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A prototype application for machine-readable literature is investigated. The

program is called pyDataRecognition and serves as an example of a data-driven

literature search, where the literature search query is an experimental data set

provided by the user. The user uploads a powder pattern together with the

radiation wavelength. The program compares the user data to a database of

existing powder patterns associated with published papers and produces a rank

ordered according to their similarity score. The program returns the digital

object identifier and full reference of top-ranked papers together with a stack

plot of the user data alongside the top-five database entries. The paper describes

the approach and explores successes and challenges.

1. Introduction

The activity of communicating science, including paper

writing, always includes a search of the literature to discover

and acknowledge prior work (Garfield, 1996). Since the

advent of the internet, this process has largely moved from

manual, library-based searches to online searches using search

engines (Butler, 2000). Literature search engines such as

Google Scholar (Van Noorden, 2014) normally work by

accepting text and metadata search queries, such as author

names, keywords, journal name, year, and so on. In contrast,

here we explore the concept of a data-seeded literature search

where we use a measured data set as the search query to

retrieve data-relevant papers from the literature. We chose to

use X-ray powder diffraction data for our test case.

X-ray powder diffraction is an important technique in

materials science, where structural characterization is at the

very centre of the workflow as it is inherently linked to

material properties. The goal of the technique is to understand

the arrangement of atoms in the material based on measure-

ments of X-ray (or neutron or electron) diffraction. When the

sample is a powder, the resulting diffractogram is a 1D pattern

of peaks called a powder diffraction pattern (Gilmore et al.,

2019; Dinnebier & Billinge, 2008). This serves as a 1D

fingerprint of the structure of the material.

The challenge for our purposes is that there are no large

open databases of experimental powder data. The crystal-

lography community recognized early the need for structured

data related to chemical structure and developed the crystal-
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lographic information framework (CIF) (Hall et al., 1991).

This was extended to allow for the capture of experimental

data from powder experiments as part of the powder CIF

development (Hall et al., 2006). CIF dictionaries provide

machine-readable definitions of data items that can appear

in a CIF-structured database such as a CIF file. Such CIF

files (or ‘CIFs’) form the basis for multiple chemical

[ICDD (International Centre for Diffraction Data) (Gates-

Rector & Blanton, 2019), ICSD (Inorganic Crystal Structure

Database) (Zagorac et al., 2019), CSD (Cambridge Structural

Database) (Groom et al., 2016), COD (Crystallography Open

Database) (Gražulis et al., 2009)], macromolecular [wwPDB

(Worldwide Protein Data Bank) (Berman et al., 2000)] and

materials science [Materials Project (Jain et al., 2013)] struc-

tural databases.

However, of submitted CIFs that contain data resulting

from a powder diffraction study, few include the associated

diffractogram data (indeed, one desired outcome of this work

would be to increase the incentives for authors to include the

underlying diffractogram data). The journals of the Interna-

tional Union of Crystallography (IUCr) archive all CIFs

uploaded by authors with subsequently published papers.

From this database we were able to extract a relatively small

subset of CIFs that do contain powder patterns, along with

metadata that allow the related paper to be found. This subset

(787 CIFs) is the database we use for testing our prototype.

As a simple illustration of the kind of benefits that may

derive from having a machine-readable capability for the

contents of literature papers, we develop here a prototype

application that would help experimentalists carry out a

literature search early in the process of their study. The

specific use case that we want to demonstrate is described

below, but the vision is a software application that takes a

measured powder pattern as input and returns a list of rele-

vant papers in the existing literature, preferably without the

user having to upload a significant amount of, or ideally any,

additional information about the experiment. This is remi-

niscent of modern facial recognition capabilities but it is

experimental data recognition and so we call the Python

language based prototype application pyDataRecognition.

2. Machine-readable versus human-readable literature

For the past �350 years, the main goal of the scientific

literature has been to condense scientific understanding into

documents that are intelligible to humans. It has been enor-

mously successful by any measure. However, the literature is

growing rapidly and it is becoming difficult for humans to keep

up with the number of new publications. Also, it becomes hard

to assimilate so much information and find correlations and

insights between related studies. When given structured data,

machines are very good at finding correlations and clustering

by similarity as exemplified by facial recognition algorithms

(Anwarul & Dahiya, 2020). There is a type of machine

learning whereby machines read papers that were written for

humans to understand, a process called natural language

processing (NLP) (Chowdhary, 2020). However, this process,

whilst valuable for extracting information from the historic

canon, is not the best way for machines to assimilate infor-

mation from data. We can expect much greater efficiencies in

machine processing of the scientific information if we can take

steps to make scientific papers readable by machines directly.

For this process to succeed, we need data in papers to be in

accessible and structured data formats and saved with suffi-

cient metadata to give important contextual information. The

human being has a very highly developed capability for

pattern recognition. When we write a human-readable paper,

we take our data and make an image, for example, by plotting

the result as a line plot. It is much easier for the human reader

to see similarities and derive insights from the data plotted as

an image, but this is hard for the machine. A literature that is

written to be read by both humans and by machines would

also have the data that were used to form the image saved in a

machine-readable way, with important metadata such as what

is being plotted, the quantity and units of both the x and y

arrays, the sample that was measured to produce the plot, the

people who did the work, and so on. This is rarely done

currently but is needed to realize the benefits of machine-

learned science.

3. Prototype literature search application

In order to explore the kind of benefits that might be derived

by having a machine-readable literature, we explore a very

simple use case that makes use of a (small) database of

structured, tagged, experimental data and does something

useful with it. The simple use case we explore is that of a

measured data set used as the input in a literature search.

3.1. Use case

The use case is described in the following way. A structure

scientist has a powder diffraction pattern from a particular

sample collected on their powder diffractometer. They upload

the data to the search application, together with a limited

amount of relevant experimental information. The application

then will search a database of stored powder diffraction data

associated with published papers. It will then return a list of

relevant papers based on the similarity between the data

uploaded by the user and the powder patterns appearing in

the papers. In the simple first iteration of the concept, the

relevance will just be a ranking based on the similarity

between the powder patterns in these papers and the powder

diffraction data uploaded by the user.

The advantage of this use case is that the IUCr has a

database of experimental powder patterns in a machine-

readable powder-CIF format (Hall et al., 2006) that have been

deposited by authors at the same time as they submitted the

paper to the relevant IUCr journal. These are the experi-

mental data that generally appeared as images in figures in the

linked papers. The existence of this structured database of

experimental powder patterns linked to published papers is

therefore a valuable resource for prototyping the approach.
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We note that there are several databases that facilitate

computational literature searches including CrossRef

(Crossref, 2020), Scopus (Mongeon & Paul-Hus, 2016;

Burnham, 2006), Web of Science (Mongeon & Paul-Hus, 2016;

Mikki, 2009), arXiv (Ginsparg, 2011), Google Scholar (Mikki,

2009; Samadzadeh et al., 2013), Google Image Search (Fergus

et al., 2005), and so on. The purpose of this work is to show

how properly tagged data held in a structured database can be

included in literature search workflows, helping scientists to do

better science more quickly.

3.2. Software implementation

The use case presented above has been implemented in a

Python package. The package uses home-written functions

based on well established third-party libraries like NumPy

(Harris et al., 2020), Matplotlib (Hunter, 2007), SciPy

(Virtanen et al., 2020), scikit-beam (scikit beam, 2022) to

complete the use case.

To run the program, the user must provide the diffraction

data for which the query should run. Currently, the data

should be provided as a two-column text file, possibly with a

header, of intensity versus an independent variable. The

independent variable may be in the form of diffraction angle,

2� in �, d spacing, in Å, or the momentum transfer, Q, in Å�1.

If the independent variable is 2�, the X-ray or neutron

wavelength in Å also needs to be provided. All comparisons

between data within the program are done with a Q inde-

pendent variable. It will be straightforward to support

different file formats in a production version of the code later.

The program then uses a distance metric to determine the

similarity of the uploaded pattern to every pattern in the

database. In the current implementation we are using the

Pearson correlation (Pearson & Galton, 1895), rxy,

rxy ¼

Pn
i¼1ðxi � xÞðyi � yÞ

Pn
i¼1ðxi � xÞ2

Pn
i¼1ðyi � yÞ2

� �1=2
; ð1Þ

where x and y are 1D arrays of equal size, and x and y are their

means, respectively. The value of the correlation coefficient

can vary between +1 and �1. A value of +1 means the two

data sets are identical (perfect positive correlation), 0 implies

no correlation between the data sets. Numbers less than

zero imply negative correlation. It is calculated using the

pearsonr() method within the scipy.stats package

(Virtanen et al., 2020). Since our goal is to find similar data, we

seek diffraction patterns with rxy close to 1.

For a comparison of two data sets using the Pearson

correlation, the two intensity arrays need to be on the same Q

grid. In general, powder patterns are measured over different

ranges of Q and on different arbitrary Q grids. To address this

issue, we automatically determine the Q-space overlap region

of the user and database data sets and linearly interpolate the

data onto a common regular Q grid in this interval. Currently,

a step size of �Q = 10�3 Å�1 is used. The user-supplied and

target intensity arrays are then linearly interpolated onto this

grid and the Pearson correlation is computed. Currently, the

comparison is done over the full overlapping range as long as

there is at least a 20 nm�1 overlap. If the overlap is smaller

than this the database entry is not considered. As a result of

this heuristic, similarities are compared between pairs of data

computed over different ranges of overlap. The Pearson

measure is normalized by the number of points that are

computed, making comparisons between overlap regions of

different length possible. This seems to give reasonable results

but could be revisited in the future.

The process of finding the overlapping range in Q space,

calculating a regular Q grid, doing linear interpolation, and

conducting Pearson correlation analysis between the user

data and the data from a CIF is done for every CIF in the

pyDataRecognition database. This is possible because of the

small size of the database but will not scale to large databases

of data and more efficient approaches will be investigated in

the future.

The program then determines a rank-ordered list based on

similarity, and extracts from the database entry metadata the

digital object identifier (DOI) (Paskin, 1999) of the paper that

is associated with the the ranked data set. The full reference of

the associated paper is determined by making an API call to

CrossRef (Crossref, 2020) using the DOI. The rank-ordered

list is then returned to the user containing the rank, the

Pearson r value, the DOI and the full paper reference. This

information is also saved to a text file.

The five most similar pyDataRecognition database entries

are plotted together with the user data to enable the user to

visually inspect similarities between the data sets. Examples of

output rank-ordered lists are given in Tables 1–3 and plots in

Figs. 1–3 in Section 4.1.

4. Outcomes

4.1. Results

At the moment of writing, �515 valid CIFs, out of 785 total

in the pyDataRecognition database, are included in the

analysis. They originate from �215 papers. The actual number

of CIFs and papers included in the analysis depends on the Q

range of the user data, as a minimum shared Q range of

20 nm�1 between the user and database patterns is required

for the CIF to be included in the analysis.

Here, we explore the performance of the prototype

pyDataRecognition with a number of query examples. The first

example serves to test that the algorithm finds, with top rank, a

data set that actually exists in the database. The second

example is a better test of the real use case. We provide real

data but choose a very common structural form (perovskite)

with the expectation that there will be representatives of this

structure from more than one sample and composition, even

given the limited size of the current database of 785 CIFs. In

the third example, we provide a neutron data set as user data

to explore how the program behaves when provided neutron

data as input whilst the data in the database come predomi-

nantly from X-ray data.

Query example 1. For the first example, the user data are

taken from a CIF from the paper by Stähli et al. (2016). The
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paper is on hydrogen-substituted �-tricalcium phosphate

synthesized in organic media, i.e. a Mg-free whitlockite,

represented by the formula Ca21�x(HPO4)2x(PO4)14�2x, where

x = 0.80 � 0.04. The data are from an X-ray experiment. As

the user data are taken from a database entry, the expected

outcome of the query is to have a perfect match, i.e. a score of

1, rxy = 1. From Table 1, it can be seen that the test went well,

and a perfect match is found for a CIF appearing in the paper

by Stähli et al. (2016).

In Figs. 1(a) and 1(b), visual inspection confirms that the

plots of the user data and the rank-1 database entry are

identical.

It is encouraging that the program returns the paper from

which the user data were derived as the top-ranked result.

Moving down in Table 1, the rank-2 entry (Zatovsky et al.,

2010), which studies Rietveld refinement of whitlockite-

related K0.8Ca9.8Fe0.2(PO4)7, scores 0.7379. The score indicates

an intermediate level of similarity to the user data. Visual

inspection of the plot in Fig. 1(c) confirms the similarity and

the structural relation between the user data and the rank-2

entry that are both whitlockite-related. Multiple Bragg posi-

tions are shared between the two data sets, as reflected in the

intermediate score, but at the same time dissimilarities are also

present, such as differences in relative intensities and peak

splitting, e.g. right above 10 nm�1, as should be expected from

different chemical compositions. The data-driven nature of the

pyDataRecognition query enables the user to discover other

papers with possible relevance to their uploaded data.

The rank-3 data set has a much lower agreement factor

(0.4631), than the rank-2 one (0.7379) which might suggest

that it is structurally unrelated. However, visual comparison

of the diffraction curves [Figs. 1(c) and 1(d)] suggests that

there are many similarities between these data sets. In fact,

the rank-3 data set (Strutynska et al., 2013) is from a Rietveld

refinement study of a sample isostructural to the mineral
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Table 1
Ranks, scores, DOIs and references for the top-five pyDataRecognition
database entries shown in Fig. 1.

The ‘user data’ are identical to the rank-1 entry in the table.

Rank Score DOI Reference

1 1.0000 https://doi.org/10.1107/S2052520616015675 Stähli et al.
(2016)

2 0.7379 https://doi.org/10.1107/S1600536810014327 Zatovsky
et al. (2010)

3 0.4631 https://doi.org/10.1107/S1600536813007848 Strutynska
et al. (2013)

4 0.4552 https://doi.org/10.1107/S2052520618004092 Bell &
Henderson (2018)

5 0.4261 https://doi.org/10.1107/S2052520614001140 Zvirgzdins
et al. (2014)

Figure 1
Intensity, I, in arbitrary units as a function of momentum transfer, Q, in
nm�1, for the user data (topmost) and the top-five pyDataRecognition
database entries in descending order. The full range of the user data is
shown, whereas only the comparison region is shown for each database
entry. The rank scores, DOIs and references can be found in Table 1.

Figure 2
Intensity, I, in arbitrary units as a function of momentum transfer, Q, in
nm�1, for the user data (topmost) and the rank-2 and -3 pyDataRecogni-
tion database entries. The data are plotted for the Q range from 20 to
25 nm�1. The vertical lines indicate the Bragg positions of the user data.



whitlockite, AgCa10(PO4)7, which is closely related to the user

data set and would certainly be of interest to the user. In this

case the Pearson measure seems not ideal as a similarity

metric for the current use case.

To explore the origin of the large drop in similarity score

between the isostructural rank-2 and -3 samples, in Fig. 2 we

have plotted the user data together with the rank-2 and -3

database entries on an expanded Q scale from 20 to 25 nm�1

with vertical lines indicating the peak positions of the user

data.

We see that there is a small offset in peak position for the

rank-2 database entry relative to that of the user data, whereas

the offset is more pronounced for the rank-3 database entry.

This Q offset is likely to explain the low Pearson score of the

rank-3 entry. The difference in scores for the rank-2 and -3

database entries gives a hint at how sensitive the current

Pearson similarity metric is towards an offset, whether it is an

experimental artefact or has a structural origin such as

different lattice parameters of otherwise similar structures.

This is undesirable behaviour in our similarity metric that we

explore further below.

The rank-4 and -5 entries in Table 1 and Figs. 1(e)–1(f) in

the current example appear visually very dissimilar to the user

data and are unlikely to be of any interest to the user.

However, it is observed that the Pearson scores are quite

similar to that of the rank-3 entry that is isostructural. This is

further evidence of a weakness in the use of the Pearson

metric in the current application as it cannot distinguish an

isostructural but shifted pattern from a completely dissimilar

pattern. The code was designed for it to be easy to implement

different similarity metrics in principle, and finding the best

similarity metrics will be an ongoing process.

Query example 2. For the second example, the input data

are synchrotron X-ray data of the perovskite BaTiO3. Since

the structural family of perovskites is common, it is hoped that

even the current small database will return one or more papers

with data from perovskite or perovskite-related structures.

The results from the query are found in Table 2 and Fig. 3.

From the scores reported in Table 2, it is evident that no

highly similar database entries are encountered as all scores

rxy < 0.6. However, a visual inspection of the top-ranked

powder pattern in Fig. 3(b) does show some similarity in peak

frequency and positions, so the rank-1 entry may be related to

the user data despite the modest score of 0.5723 reported in

Table 2. Looking into the paper (Iturbe-Zabalo et al., 2013),

the topic is symmetry-mode analysis of the phase transitions in

SrLaZnRuO6 and SrLaMgRuO6 ordered double perovskites,

i.e. a paper on perovskite-derived structures, which is

encouraging, considering that the user data were for the

perovskite BaTiO3; thus, from all of the 514 entries in the

database, pyDataRecognition has returned a paper describing

related data in the top-rank position, albeit with a low simi-

larity score.

Returning to the remaining results reported in Table 2, it is

seen that all scores are <0.4, indicating low Pearson similarity

to the user data. For the rank-2 and -4 entries, the low scores

seem to reflect structural dissimilarity as the diffraction

patterns are visually very different. The rank-2 entry (Sciau et

al., 1999) considers the structures of the paraelectric and

ferroelectric phases of Pb2KNb5O15 with orthorhombic

symmetry which does appear to be perovskite-related. Fig.

3(c) shows that the database entry possesses a much larger

peak density compared with the user data, as also reflected in

the rather low score of 0.3906.

The paper of the rank-4 entry (Kasunič et al., 2011) is on

the structure of LaTi2Al9O19, a non-perovskite compound

isostructural to SrTi3Al8O19, and so the low score of 0.2881
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Figure 3
Intensity, I, in arbitrary units, arb.u., as a function of momentum transfer,
Q, in nm�1, for the user data (topmost) and the top-five pyDataRecogni-
tion database entries in descending order. The full range of the user data
is shown, whereas only the region used for comparison is shown for each
database entry. The rank scores, DOIs and references can be found in
Table 2.

Table 2
Ranks, scores, DOIs and references for the top-five pyDataRecognition
database entries shown in Fig. 3.

Rank Score DOI Reference

1 0.5723 https://doi.org/10.1107/S0021889813013253 Iturbe-Zabalo
et al. (2013)

2 0.3906 https://doi.org/10.1107/S0108768198017984 Sciau et al.
(1999)

3 0.3390 https://doi.org/10.1107/S1600576715000941 Orayech
et al. (2015)

4 0.2881 https://doi.org/10.1107/S0108768111039759 Kasunič
et al. (2011)

5 0.2485 https://doi.org/10.1107/S0108768109011057 Zhang
et al. (2009)



again reflects a structural dissimilarity. However, the low

Pearson scores for the rank-3 and rank-5 results seem

surprising, as in these cases the data have a visual resemblance

to the user data in Figs. 3(a), 3(d) and 3(f), especially in the

rank-3 case. The paper of the rank-3 entry (Orayech et al.,

2015) considers mode-crystallography analysis of the crystal

structures and the low- and high-temperature phase transi-

tions in the Na0.5K0.5NbO3 cubic perovskite. This paper clearly

describes a closely related structure and we would hope that

the pyDataRecognition algorithm would find it with a high

ranking yet it does not. In the case of the rank-5 entry

(Zhang et al., 2009) it also describes perovskite structures

(K0.05Na0.95NbO3 and K0.30Na0.70NbO3).

As was the case for the first query example, the low scores

of the otherwise visually similar rank-3 and -5 entries may be

explained by a small offset in the lattice parameters. For

both entries, the offset is towards higher Q values, compared

with the user data, which is the likely cause of the poor

Pearson score. In addition, there are also clear differences in

relative peak intensities compared with the user data and

some peak broadening, e.g. at 32 nm�1, which will also affect

the Pearson score.

The rank-3 and -5 entries represent additional false nega-

tive results. These results did show up in the top-five list

despite their low Pearson scores, which is encouraging, but it is

likely that other related papers are being missed with low

Pearson scores because of the poor performance of Pearson

for the job in hand.

Query example 3. The third and last query example reported

here is regarding user data for which neutrons were used as

the probe, in contrast to the two former query examples that

originated from X-ray probes. pyDataRecognition accepts

powder patterns from any source, X-ray, neutron or electrons,

and currently the user is not asked to provide the type of

probe on input, just as the type of probe is not regarded when

running the query. Regardless, in principle, we would still like

the program to return papers describing similar structures.

The results are shown in Table 3 and Fig. 4.

The user data set is measured for a cubic perovskite sample,

(K0.48Na0.48Li0.04)Nb0.98Mn0.02O3 (Mgbemere et al., 2017), like

the second query example above. From Table 3, a relatively

high score of 0.8808 is obtained for the rank-1 database

entry (Orayech et al., 2015). The paper for this entry is on

Na0.5K0.5NbO3 perovskite and reports neutron data,

explaining the high degree of similarity. The rank-2 (Iturbe-

Zabalo et al., 2013) and -3 (Zhang et al., 2009) database entries

have slightly lower Pearson coefficients (0.7785 and 0.6855,

respectively) and the visual similarity between the two is

evident, though the rank-3 data set is observed to have lower

visual similarity to the user data set. Mostly peaks are in the

same place but relative intensities are quite different and

peaks are split. The rank-2 database entry was for neutron

diffraction data of the double perovskites, SrLaZnRuO6 and

SrLaMgRuO6, encountered before, and indeed weak addi-

tional superlattice peaks from the ordering are evident in the

pattern. The rank-3 database entry describes neutron data

precisely from perovskite K/Na niobate materials, like the user

data, albeit with different K:Na ratios, K0.05Na0.95NbO3 and

K0.30Na0.70NbO3, as well as the absence of Mn. In this case,

peak splitting indicates a symmetry lowering in the database

data, but it was correctly detected as closely related by the

Pearson similarity in this case. The rank-3 paper (Zhang et al.,

2009) was also encountered as the rank-5 entry in Table 2 of

the second query example. However, the data plotted in Fig.

3(f) stem from a CIF considering K0.30Na0.70NbO3 at 200 K,

whereas the data plotted in Fig. 4(d) stem from a CIF

considering the material at 180 K and the temperature
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Figure 4
Intensity, I, in arbitrary units, arb.u., as a function of momentum transfer,
Q, in nm�1, for the user data (topmost) and the top-five pyDataRecogni-
tion database entries in descending order. The full range of the user data
is shown, whereas only the region used for comparison is shown for each
database entry. The rank scores, DOIs and references can be found in
Table 3.

Table 3
Ranks, scores, DOIs and references for the top-five pyDataRecognition
database entries shown in Fig. 4.

Rank Score DOI Reference

1 0.8808 https://doi.org/10.1107/S1600576715000941 Orayech
et al. (2015)

2 0.7785 https://doi.org/10.1107/S0021889813013253 Iturbe-Zabalo
et al. (2013)

3 0.6855 https://doi.org/10.1107/S0108768109011057 Zhang
et al. (2009)

4 0.2859 https://doi.org/10.1107/S0108768112017478 Bereciartua
et al. (2012)

5 0.2532 https://doi.org/10.1107/S0108768103019013 Palacios
et al. (2003)



difference may explain the slight visual differences when

comparing the two database entries with one another.

Finally, the very low scores of the rank-4 and -5 entries in

Table 3 are reflected by the observed dissimilarity to the user

data in Figs. 4(e) and 4(f) and in this case are due to a struc-

tural dissimilarity. The rank-4 entry (Bereciartua et al., 2012)

describes the system Bi2(n+2)MonO6(n+1) (n = 3, 4, 5, 6) and

the rank-5 entry (Palacios et al., 2003) [(CH3)4N](ClO4) at

low temperature, neither of which are perovskite-related

structures.

Overall, the approach is working, with pyDataRecognition

successfully suggesting to the user, from a database of 785 data

sets (of which �600 are usable), the same three perovskite

structures in comparison with user inputs from perovskite

structures, working for both X-ray data from BaTiO3 and

neutron data from a perovskite Na/K niobate. However, the

test revealed certain difficulties that the Pearson correlation

coefficient was having at correctly identifying and ranking

nearby structures, especially when there was a small shift in

the peaks due to different lattice parameters.

4.2. Challenges and opportunities

The completed use case demonstrates a proof of concept

and reveals the great potential of a machine-readable litera-

ture. There is still some way to go before it becomes a practical

tool but the prototype highlights some of the challenges as

well as the opportunities.

Currently the biggest limitation we encounter is the small

database size. Of all the CIFs in the IUCr database (currently

numbering around 100 000) only �1000 contained experi-

mental powder patterns. In part this is because many studies

did not involve the use of powder diffraction data, but also

there is limited adoption by authors of the ability to store the

actual powder data. Although, through the CIF mechanism,

the IUCr is a leader in capturing the powder diffraction data

of authors in a structured way, the uptake by the community is

still limited. This is currently a focus of the Commission on

Powder Diffraction of the IUCr, where new tools for vali-

dating deposited CIFs for the contained powder data, and

tools for visualizing deposited data are being developed. This

pyDataRecognition prototype application gives additional

incentive to authors as it will clearly make their work more

discoverable in the future, and it is only a first step of what can

be done if structured data are stored along with the papers

describing them.

The current similarity metric, the Pearson correlation

coefficient, is a good first step as a similarity measure that can

easily be implemented in this prototype application. However,

Section 4 illustrates that the job currently done by the

Pearson correlation does not completely meet the require-

ments of the pyDataRecognition program, as it is observed

that the Pearson correlation seems quite sensitive to Q offset.

This results in rather low ranking of otherwise visually similar

patterns, which is undesirable from a user’s point of view. For

experimental data, experimental artefacts from the instrument

and the sample are expected, including e.g. Q offset. For

pyDataRecognition, it is desirable to have a similarity metric

that tolerates the presence of experimental artefacts and still

ranks otherwise similar patterns high to each other. Apart

from Q offset, potential experimental artefacts to be tolerated

include e.g. peak broadening from the instrument as well as

sample, small peak splittings indicating slight losses in

symmetry, and, to some degree, variations in relative inten-

sities of peaks as expected when comparing neutron with

X-ray data, or from isostructural but compositionally different

samples that may still be relevant to the user. A better simi-

larity metric for the current job required by pyDataRecogni-

tion would tolerate these aberrations and ideally return results

by relevance, much like a Google search does, given the right

search query. We will explore different metrics, including ones

specifically proposed for powder data (de Gelder et al., 2001),

but this is a big area of research (vom Brocke et al., 2015) and

extending the metric is beyond the scope of the current article.

The prototype also highlights another challenge, which is

maintaining the quality of the deposited data and the attached

metadata. Despite the small database size, a significant

number of the deposited CIFs containing measured data were

unusable. Out of 787 CIFs, 785 could be parsed using the CIF

parser CifFile.ReadCif() from the pyCIFRW Python

module (Hester, 2006). Of those parsed, multiple CIF keys

had to be browsed for 2�, intensity and wavelength values, the

main reason being that CIF handles both measured, processed

and calculated data. The pdCIF dictionary makes it easier for

developers to find the right keys, at least if the use of the keys

follows the pdCIF guidelines (Toby, 2006). However, from the

current work, this does not seem to be the case in many

instances, the result being that more CIF keys have to be

browsed than if the CIF contributors strictly followed the

pdCIF guidelines from the IUCr. It may be beneficial to

demand that CIF contributors obey the pdCIF guidelines, as

this will reduce the number of keys to be browsed in the light

of any machine-readable literature effort.

For 59 of the 785 CIFs, the wavelength was missing,

preventing a conversion to a physics-based independent

variable such as Q. Furthermore, for 164 CIFs, the 2� values

were either not stated explicitly or could not be calculated

using a CIF-supplied minimum, maximum and step size in 2�.

Whilst it might be possible to modify the algorithm to guess at

a resolution for the inconsistent min-max-step calculation, for

example, by ignoring the author-supplied bin size and

computing it from the minimum and maximum 2� values and

the number of entries in the intensity array, this is not

preferred behaviour as it is modifying the user data in possibly

ambiguous ways, and so in these cases the CIFs were

discarded. Inconsistent size of the min-max-step calculated 2�
array relative to that of the intensity array was encountered

for 92 out of all the 164 CIFs. A min-max-step calculated 2�
array consistent with the size of the intensity array was

obtained for 120 out of the 785 CIFs processed. None of the

CIFs in the current database had x-axis data stored in Q or d

quantity, though this would be supported if encountered.

These challenges highlight the need for better validation of

CIF inputs of experimental data, as well as more intuitive and
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easy-to-use tools for experimenters to upload their experi-

mental data and provide the needed metadata.

4.3. Software

The open-source Python code for the prototype

application pyDataRecognition is available through the

following public GitHub repository: https://github.com/

Billingegroup/pydatarecognition (Özer et al., 2022).

4.4. Next steps

The work described here is an early prototype for a data-

driven literature search to illustrate the potential for the

machine-readable literature concept. It has served to illustrate

the concept and to explore what some of the challenges will be

to bring this to fruition. An obvious next step would be to

increase the size of the database. We are working with

members of the Commission on Powder Diffraction at the

IUCr to find ways to increase the amount and readability of

powder diffraction data being deposited with submitted

papers. In the meantime, one approach to increasing the size

of the database is to simulate powder patterns from all

structures (including those solved from single-crystal data) in

the IUCr CIF database. Comparisons could then be made

between uploaded data and simulated, as well as experi-

mental, patterns.

Another issue is finding similarity between diffraction

patterns that were measured from the same material but

measured under different experimental conditions of instru-

ment resolution and so on. It will be interesting to explore

using different deconvolution methods and different repre-

sentations for the data to see which are most effective.

For the current database consisting of 785 CIFs, on a laptop

(HP Elitebook 850 G5, Intel Core i5-7300 CPU @ 2.6 GHz,

2712 MHz, two cores, four logic processors, 8 GB RAM), it

takes the program �30 s to complete a query. This is accep-

table, but will not scale well with larger data sets.

We currently use a brute force approach for finding simi-

larity which will not scale well, requiring more sophisticated

and faster database browsing approaches to be found. Prior

information from the user can help; for example, a list of

chemical elements that the user knows should be present in

the sample would cut down the search space. Another possi-

bility would be to adopt the approach of the so-called

‘Hanawalt File’ (Hanawalt et al., 1986), also used in the early

days of the powder diffraction file (PDF) (Gates-Rector &

Blanton, 2019), where only the three most intense reflections

of the diffraction pattern were taken into account rather than

the full pattern. At the time, this approach made great sense;

however the computational power available today makes full

pattern comparison possible. As the size of the database

increases, we will explore increasing the efficiency of the

search, for example, through the use of graph-based search

algorithms that can pre-store the similarity between every

entry in the database (Johnson et al., 2021). Algorithms for

finding nearest-neighbour connections may then be explored

to rapidly find the best solutions without having to traverse the

entire graph.

5. Conclusions

As a first step towards a more machine-readable literature that

will ease literature search and make science more readily

available, we have demonstrated a prototype application,

pyDataRecognition. The program takes a measured powder

pattern, together with other relevant metadata, as input and

returns information on literature papers that may be relevant

to the powder pattern uploaded by the user.

This represents the initial steps towards a more machine-

readable literature. However, it has already revealed a

number of challenges that need to be overcome moving

forward. The CIF format is well defined but is not strictly

adhered to or validated, at least when it comes to experi-

mental data in powder CIFs. This results in non-usable

information in the CIF file database such as non-numeric

values where numeric values are expected. Tools are needed

to facilitate the deposition of properly validated data-

containing CIF entries in the IUCr database. This work is in

progress. Regardless, the simple use case of finding relevant

papers given a diffraction pattern already gives a glimpse of

many other more advanced capabilities that are possible by

going down this route of a machine-readable literature.
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Özer B., Karlsen M. A., Thatcher Z. & Billinge, S. J. L. (2022).

pyDataRecognition v1.0.0 (Version 1.0.0). https://doi.org/10.5281/
zenodo.6869553.

Palacios, E., Burriel, R. & Ferloni, P. (2003). Acta Cryst. B59, 625–633.
Paskin, N. (1999). Proc. IEEE, 87, 1208–1227.
Pearson, K. & Galton, F. (1895). Proc. R. Soc. Lond. 58, 240–242.

Samadzadeh, G. R., Rigi, T. & Ganjali, A. R. (2013). Int. J. High. Risk
Behav. Addict. 1, 166–171.

Sciau, Ph., Calvarin, G. & Ravez, J. (1999). Acta Cryst. B55, 459–466.
scikit beam (2022). scikit-beam. Original-date: 2014-07-10T04:44:35Z.

https://github.com/scikit-beam/scikit-beam.
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Kulick, J., Schönberger, J. L., de Miranda Cardoso, J. V., Reimer, J.,
Harrington, J., Rodrı́guez, J. L. C., Nunez-Iglesias, J., Kuczynski, J.,
Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke,
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