towards an upright orientation was observed (Koini

et al., 2008; Lukas et al., 2004, Söhnchen et al., 2004). In para-

sexiphenyl/KCl(001) epitaxial growth was found with four

contact planes (Haber et al., 2005). In platelets of the same

molecule on a series of alkali halide surfaces a variety of

preferential orientations were observed and analyzed (Smil-

gies & Kintzel, 2009). In general, if molecular crystals are

epitaxially grown on single-crystalline substrates, multiple
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preferred orientations of the adsorbate, several symmetry-

related in-plane alignments, and the occurrence of unknown

polymorphs can be observed (Mitchell et al., 2001; Resel et al.,

2009; Simbrunner et al., 2011; Schwabegger et al., 2013).

Crystal structure identification from thin films is often

performed by grazing-incidence X-ray diffraction (GIXD)

experiments. The analysis of the diffraction pattern relies on

indexing the obtained reflections to determine the unit cells

formed by the underlying molecules. In a previous work, we

described an algorithm which proved effective for the thin film

analysis, where unit cells in various orientations and/or with

different lattice parameters may occur (Simbrunner et al.,

2020, 2021a). The following general crystallographic features

of epitaxially grown films could be observed: (i) the crystallites

grow with defined crystallographic planes parallel to the

substrate surface (i.e. contact planes), which can be observed

by specular X-ray diffraction. The specular diffraction peak

comprises the information on the Miller indices of the contact

plane. In all our test cases, we found positive and negative

orientations of the contact planes, i.e. the planes with the

Miller indices (uvw) and (�u� v� w). In the case of di-

cyanovinyl-quaterthiophene (DCV4T-Et2) on Ag(111) we

observed three polymorphs with both different crystal-

lographic unit cells as well as contact planes (Simbrunner et al.,

2021a). (ii) The crystallites show additionally distinct rota-

tional alignments in the xy plane. For each contact plane two

groups of 60� symmetry were observed, one for the positive

(uvw) and one for the negative (�u� v� w) orientation. The

respective two main axes of the organic crystals are aligned

symmetrically, mostly anticlockwise and clockwise, with

respect to the main axes of the substrates. Hence, GIXD is a

very powerful experimental method to study the three-

dimensional crystal structure of thin, organic, epitaxially

grown films.

However, for studying epitaxial growth, the molecular

contact layer (i.e. first monolayer) and its relation to the

substrate has gained special interest. The details of the

adsorption, bonding and ordering of the first layer on the

substrate surface can strongly determine the structure and

morphology of the organic film growing on top. To elucidate

the structure of the monolayer, two-dimensional surface-

sensitive methods, such as distortion-corrected low-energy

electron diffraction (LEED) (Sojka et al., 2013a,b), are espe-

cially suited. The relationship between substrate and mono-

layer, which can be mathematically expressed in the epitaxy

matrix, is of special importance (Kasemann et al., 2009; Forker

et al., 2017).

Therefore, for studying epitaxial growth mechanisms, it is

desirable to correlate the results of LEED and GIXD

measurements to compare the crystallographic structures of

the monolayer and the multilayer. In this work, we derive

analytical mathematical expressions to correlate the para-

meters of an arbitrary three-dimensional lattice with those of

its surface unit cell. To illustrate the applicability, the devel-

oped theoretical framework is applied in Section 3 to the

conjugated molecules 6,13-pentacenequinone (P2O), 3,4;9,10-

perylenetetracarboxylic dianhydride (PTCDA), 1,2;8,9-

dibenzopentacene (trans-DBPen) and DCV4T-Et2, grown by

physical vapor deposition on single-crystalline surfaces like

Ag(111) and Cu(111), which we previously studied using

rotated GIXD experiments (Simbrunner et al., 2020, 2021a).

The two-dimensional lattice parameters are theoretically

interpreted on the basis of the known three-dimensional unit

cell and orientation parameters.

In the second part of our work (Simbrunner et al., 2022), the

analysis will be based upon the indexing of the two-dimen-

sional diffraction patterns incorporated in the GIXD data, i.e.

the x and y components of the reciprocal-lattice vectors, of the

examples listed above, and obtained in LEED experiments on

the same molecules.

2. Method

2.1. From three- to two-dimensional crystallographic lattices

For the following mathematical treatment, a crystal-fixed

Cartesian coordinate system (laboratory system) is assumed,

where the xy plane runs parallel to the substrate surface; a, b,

c, �, � and � are the parameters of the (direct) unit cell. It is

convenient to arrange its lattice vectors a, b and c in the matrix

A as follows:

A ¼

a

b

c

0
@

1
A ¼ ax ay az

bx by bz

cx cy cz

0
@

1
A: ð1Þ

The absolute value of the determinant of A corresponds to the

volume of the parallelepiped spanned by the lattice vectors.

Then, the reciprocal-lattice vectors a*, b* and c* are given by

the relation

A� ¼ a�; b�; c�ð Þ ¼ 2�A�1: ð2Þ

The reciprocal-lattice vector g with its Laue indices h, k and l

can be represented by the equation

g ¼

gx

gy

gz

0
@

1
A ¼ A�

h

k

l

0
@

1
A: ð3Þ

We assign the composite vectors a0 and b0 of the lattice vectors

a, b and c such that they are confined to the xy plane, i.e.

a0 ¼ �aaþ �bbþ �cc with a0z ¼ �aaz þ �bbz þ �ccz ¼ 0 ð4Þ

and

b0 ¼ �aaþ �bbþ �cc with b0z ¼ �aaz þ �bbz þ �ccz ¼ 0:

ð5Þ

The vectors a0 and b0 enclose the angle � 0, and their lengths are

ja0j ¼ a0 and jb0j ¼ b0, respectively. Together with a composite

vector c0 (which must contain a non-zero z component) a0 and

b0 span a supercell. Its matrix A0 can be written as follows:

A0 ¼

a0x a0y 0

b0x b0y 0

c0x c0y c0z

0
@

1
A ð6Þ

with
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det A0ð Þ ¼ c0z a0xb0y � b0xa0y
� �

: ð7Þ

Then, the matrix A0� of the corresponding reciprocal-lattice

vectors is given as follows:

A0� ¼ 2�A0�1
¼

2�

detðA0Þ

�

b0yc0z �a0yc0z 0

�b0xc0z a0xc0z 0

b0xc0y � c0xb0y a0yc0x � a0xc0y a0xb0y � b0xa0y

0
B@

1
CA: ð8Þ

In the following, we will consider only the reciprocal vector

g0x;y in the xy plane, which can be explicitly written as

g0x;y ¼
2�

a0xb0y � b0xa0y

b0y �a0y
�b0x a0x

� �
h0

k0

� �
; ð9Þ

where h0 and k0 are the corresponding Laue indices. When the

Laue condition, i.e. (gx, gy) = scattering vector (qx, qy), is

fulfilled, diffraction in the xy plane can be observed.

For the following discourse, we will consider crystal-

lographic unit cells with a contact plane characterized by the

Miller indices u, v and w, which are integers (Simbrunner et al.,

2018). Then, the z components of the lattice vectors can be

written as

az ¼ u
2�

gspec

; bz ¼ v
2�

gspec

; cz ¼ w
2�

gspec

; ð10Þ

where gspec corresponds to the height of the specular diffrac-

tion peak, which can be explicitly written as

gspec ¼
2�

Vol

h
u2b2c2 sin2 �þ v2a2c2 sin2 �þ w2a2b2 sin2 �

þ 2uvabc2
ðcos� cos�� cos �Þ

þ 2uwacb2
ðcos� cos � � cos�Þ

þ 2vwbca2
ðcos� cos � � cos�Þ

i1=2

: ð11Þ

Vol is the unit-cell volume, which can be expressed as

Vol ¼ abcð1� cos2 �� cos2 �� cos2 �

þ 2 cos � cos � cos �Þ1=2: ð12Þ

With the expressions in equation (10), the relations in equa-

tions (4) and (5) can be rewritten as

�auþ �bvþ �cw ¼ 0 ð13Þ

and

�auþ �bvþ �cw ¼ 0: ð14Þ

From these scalar vector products, the following cross product

can be derived:

�a

�b

�c

0
@

1
A� �a

�b

�c

0
@

1
A ¼ 1

gcd u; v;wð Þ

u

v

w

0
@

1
A; ð15Þ

where gcd(u, v, w) is the greatest common divisor of the Miller

indices. Note that for (uvw) ! �(uvw) the coefficients are

transformed as: (�a, �b, �c)! (�a, �b, �c) and (�a, �b, �c)!

�(�a, �b, �c). The factors �i and �i can be regarded as

components of the transformation matrix N, which linearly

transforms the matrix A into A0, i.e. A0 = NA (Simbrunner et

al., 2018). Therefore, the following relations for the Laue

indices h, k and l are valid:

h0 ¼ �ahþ �bkþ �cl ð16Þ

and

k0 ¼ �ahþ �bkþ �cl; ð17Þ

where h0 and k0 are the Laue indices of the supercell [cf.

equation (9)]. Therefore, in general, �i and �i must be integers.

For the lattice vectors a0 and b0 the following relations can be

derived:

a0
�� �� ¼ a0 ¼ ð�aaþ �bbþ �ccÞ2

� �1=2

¼
�
�2

aa2
þ �2

bb2
þ �2

cc2
þ 2�a�bab cos �

þ 2�a�cac cos�þ 2�b�cbc cos �
�1=2
; ð18Þ

b0
�� �� ¼ b0 ¼ ð�aaþ �bbþ �ccÞ2

� �1=2

¼
�
�2

aa2
þ �2

bb2
þ �2

cc2
þ 2�a�bab cos �

þ 2�a�cac cos �þ 2�b�cbc cos�
�1=2
; ð19Þ

cos � 0 ¼
a0 � b0

ja0jjb0j
¼
ð�aaþ �bbþ �ccÞð�aaþ �bbþ �ccÞ

a0b0

¼ ½�a�aa2
þ �b�bb2

þ �c�cc2
þ ð�a�b þ �b�aÞab cos �

þ ð�a�c þ �c�aÞac cos�

þ ð�b�c þ �c�bÞbc cos ��=ða0b0Þ ð20Þ

and

Area ¼ a0b0 sin � 0
�� ��: ð21Þ

Furthermore [see Appendix A, equation (61)], the

following expression for the area of the (reduced) rhomboid is

valid:

Area ¼
1

gcd u; v;wð Þ

gspec

2�
Vol ¼

Vol

duvw

; ð22Þ

where duvw is the interplanar distance. This relation is obvious,

if, e.g. u = v = 0 and w = 1, where

a� bj j ¼
a� bð Þ � c
�� ��

cz

¼
Vol

d001

:

Equation (22) is, however, valid for any contact plane (uvw).

For a further algebraic step, equation (11) could be used.

The vectors a0 and b0 can be explicitly written as

a0 ¼ a0
cos �
sin�

0

0
@

1
A ð23Þ

and

b0 ¼ b0
cos � 0 þ �ð Þ

sin � 0 þ �ð Þ

0

2
4

3
5: ð24Þ
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The derivation of the vector components of a0 and b0 and

the explicit expression for the angle �, which is an elaborate

function of the parameters of the three-dimensional unit cell

and the coefficients �i and �i, can be found in Appendix A.

Hence, equation (9) can be rewritten as follows:

g0x;y ¼
2�

a0 sin � 0 sin � 0 þ �ð Þ � 2�
b0 sin � 0 sin�

� 2�
a0 sin � 0 cos � 0 þ �ð Þ 2�

b0 sin � 0 cos�

	 

h0

k0

� �
: ð25Þ

The reduced cell (rhomboid) is obtained by choosing the

coefficients �i and �i so that the two shortest vectors, which

are not collinear, result.

From equation (20) it can be deduced that for (uvw) !

�(uvw) the following angular transformation results: � 0 ! �
� � 0. In equation (25), this is equivalent to � 0 ! �� 0 and h0 !

�h0, which corresponds to a mirror symmetry about an axis

along the lattice vector a0.

If u, v and w 6¼ 0, using equations (4), (5) and (15), equa-

tions (18)–(20) can be transformed to the following relations:

1

gcd u; v;wð Þ
2
½ðvaÞ2 þ ðubÞ2 � 2ðvaÞðubÞ cos ��

¼ �2
ca02 þ �2

cb02 � 2�c�ca0b0 cos � 0; ð26Þ

1

gcd u; v;wð Þ
2 ½ðwaÞ

2
þ ðucÞ

2
� 2ðwaÞðucÞ cos ��

¼ �2
ba02 þ �2

bb02 � 2�b�ba0b0 cos � 0 ð27Þ

and

1

gcd u; v;wð Þ
2
½ðwbÞ2 þ ðvcÞ2 � 2ðwbÞðvcÞ cos ��

¼ �2
aa02 þ �2

ab02 � 2�a�aa0b0 cos � 0: ð28Þ

The expressions on the left side of the equations represent the

squares of diagonals of the parallelepiped representing the

three-dimensional unit cell or one of its supercells, depending

upon the Miller indices of the contact plane. Further relations

are derived in Appendix B.

2.2. Two-dimensional crystallographic lattice

For convenience, in the following paragraphs of Section 2

we will omit the prime for the parameters of the two-dimen-

sional unit cell. The real-space lattice vectors a and b can be

represented by the matrix A, which is explicitly written as

A ¼
a

b

� �
¼

a cos ’ a sin ’
b cos � þ ’ð Þ b sin � þ ’ð Þ

	 

ð29Þ

with the relations |a| = a, |b| = b, a � b/(ab) = cos � and det(A) =

Area = ab sin �; the angle ’ represents a phase shift in the xy

plane counter-clockwise. The reciprocal-lattice vectors are

contained in the matrix A* as follows:

A� ¼ a�; b�½ � ¼

2�
a sin � sin � þ ’ð Þ � 2�

b sin � sin ’

� 2�
a sin � cos � þ ’ð Þ 2�

b sin � cos’

	 

: ð30Þ

Equations (29) and (30) are connected via

A ¼ 2�A��1: ð31Þ

Then the two-dimensional reciprocal-lattice vector g with its

Laue indices h and k is given by

g ¼
gx

gy

� �
¼ A�

h

k

� �
: ð32Þ

It can be easily recognized that equation (32) is equivalent to

equation (25). Therefore, indexing LEED patterns technically

corresponds to indexing GIXD patterns, when only the

information in the xy plane (i.e. pairs of qx and qy) is used.

When the Laue condition is fulfilled, i.e. the scattering vector

in the xy plane qxy = g, diffraction can be observed. Using

equations (31) and (32), the following relation can be derived:

Ag ¼
a

b

� �
g ¼ 2�

h

k

� �
: ð33Þ

From equation (33) it can be deduced that, if two reciprocal

vectors g1 and g2 are given, the following relation is valid:

G
a

b

� �T

¼ GAT
¼ 2�HT

ð34Þ

where

G ¼
gx1 gy1

gx2 gy2

� �
ð35Þ

and (hi; kiÞ are the corresponding pairs of Laue indices with

H ¼
h1 h2

k1 k2

� �
: ð36Þ

Equation (34) can be equivalently expressed as

AT
¼ 2�G�1HT: ð37Þ

The unit-cell vectors must be solutions to all reciprocal vectors

gi, which, according to equation (33), can be written as

Agi ¼ 2�hi; ð38Þ

where gi = (gxi, gyi)
T and hi = (hi, ki)

T. For a phase shift of 180�

of either the lattice vectors a and b [i.e. ’! ’ + � in equation

(30)] or the reciprocal vector gi, hi will become �hi. From

equation (38) it can be deduced that 2�G�1m, the product of

the inverse matrix of two reciprocal vectors with a vector m,

consisting of a doublet of arbitrary integers (m1, m2), leads to a

vector of the reduced cell, if m matches (h1, h2)T or (k1, k2)T. If

a transformation matrix N exists so that m equals N(h1, h2)T or

N(k1, k2)T, a vector of a superlattice is obtained. The reduced

rhomboid is obtained by choosing the two shortest vectors

which are not collinear and whose scalar products with all

reciprocal vectors yield integers (Simbrunner et al., 2021b).

This reduced rhomboid is equivalent to the Buerger cell in the

three-dimensional case (Buerger, 1957). Analogously, the

Niggli criteria (Niggli, 1928) can be expressed in the two-

dimensional case as

a 	 b and b cos �
�� �� 	 a

2
: ð39Þ
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3. Application to specific molecule–substrate
combinations

3.1. General remarks

To practically demonstrate the theoretical framework, we

apply the developed mathematical approach to the epitaxially

grown crystallites, i.e. P2O/Ag(111), PTCDA/Ag(111),

DCV4T-Et2/Ag(111) and trans-DBPen/Cu(111) (Simbrunner

et al., 2020, 2021a). Keeping with the notation in the theore-

tical part of our work in Section 2.1, again the components of

the two-dimensional unit cells will be indicated by the prime.

In Table 1, the general equations (18)–(20) for calculating

the cell parameters a0, b0 and � 0 from the corresponding

parameters of the three-dimensional unit cell are applied to

the four molecules. The coefficients �i and �i are chosen such

that equation (15) is fulfilled for the corresponding contact

planes, indicated by the Miller indices u, v and w. As we have

shown, the positive (uvw) and the negative (�u� v� w)

orientations of the contact plane correspond to the observed

mirror symmetry of the two-dimensional unit cells (Kilian et

al., 2004; Simbrunner et al., 2022). If the contact plane is

perpendicular to one of the main axes of the Cartesian system,

the two-dimensional unit cell is spanned by two vectors of the

three-dimensional unit cell. Otherwise, the equations

comprise parameters of all three dimensions. Elaborate rela-

tions arise, if none of the Miller indices of the contact plane is

zero, as in the case of two polymorphs of DCV4T-Et2/

Ag(111). In Table 2, the previously obtained three-dimen-

sional parameters of the four examples are listed (Simbrunner

et al., 2020, 2021a). In Table 3, these parameters are used to

specifically calculate the corresponding parameters of the two-

dimensional unit cells. In Table 4, the areas of the two-

dimensional unit cells are calculated from the volumes of the

three-dimensional unit cells and the respective lengths of the

specular diffraction peaks obtained by X-ray diffraction, gspec

[cf. equation (22)]. Comparing the values of the areas with

those in Table 3 [calculated with equation (21)] shows their

accordance within the experimental error. In the second part

of our work (Simbrunner et al., 2022), we will determine the

parameters of the surface unit cells experimentally by

indexing our GIXD data again, using only the x and y

components of the reciprocal-space vectors. We will see that

such obtained results are in good accordance with the theo-

retically predicted data.

In the following paragraphs, for two molecules, i.e. PTCDA/

Ag(111) and DCV4T-Et2/Ag(111), we will go into further

depth.

3.2. PTCDA/Ag(111)

In the three-dimensional GIXD experiment, for the unit

cell two groups of azimuthal alignments, each with a 60�

symmetry, were found (Simbrunner et al., 2021a). These could

be explained by the two contact planes (103) and (103). The

orientation of the contact plane is usually indicated as (102) –

for the reason of crystallographic convention, however, it is in

the monoclinic system with the supplementary angle � > 90�

(103) (Simbrunner et al., 2021a). As in the particular case of

PTCDA the conditions v = 0 and � = � = 90� are fulfilled, the

lattice vectors a, b, c for the contact planes (103) and (103) are

collinear; therefore, an unambiguous assignment of the rota-

tion angles ’ to either one of those contact planes is not

possible (Simbrunner et al., 2021a).

In general, for a unit cell in (103) orientation, � 0 can be

calculated as follows [cf. equation (20)]:

cos � 0 ¼
�3a cos � þ c cos �

ð3aÞ
2
þ c2 � 6ac cos �

� �1=2
: ð40Þ

Then, for a monoclinic lattice (� = � = 90�) � 0 = 90�.

Accordingly, a rectangular surface unit cell can be observed in

the multilayer (see Table 3). However, as in the LEED

experiment the angle � 0 is about 89� (Kilian et al., 2004;

Simbrunner et al., 2022), the two-dimensional unit cell in the

monolayer is not rectangular. This demonstrates that the

monolayer structure differs qualitatively from the monoclinic

bulk lattice, although the quantitative difference is subtle.

3.3. DCV4T-Et2/Ag(111)

In the rotated GIXD experiment performed previously, we

found three polymorphs with the contact planes 
(122),


(211) and 
(020) (Simbrunner et al., 2021a; see Table 2).
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Table 1
Explicit expressions for the parameters a0, b0 and � 0 of the reduced
rhomboid, spanned by linear combinations of the vectors a, b and c with
the coefficients �i and �i, as functions of the parameters a, b, c, �, � and �
of the underlying parallelepiped, given for PTCDA/Ag(111), P2O/
Ag(111), DCV4T-Et2/Ag(111) and trans-DBPen/Cu(111).

The Miller indices (uvw) indicate the contact planes of the epitaxially oriented
crystals. For experimental details see Simbrunner et al. (2020, 2021a).

(uvw) Coefficients �, �† Cell parameters

PTCDA/Ag(111)
103 �a = 0, �b = �1, �c = 0 a0 ¼ b

�a = 3, �b = 0, �c = �1 b0 ¼ ½ð3aÞ2 þ c2 � 6ac cos��1=2

cos � 0 ¼ ð�3a cos � þ c cos�Þ=b0

P2O/Ag(111)
102 �a = 0, �b = �1, �c = 0 a0 ¼ b

�a = 2, �b = 0, �c = �1 b0 ¼ ½ð2aÞ2 þ c2 � 4ac cos��1=2

cos � 0 ¼ ð�2a cos � þ c cos�Þ=b0

DCV4T-Et2/Ag(111)
122 �a = 0, �b = �1, �c = �1 a0 ¼ ðb2 þ c2 þ 2bc cos�Þ1=2

�a = 2, �b = 1, �c = 0 b0 ¼ ½ð2aÞ2 þ b2 þ 4ab cos ��1=2

cos � 0 ¼ �ðb2 þ 2ab cos � þ 2ac cos�
þbc cos�Þ=ða0b0Þ

211 �a = 0, �b = �1, �c = �1 a0 ¼ ðb2 þ c2 þ 2bc cos�Þ1=2

�a = 1, �b = 1, �c = �1 b0 ¼ ða2 þ b2 þ c2 þ 2ab cos �
�2ac cos�� 2bc cos�Þ1=2

cos � 0 ¼ ðc2 � b2 � ab cos � � ac cos�Þ
=ða0b0Þ

020 �a = �1, �b = 0, �c = 0 a0 ¼ a
�a = 0, �b = 0, �c = 1 b0 ¼ c

cos � 0 ¼ � cos�
trans-DBPen/Cu(111)
020 �a = �1, �b = 0, �c = 0 a0 ¼ a

�a = 0, �b = 0, �c = 1 b0 ¼ c
cos � 0 ¼ � cos�

† cf. Equation (15).



Theoretical considerations show that for the (122) orientation,

equation (15) gives two solutions: in both cases �b = �c =�1, in

(i) �a = 2, �b = 1 and in (ii) �a = 2, �b = 2, �c = 1. Taking our

data from the rotating GIXD experiment, the following

parameters can be calculated: (i) a0 = 11.907, b0 = 16.849 Å, � 0 =
78.00� and (ii) a0 = 11.907, b0 = 18.500 Å, � 0 = 117.02�. For both

solutions the area is 196.2 Å2. Solution (i), however, is the

reduced Buerger cell.

For the (211) orientation, equation (15) gives only the

solution �b = �c = �c = �1 and �a = �b = 1.

As for both contact planes none of the Miller indices is zero,

no basis vector of the three-dimensional unit cell can be

directly observed in the two-dimensional lattice; however, we

can extract three diagonals of the parallelepiped, which are

spanned by different vectors [cf. equations (26)–(28)]. In

Table 5, we summarize the results of this analysis. This

manifests that there is a clear relationship between the two

lattices.

In Fig. 1, the schematic three- and

two-dimensional unit cells of these two

polymorphs in the real (a), (c) and in

the reciprocal (b), (d) space are shown.

Note that, whereas the parallelepipeds

look different, the two-dimensional unit

cells (rhomboids) are similar.

The parameters of the unit cell in the


(020) orientation are shown in Tables

3 and 4. There is a certain relationship

between 2a and c with the corre-

sponding parameters a0 and b0 of the

other two unit cells of DCV4T-Et2/

Ag(111).

Furthermore, in the xy plane, these

three polymorphs form two groups of

related azimuthal alignments, each with

a 60� symmetry and corresponding to

the respective positive and negative contact planes (see

Appendix A and Table 6).

Hence, though the cell parameters and orientations of the

three polymorphs are quite different in three dimensions (see

Table 2), the respective parameters in the xy plane converge.

4. Summary and conclusion

For epitaxial analysis, it is desirable to determine the crystal-

lographic lattices in the monolayer and in the multilayer.

Analytical methods for the three-dimensional crystal struc-

ture, such as rotational GIXD, are able to provide spatial

information. The monolayer, however, is only accessible in

two dimensions, where distortion-corrected LEED is the

method of choice.

A comprehensive mathematical framework has been

developed to correlate the parameters of the two- and three-

dimensional lattices. Knowing the orientation and parameters

of the three-dimensional unit cell enables the interpretation of

the two-dimensional data for direct comparison of the lattices.

Depending upon the Miller indices of the contact plane, either

basis vectors of the three-dimensional unit cell or composites
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Table 3
Parameters a0, b0, � 0 and ‘Area’ of the surface unit cells in the studied
molecules, calculated from the parameters of the three-dimensional unit
cells obtained from rotated GIXD experiments (Simbrunner et al., 2020,
2021a).

The (calculated propagated) uncertainties are given in brackets. The
composition of the unit-cell vectors a0 and b0 is indicated by the coefficients
�i and �i. The Miller indices (uvw) indicate the contact planes of the
epitaxially oriented crystals.

(uvw)

a0, b0

[�a �b �c],
[�a �b �c] a0 (Å) b0 (Å) � 0 (�)

Area
calculated†
(Å2)

PTCDA/Ag(111)
103 [010], [301] 12.206 (102) 19.530 (89) 89.93 (11) 238.4 (23)
P2O/Ag(111)
102 [010], [201] 8.097 (26) 13.826 (70) 88.01 (23) 111.9 (7)
DCV4T-Et2/Ag(111)
122 [011], [210] 11.907 (11) 16.849 (32) 78.00 (11) 196.2 (4)
211 [011], [111] 12.062 (56) 16.108 (62) 79.76 (32) 191.2 (12)
020 [100], [001] 6.115 (9) 16.095 (13) 90.48 (17) 98.4 (2)
trans-DBPen/Cu(111)
020 [100], [001] 6.751 (8) 18.529 (41) 93.29 (25) 124.9 (3)

† cf. Equation (21).

Table 2
Parameters of the three-dimensional unit cells in PTCDA/Ag(111), P2O/Ag(111), DCV4T-Et2/
Ag(111) and trans-DBPen/Cu(111), found experimentally by rotated GIXD experiments
(Simbrunner et al., 2020, 2021a).

The Miller indices (uvw) indicate the contact planes of the epitaxially oriented crystals.

(uvw) a (Å) b (Å) c (Å) � (�) � (�) � (�)

PTCDA/Ag(111)
(103) (103) 3.737 (7) 12.206 (102) 17.013 (90) 89.87 (12) 84.93 (28) 89.93 (6)
P2O/Ag(111)
(102) (102) 5.059 (12) 8.097 (26) 8.916 (32) 91.64 (24) 92.95 (56) 94.17 (23)
DCV4T-Et2/Ag(111)
(122) (122) 8.408 (17) 9.070 (14) 10.370 (12) 104.79 (10) 109.91 (6) 105.43 (8)
(211) (211) 8.083 (19) 8.401 (18) 9.860 (49) 97.74 (36) 93.57 (36) 92.49 (27)
(020) (020) 6.115 (9) 7.290 (9) 16.095 (13) 83.44 (20) 89.52 (17) 71.53 (13)
trans-DBPen/Cu(111)
(020) (020) 6.751 (8) 7.566 (4) 18.529 (41) 89.88 (8) 86.71 (25) 89.84 (12)

Table 4
Area of the two-dimensional unit cells for PTCDA/Ag(111), P2O/
Ag(111), DCV4T-Et2/Ag(111) and trans-DBPen/Cu(111), calculated
from the specular scan in X-ray diffraction and the volume from GIXD,
compared with the areas obtained from GIXD experiments (Simbrunner
et al., 2020, 2021a).

Molecule/substrate

Miller
indices
(uvw) qspec (Å�1) Vol. (Å3)

Area
calculated†
(Å2)

PTCDA/Ag(111) 
(103) 1.947 (2) 773.0 (28) 239.5 (9)
P2O/Ag(111) 
(102) 1.942 (2) 363.5 (4) 112.3 (2)
DCV4T-Et2/Ag(111) 
(122) 1.857 (2) 662.5 (14) 195.8 (5)


(211) 1.828 (2) 661.1 (36) 192.3 (11)

(020) 1.828 (2) 673.5 (13) 98.0 (2)‡

trans-DBPen/Cu(111) 
(020) 1.660 (2) 944.8 (13) 124.8 (2)‡

† cf. Equation (22). ‡ gcd = 2.



of them build up the corresponding two-dimensional surface

unit cell (rhomboid). The derived mathematical formulas

have been applied on previously obtained GIXD data from

various molecules on substrates such as Ag(111) and Cu(111).

For lattices with orientations where all Miller indices are

non-zero, as in the case of DCV4T-Et2/Ag(111), no vector

of the surface unit cell is a basis vector of the three-dimen-

sional lattice. There is, however, access to three diagonals of

different planes of the three-dimensional unit cell or one

of its supercells.

In previous GIXD experiments, for

the three-dimensional unit cells we

found positive and negative orientations

of the contact planes, i.e. the planes

with the Miller indices (uvw) and

(�u� v� w). Furthermore, distinct

alignments of the crystallites in the xy

plane were found, i.e. for each contact

plane two groups of 60� symmetry were

observed, one for the positive (uvw)

and one for the negative (�u� v� w)

orientation. In this study we demon-

strate that in two dimensions this

feature corresponds to unit cells with

mirror symmetry with respect to the a

axis. Thus, rotational and mirror

symmetries coexist.

In a previous study, in the multilayer of DCV4T-Et2/

Ag(111), we found three polymorphs with various cell para-

meters, orientations and azimuthal alignments. The theoretical

analysis of the corresponding two-dimensional lattices

predicts a convergence of the respective parameters (see

Tables 3 and 6).

In a forthcoming paper (Simbrunner et al., 2022) we will

check our theoretically derived results by indexing only

the x and y components of the reciprocal vectors obtained
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Table 5
Correlations between the diagonals in the three-dimensional lattice and the parameters of the two-
dimensional unit cell for the 
(122) and 
(211) orientations in DCV4T-Et2/Ag(111) (Simbrunner
et al., 2021a).

In addition to the corresponding mathematical expressions, the calculated numbers from the three-
dimensional unit cells are itemized. The respective propagated uncertainties are given in brackets.

Diagonal 3D lattice 2D lattice Calculated (Å)


(122)
diag(2a,b) short ½ð2aÞ2 þ b2 þ 4ab cos ��1=2 b0 16.849 (32)
diag(2a,c) long ½ð2aÞ2 þ c2 � 4ac cos��1=2

ða02 þ b02 þ 2a0b0 cos � 0Þ1=2 22.563 (38)
diag(b,c) short ðb2 þ c2 þ 2bc cos�Þ1=2 a0 11.907 (11)

(211)
diag(a,2b) short ½a2 þ ð2bÞ2 þ 4ab cos ��1=2

ða02 þ b02 � 2a0b0 cos � 0Þ1=2 18.326 (84)
diag(a,2c) long ½a2 þ ð2cÞ2 � 4ac cos��1=2

ða02 þ b02 þ 2a0b0 cos � 0Þ1=2 21.773 (77)
diag(b,c) short ðb2 þ c2 þ 2bc cos�Þ1=2 a0 12.062 (56)

Figure 1
Schematic three-dimensional (red) and two-dimensional (blue) unit cells for the polymorphs of DCV4T-Et2/Ag(111) with (122) (a), (b) and (211) (c), (d)
orientations. In (a), (c) the relations in the real, and in (b), (d) in the reciprocal space are depicted. Also shown (cyan) is the peak of the reciprocal scan
gspec in the reciprocal space and duvw = 2�/ gspec in the real space, respectively. Note that the volumes of the (red) parallelepipeds equal the products of
the areas of the (blue) rhomboids with duvw (a), (c) and gspec (b), (d), respectively.



in our previous GIXD experiments. In a further step, we

will compare these findings with the results of recent

LEED experiments on the same molecules to compare the

properties of monolayer and multilayer (Simbrunner et al.,

2022).

APPENDIX A
Determining the components of the two-dimensional
unit-cell matrix

Assuming a contact plane with the Miller indices u, v and w,

the matrix of the lattice vectors A can be written as

(Simbrunner et al., 2018)

A ¼

ara cosð’þ  ��aÞ ara sinð’þ  ��aÞ u 2�
gspec

brb cosð’þ  þ�bÞ brb sinð’þ  þ�bÞ v 2�
gspec

crc cosð’þ  þ�cÞ crc sinð’þ  þ�cÞ w 2�
gspec

2
64

3
75;
ð41Þ

where

ra ¼ 1�
u

a

2�

gspec

 !2" #1=2

; rb ¼ 1�
v

b

2�

gspec

 !2" #1=2

rc ¼ 1�
w

c

2�

gspec

 !2" #1=2

cos �a ¼
1

ra

u
a cos � � v

b

u
a

� �2
þ v

b

� �2
� 2 u

a
v
b cos �

h i1=2

cos �b ¼
1

rb

u
a �

v
b cos �

u
a

� �2
þ v

b

� �2
� 2 u

a
v
b cos �

h i1=2

cos �c ¼
1

rc

u
a cos �� v

b cos�

u
a

� �2
þ v

b

� �2
� 2 u

a
v
b cos �

h i1=2

cos ¼
u
a cos � � v

b

u
a

� �2
þ v

b

� �2
� 2 u

a
v
b cos �

h i1=2

sin ¼
u
a sin �

u
a

� �2
þ v

b

� �2
� 2 u

a
v
b cos �

h i1=2

and the angle ’ represents a phase shift in the xy plane

counter-clockwise.

Then the composed vector a0 ¼ �aaþ �bbþ �cc with the

relation �aaz þ �bbz þ �ccz ¼ 0 can be written as

a0 ¼ a0
cos ’þ  þ��ð Þ

sin ’þ  þ��ð Þ

0

2
4

3
5 ð42Þ

where

a0 ¼
�
�2

aa2 þ �2
bb2 þ �2

cc2 þ 2�a�bab cos � þ 2�a�cac cos �

þ 2�b�cbc cos�
�1=2

ð43Þ

and

cos �� ¼ ½�aa ub cos � � vað Þ þ �bb ub� va cos �ð Þ

þ �cc ub cos�� va cos�ð Þ�

= a0 ubð Þ
2
þ vað Þ

2
�2uvab cos �

� �1=2
n o

; ð44Þ

sin �� ¼
�c

gspec

2� Vol

a0 ubð Þ
2
þ vað Þ

2
� 2uvab cos �

� �1=2
; ð45Þ

where

Vol ¼ abcð1� cos2 �� cos2 �� cos2 �

þ 2 cos � cos� cos �Þ1=2: ð46Þ

For �a = �v, �b = u and �c = 0, one obtains sin �� = 0 and

cos �� = 1, resulting in �� = 0.

For �a =�w, �b = 0 and �c = u, the following relations result:

cos �� ¼
vwa2 þ u2bc cos �� uwab cos � � uvac cos �

a0 ubð Þ2 þ vað Þ2 � 2uvab cos �
� �1=2

; ð47Þ

sin �� ¼
u

gspec

2� Vol

a0 ubð Þ2 þ vað Þ2 � 2uvab cos �
� �1=2

; ð48Þ

where

a0 ¼ w2a2
þ u2c2

� 2uwac cos�
� �1=2

: ð49Þ

For �a = 0, �b =�w and �c = v, the following relations result:

cos �� ¼
vwab cos � þ uvbc cos�� uwb2 � v2ac cos �

a0 ubð Þ
2
þ vað Þ

2
� 2uvab cos �

� �1=2
; ð50Þ

sin �� ¼
v

gspec

2� Vol

a0 ubð Þ
2
þ vað Þ

2
� 2uvab cos �

� �1=2
; ð51Þ

where

a0 ¼ w2b2
þ v2c2

� 2vwbc cos�
� �1=2

: ð52Þ

For b0, the following expression is valid:

b0 ¼ b0
cos ’þ  þ��

� �
sin ’þ  þ��

� �
0

2
4

3
5 ¼ b0

cos � 0 þ ’þ  þ��ð Þ

sin � 0 þ ’þ  þ��ð Þ

0

2
4

3
5
ð53Þ

as [cf. equations (19), (42) and (53)]

a0 � b0 ¼ a0b0 cos � 0 ¼ a0b0 cos �� ���

� �
: ð54Þ

Therefore, equation (22) can be explicitly written as
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g0x;y ¼

2�
a0 sin � 0 sin � 0 þ ’þ  þ��ð Þ � 2�

b0 sin � 0 sin ’þ  þ��ð Þ

� 2�
a0 sin � 0 cos � 0 þ ’þ  þ��ð Þ 2�

b0 sin � 0 cos ’þ  þ��ð Þ

" #

�
h0

k0

� �
: ð55Þ

Equation (55) corresponds to equation (22) with the relation �
= ’ +  + ��. Note that for (uvw)!�(uvw) : (�a, �b, �c)!

(�a, �b, �c) and (�a, �b, �c)! �(�a, �b, �c). For the angles

��, �� and  of the contact plane (�u� v� w), the relations

��,�u�v�w = � � ��,uvw, ���,�u�v�w = 2� � ��,uvw and

 �u�v�w = � +  uvw are valid, where ��,uvw, ��,uvw and  uvw

are the respective angles of the contact plane (uvw). Conse-

quently, ���,�u�v�w � ��,�u�v�w = � � (��,uvw � ��,uvw).

Hence, for (uvw)!�(uvw): � 0! � � � 0 [see equation (54)].

Regarding equation (55), this is mathematically equivalent to

� 0! �� 0 and h0 ! �h0, resulting in a mirror symmetry about

an axis along the lattice vector a0.

Furthermore, the following relations can be deduced:

�þ ¼ ’uvw þ  uvw þ��;uvw ð56Þ

and

�� ¼ ’�u�v�w þ  �u�v�w þ��;�u�v�w

¼ ’�u�v�w þ 2�ð Þ þ  uvw ���;uvw; ð57Þ

where �þ and �� are the angles of the corresponding unit cells

with mirror symmetry. Then,

�þ � �� ¼ ’uvw � ’�u�v�w þ 2��;uvw: ð58Þ

In Table 6, the predicted values for ð�þ � ��Þ, obtained from

our previous GIXD experiments (Simbrunner et al., 2020,

2021a), are shown. Note, that for the three polymorphs of

DCV4T-Et2/Ag(111) these values are similar.

Using equations (47) and (48), the following equation can

be deduced:

sin � 0 ¼ sin �� ���

� �
¼ ½ðva2

� uab cos �Þð�c�a � �a�cÞ

þ ðub2
� vab cos �Þð�b�c � �c�bÞ�

= a0b0½ðubÞ
2
þ ðvaÞ

2
� 2uvab cos ��

� � gspec

2�
Vol: ð59Þ

Using equation (15), the following expression can be derived:

sin � 0 ¼
1

gcdðu; v;wÞ

1

a0b0
gspec

2�
Vol; ð60Þ

where gcd(u, v, w) is the greatest common divisor of the Miller

indices. For the area of the rhomboid, the following relations

are valid:

Area ¼ a0b0 sin � 0
�� �� ¼ 1

gcd u; v;wð Þ

gspec

2�
Vol: ð61Þ

APPENDIX B
Further mathematical expressions if u, v and w 6¼ 0

From the equations (26)–(28), which are valid for u, v and w 6¼

0, further expressions for linear combinations of the vectors a,

b and c can be derived. Considering the vector combinations

(va � ub), (wa � uc) and (wb � vc), their lengths and their

corresponding angles can be determined, if the following

expressions are known:

va� ubð Þ
2
¼ vað Þ

2
þ ubð Þ

2
� 2uvab cos �; ð62Þ

wa� ucð Þ
2
¼ wað Þ

2
þ ucð Þ

2
� 2uwac cos �; ð63Þ

wb� vcð Þ
2
¼ wbð Þ2 þ vcð Þ2 � 2vwbc cos �; ð64Þ

ðva� ubÞðwa� ucÞ ¼ vwa2
� uwab cos �

þ u2bc cos�� uvac cos� ð65Þ

ðva� ubÞðwb� vcÞ ¼ �uwb2 þ vw ab cos �

þ uv bc cos �� v2ac cos� ð66Þ

ðwa� ucÞðwb� vcÞ ¼ uvc2
þ w2ab cos �

� uwbc cos�� vwac cos �: ð67Þ

The right sides of equations (62)–(64) correspond to the left

sides of equations (26)–(28) and hence can be determined

from the parameters of the two-dimensional unit cell a0, b0 and

� 0. For the equations (65)–(67) the following relations are

useful:

ðva� ubÞðwa� ucÞ ¼
1

2vw
½w2ðva� ubÞ2 þ v2ðwa� ucÞ2

� u2
ðwb� vcÞ2� ð68Þ

ðva� ubÞðwb� vcÞ ¼ �
1

2uw
½w2ðva� ubÞ2 þ u2ðwb� vcÞ2

� v2
ðwa� ucÞ2� ð69Þ

and
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Table 6
Values of (�+ � ��) and ��,uvw, calculated [using equation (58) and
considering 60� symmetry] from the experimentally obtained parameters
of our GIXD experiments on DCV4T-Et2/Ag(111), P2O/Ag(111),
PTCDA/Ag(111) and trans-DBPen/Cu(111) (Simbrunner et al., 2020,
2021a).

Also shown are the experimentally obtained values of ’uvw � ’�u�v�w, where

(uvw) are the corresponding contact planes.

Molecule/substrate (uvw) �þ � �� ��;uvw ’uvw � ’�u�v�w

DCV4T-Et2/Ag(111) (122) +15.5 (5)� 282.0 (2)� �8.5 (5)�

(211) +15.3 (4)� 239.9 (3)� +15.4 (3)�

(020) +15.7 (5)� 0� +15.7 (5)�

P2O/Ag(111) (102) �14.1 (10)� 0� �14.1 (10)�

PTCDA/Ag(111) (103) 
44.1 (12)� 0� 
44.1 (12)�

trans-DBPen/Cu(111) (020) +7.1 (4)� 0� +7.1 (4)�



ðwa� ucÞðwb� vcÞ ¼
1

2uv
½v2
ðwa� ucÞ2 þ u2

ðwb� vcÞ2

� w2ðva� ubÞ2�: ð70Þ
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