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Deep learning techniques can recognize complex patterns in noisy, multi-

dimensional data. In recent years, researchers have started to explore the

potential of deep learning in the field of structural biology, including protein

crystallography. This field has some significant challenges, in particular

producing high-quality and well ordered protein crystals. Additionally,

collecting diffraction data with high completeness and quality, and determining

and refining protein structures can be problematic. Protein crystallographic data

are often high-dimensional, noisy and incomplete. Deep learning algorithms can

extract relevant features from these data and learn to recognize patterns, which

can improve the success rate of crystallization and the quality of crystal

structures. This paper reviews progress in this field.

1. Introduction

Protein crystallography is a crucial tool for understanding the

three-dimensional structures of proteins (Bücker et al., 2020).

The vast majority of the protein structures deposited in the

Protein Data Bank (Berman et al., 2000) were solved with

crystallographic methods (�85% of the deposited structures

and around 10 000 structures annually). Exciting advance-

ments in the field, such as X-ray free-electron lasers (XFELs)

(Chapman et al., 2011; Tenboer et al., 2014) and MicroED

(microcrystal electron diffraction) (Nederlof et al., 2013), have

significantly improved the efficiency of determining protein

structures, even for sub-micron-sized crystals.

However, several key challenges persist in protein crystal-

lography, the main one being the production of high-quality

and well ordered protein crystals. Additionally, extracting

accurate protein structures from diffraction data remains a

complex task. Fortunately, deep learning techniques have

emerged as a promising solution to address these limitations.

Deep learning is a branch of machine learning (ML) that

employs artificial neural networks to learn complex patterns

from data (Sarker, 2021). Analogous to biological neural

networks, these consist of multiple layers of interconnected

nodes, each layer representing a different level of abstraction.

This allows the development of algorithms and network

architectures that can be readily applied to various types of

data in order to create and/or optimize a model – an ML

program tailored for the task. ML models are created using

training data that can be labeled or unlabeled. One of the

major risks in preparing an ML model is that training data may

not be sufficiently representative of the problem at hand,

resulting in a neural network that is biased by preconceptions.

Since the strength of deep learning lies in its ability to analyze

complex and high-dimensional data, it has significant rele-

vance for the analysis of protein crystallography data.
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In this review, we explore the application of deep learning

techniques to overcome the challenges in protein crystal-

lography. By harnessing the power of deep learning, the field

of protein crystallography is unlocking new possibilities,

leading to a deeper understanding of protein structures and

their functional implications. But first, we briefly summarize

the history of deep learning, provide some essential definitions

and describe those traditional ML and deep learning methods

that have found applications in protein crystallography.

1.1. Deep learning as a branch of machine learning

The roots of ML can be traced back to the early 1950s, when

researchers started exploring the concept of intelligent

machines. Inspired by the human brain’s neural networks,

researchers began developing artificial neural networks in the

1980s. However, progress was initially hindered by limited

computational resources and a scarcity of large-scale data,

despite the introduction of the efficient backpropagation

algorithm for training multi-layer neural networks (Karhunen

et al., 2015).

In the early 1990s, various ML algorithms, such as support

vector machines (SVM), decision trees and ensemble methods,

gained momentum. These data-driven approaches started to

outperform rule-based systems. While neural networks with

multiple hidden layers have been explored for decades, a

pivotal work by Hinton et al. (2006) introduced effective

techniques for training these networks (Hinton et al., 2006).

The introduction of deep belief networks marked the begin-

ning of the deep learning era.

As the power of computational resources increased, and

large-scale data sets became more readily available, deep

learning increased in popularity. Subsequent advancements in

the field focused on optimizing the architecture of neural

networks in terms of depth, connectivity and node properties,

recognizing their crucial role in efficiently solving specific

tasks.

Today, deep learning has become the main approach in the

broad area of ML. It seeks to mimic human reasoning and

apply that knowledge in a broader context (Sarker et al.,

2021). By uncovering intricate patterns and models within

highly complex systems that defy traditional analysis, deep

learning has the potential to revolutionize scientific research.

1.2. Some definitions

ML techniques can be categorized into three main types:

supervised learning, unsupervised learning and reinforcement

learning.

In supervised learning the algorithm is trained on a data set

of input–output pairs that are labeled by a human domain

expert. The algorithm learns to map the input data to the

ground truth by minimizing a loss function (for details, see

Appendix C2). The goal of supervised learning is to accurately

predict the target variable for new, unseen inputs.

In unsupervised learning, the algorithm is trained on an

unlabeled data set and seeks to uncover hidden patterns or

relationships within the data without the guidance of specific

labels. By exploring the inherent structure of the data, unsu-

pervised learning algorithms reveal valuable insights.

In reinforcement learning the algorithm learns to make

decisions in dynamic environments. These algorithms learn to

maximize cumulative rewards over time, based on the feed-

back they receive from the environment. By exploring

different actions and their consequences, reinforcement

learning agents discover optimal strategies for achieving

desired outcomes.

The two primary ML tasks are classification and regression.

The goal of classification is to assign discrete labels or cate-

gories to input data points. Regression aims to predict

continuous target values.

Classification models are typically evaluated using metrics

such as accuracy, precision, recall, F1-score, area under the

ROC (receiver operating characteristic) curve (AUC-ROC)

and Matthew’s correlation coefficient (MCC) [for details, see

Appendix B1, equations (1)–(5)]. (The MCC has no rela-

tionship to Matthew’s coefficient VM in protein crystal-

lography, which is the crystal volume per unit of protein

molecular weight.) These metrics provide insights into the

model’s performance in terms of correctly classifying different

instances.

Regression models are evaluated using metrics such as

mean absolute error (MAE), mean-squared error (MSE),

root-mean-squared error (RMSE) and R-squared [for details,

see Appendix B2, equations (6)–(8)]. These metrics measure

the deviation between the predicted continuous values and the

actual target values, providing an assessment of the model’s

predictive accuracy.

1.3. Data assessment

An efficient data assessment workflow is vital for proper

model development and for evaluating the robustness of the

model. The source of the data and the nature of the variables

influence the selection of preprocessing steps, and the selec-

tion of the most effective ML algorithm. Investigating the

variable distributions can reveal the intricate relationships

between them and potential multi-collinearity issues, which

significantly impact model performance, necessitating trans-

formations or normalization for certain algorithms. Feature

extraction and recognition of potential outliers often require

domain expertise, because automatic feature extraction may

compromise the interpretability of the model. A significant

body of exploratory data analysis and initial assessment

techniques is available in a previous review on this topic

(Vollmar & Evans, 2021).

1.4. Traditional ML and deep learning

Traditional ML algorithms offer a variety of solutions, but

with inherent limitations, and deep learning was developed to

address some of these challenges. Nevertheless, traditional

ML has been applied extensively and effectively in many

applications. Some of these have also been applied to the field

of protein crystallography, and they, together with deep
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learning models currently used in this field, are summarized in

Fig. 1.

We review the application of deep learning architectures in

key steps of protein crystallography. In every section, we

mention traditional ML algorithms to contrast them with the

advancements introduced by deep learning.

2. Deep learning and key steps of protein
crystallography

2.1. Protein crystallization propensity

One of the key advantages of deep learning techniques in

protein crystallography is their potential to predict the targets

that are more likely to crystallize (Mizianty & Kurgan, 2011).

Protein crystal quality is an important factor in the success of

structure determination, as poor-quality and disordered crys-

tals can lead to inaccurate results. Only a minority of target

proteins (4.6%) produce crystals of sufficient quality, and

failure to crystallize remains the prime bottleneck in protein

crystallography (Mizianty & Kurgan, 2011). First, we

summarize current traditional ML approaches, and then we

discuss how their limitations have been addressed by deep

learning.

Several in silico traditional ML and analytical approaches

have been developed to address the crystallizability, including

but not limited to CRYSTALP2 (Kurgan et al., 2009),

PPCpred (Mizianty & Kurgan, 2011), XtalPred-RF (Jahan-

dideh et al., 2014), TargetCrys (Hu et al., 2016), Crysalis (Wang

et al., 2016), fDETECT (Meng et al., 2017), BCrystal (Elbasir

et al., 2020) and DCFCrystal (Zhu et al., 2021) (see details of

traditional ML algorithms in Appendix A1). The first attempts

CRYSTALP2 and PPCpred (predictor of protein production,

purification and crystallization) predict the tendency to

produce diffraction-quality crystals based on a wide range of

input features: energy and hydrophobicity indices, amino acid

composition and sequence, isoelectric point, predicted

disorder, secondary structure and solvent accessibility, and

content of certain buried and exposed residues. XtalPred-RF

consists of a series of independent random forest (RF) clas-

sifiers, and performs extensive feature extraction to better

approximate the initial information domain. TargetCrys

utilizes a two-layer SVM, where the first-layer decisions, based

on the respective feature sets, are further ensembled by a

second layer of SVM. The Crysalis integrated webserver not

only predicts the crystallization propensity, but also helps the

developers to design point mutations for better crystallization

outcome. Individual step prediction is also possible in the

webserver fDETECT, which uses a logistic regression method

and is a fast protein production, purification and crystal-

lization predictor. The BCrystal webserver takes advantage of

the ‘gradient boosting machine’ (XGBoost) to estimate

protein crystallization propensities. It performs feature

pruning automatically, reducing the risk of overfitting and

explains the predicted class label for each protein based on its

corresponding feature using the SHapley Additive exPlana-

tions (SHAP) algorithm (Lundberg & Lee, 2017). DCFCrystal

is based on a cascaded RF and predicts individual steps of the

crystallization process: production of protein material, purifi-

cation and production of crystals. The single-stage variant of

DCFCrystal (MDCFCrystal) is specifically designed for

membrane proteins.

The performance of all these traditional ML methods is

highly determined by the extent of feature extraction, requires

domain expertise, and fluctuates over a wide range. Most

existing predictors tend to sequentially merge diverse features.

While there is evidence that combining features from multiple

sources can sometimes enhance prediction accuracy, it does

not always guarantee better results and may introduce

redundant information in the feature space. This redundancy

can potentially weaken the predictor’s accuracy for new data

sets. These limitations can be addressed by leveraging the

potential of deep learning architectures.

DeepSol has a deep learning architecture based on a

convolutional neural network (CNN, for details of this archi-

tecture, see Appendix A2.3), which was trained to predict

protein solubility from the input protein sequence and addi-

tional features. These features include sequence length,

molecular weight, the aliphatic indices, the average hydro-

phobicity value (GRAVY, grand average of hydropathy), the

fraction of turn-forming residues, and structural features

predicted from the protein sequence using SCRATCH

(Magnan & Baldi, 2014). The proposed solution could reach a

MCC of 0.55. DeepSol was highly selective in identifying

insoluble proteins, outperforming the previous state-of-the-art

solutions (Khurana et al., 2018).

The DeepCrystal framework (Elbasir et al., 2019) also

identifies patterns indicative of successful protein crystal-

lization by leveraging the discriminative power of CNNs for

analyzing amino acid sequences. The protein sequence is given

as a one-hot encoded vector with a length of 22 (20 for amino

acids, 1 for gap and 1 for ambiguous amino acids), with only

1 bit active for the ith amino acid in a protein sequence. The

data are passed through a filter that removes redundant

sequences and the crystallization prediction is defined as a

binary classification problem. The framework takes advantage

of the high degree of correlation between the primary

sequence of a protein and its propensity to crystallize by
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Traditional and deep learning architectures used in different steps of
protein crystallography. The exact details of the architectures and
working principles are summarized in Appendices A and B.



training a multi-scale CNN on a data set of proteins with

known crystallization outcomes. The accuracy of the Deep-

Crystal model was 0.83 and the MCC value was 0.66 on the

evaluated data set. DeepCrystal is reported to achieve an

accuracy that was 5–30% higher than traditional sequence-

based predictors and is better at predicting crystallizability of

shorter proteins. DeepCrystal was made publicly available

through a webserver and accepts protein sequences in FASTA

format (https://github.com/elbasir/DeepCrystal).

Another deep learning framework, CLPred (Xuan et al.,

2020), takes a raw protein sequence as input and converts the

amino acids into a ‘k-mer’ vector representation through a

word embedding layer. A ‘k-mer’ is a subsequence of conse-

cutive amino acids within a protein sequence. For example, for

a sequence ‘ABCD’ and a k-mer size of 3 (k = 3), there are two

3-mers (‘ABC’ and ‘BCD’). Next, the high-frequency k-mer

features are identified through a CNN layer. Finally, the k-mer

features are fed into a bidirectional recurrent neural network

with long short-term memory LSTM (BLSTM) (for details,

see Appendix A2.4), which captures the long-range interac-

tion information between k-mer amino acids and generates

predictions. CLPred outperformed other evaluated predictors

such as fDETECT, TargetCrys, PPCpred, CRYSTALP2 and

DeepCrystal, showing the highest MCC of 0.700 and the

highest accuracy of 0.851. When the authors combined

CLPred last-layer embeddings with 641 additional features,

including 8-state secondary structure (SS), fraction of exposed

residues (FER), disorder and hydrophobicity, the perfor-

mance of the network was even better. The paper shows that

deep convolutional or fully connected layers are capable of

extracting more complex features. However, further additions

of computing layers may downgrade the prediction perfor-

mance. Furthermore, LSTMs are best at modeling temporal

sequences, and their applicability may be limited in protein

sequences with complex three-dimensional structures. LSTMs

cannot execute calculations in parallel and have a lower time-

efficiency compared with DeepCrystal.

ATTCry is an attention-based neural network for crystal-

lization propensity prediction. ATTCry can extract both local

and global features of protein sequences. For this purpose, it

uses multi-head self-attention layers (for details, see Appen-

dices A2.6 and A2.7) and integrates that information with a

multi-scale CNN, to obtain a more complex global spatial

dependence of protein structure (Jin et al., 2021). Each head

captures the long-distance dependence and the CNN extracts

local k-mer structures. The proposed framework achieved a

prediction accuracy of 0.866 and an MCC score of 0.716.

Ablation studies showed that both multi-scale CNN layers and

multi-head self-attention layers appeared to be essential for

crystallization prediction. In all the aforementioned cases, the

length of the protein sequence was limited to 800 amino acids.

Another approach, SADeepcry, uses a latent representation

of 9139-dimensional physico-chemical, sequence-derived and

‘disorder’ features and an optimized multi-head self-attention

mechanism to extract a complex representation of protein

structural and chemical features. (The term ‘latent space’

refers to hidden or underlying features or variables in data

which are not directly observable, but can be inferred or

learned through ML models.) These features are encoded

using an autoencoder (AE) (for details, see Appendix A2.2).

The predictor is a multi-layer perceptron (MLP) (for details,

see Appendix A2.1) module, where the authors concatenate

the output by the self-attention module and latent space from

the AE (Wang & Zhao, 2022). The model showed comparable

results with respect to ATTCry and DeepCrystal, and achieved

the best results in accuracy and AUC-ROC metrics. It

achieved an MCC of 0.748 and an accuracy of 0.877.

The mentioned techniques build the interaction knowledge

of residues at sequence level rather than structure level.

However, extracting the structure-level information may be a

better predictor for protein crystallization. For this, a graph

attention network (for details, see Appendix A2.9) was

developed (GCmapCrys), that includes residue-interaction

knowledge in crystallization behavior (Wang et al., 2023).

Sequence-based features are the nodes of the protein graph,

and the predicted contact map of the protein serves as the

edge between the nodes. The sequence-based features include

a position-specific scoring matrix, the physico-chemical and

biological properties from the AAindex database (Kawashima

& Kanehisa, 2000), the average hydrophobicity value

(GRAVY), and other characteristics. After three consecutive

graph attention layers, the global pooled representation is

given to two consecutive fully connected layers, where the

second layer uses a sigmoid activation layer (for details of

various activation functions, see Appendix C1) to predict

crystallization propensity. GCmapCrys was benchmarked

using different data sets, and its accuracy was at least 0.71 with

an MCC value higher than 0.33. Further analysis showed

predicted structure-based coding (PSBC) to be the most

important complementary feature for crystallization propen-

sity prediction.

Overall, while traditional techniques for predicting protein

crystallization continue to play an essential role, deep learning

models have introduced a revolutionary approach to the field.

These models capture intricate patterns and relationships

between protein sequences and crystallization success, over-

come the hand-crafted feature representations and can help

researchers identify the most promising candidates for crys-

tallization experiments. This predictive capability can accel-

erate the process of protein structure determination and

reduce the experimental cost. Nevertheless, up until now, deep

learning models complement, rather than replace, traditional

methods. We consider it essential, for further progress, to

establish means of independent validation of the various deep

learning approaches, in view of differences in benchmarked

data sets and inherent interpretability constraints of these

models.

2.2. Crystallization monitoring

Protein crystallization is a complex process that requires the

determination and optimization of a wide range of parameters

(Liu et al., 2008). With ultra high throughput methods

becoming increasingly prevalent, there is a growing need to
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automatically assess massive volumes of image data from

crystallization trials. The problem is exacerbated by the fact

that crystallographers often disagree on the class of images:

when 16 crystallographers assessed 1200 trial images, they

reached an overall agreement of only 70% (Wilson, 2006).

Moreover, assigning different scores to the same image on

different occasions is also common. To address these chal-

lenges, there is an urgent need for systems that can improve

existing image-analysis pipelines by automatically and accu-

rately throwing out the vast majority of crystal-negative trials

while minimizing the risk of rejecting crystal-positive trials. In

an ideal scenario, the system would achieve a perfect score of

zero false negatives, as missing a valuable crystallization

condition could potentially jeopardize the entire structure

determination project. Additionally, it should maintain a low

ratio of false-positive results within acceptable limits irre-

spective of the imaging platform used, mimic the skills of an

experienced crystallographer for recognizing different types

of crystals, ignore technical failures, and learn from experi-

ence. In this context, the application of deep learning to

monitor crystal growth is limited by the requirement of large

amounts of manually labeled data, which can contain anno-

tation errors and biases, and are considered error-prone due to

discrepancies in human labeling (Bolya et al., 2020). We first

summarize traditional ML approaches for crystallization

monitoring.

Researchers analyzed 319 112 crystallization trial images

from 150 solved structures deposited at the Protein Data

Bank, using the boosting technique to find well diffracting

crystals (Liu et al., 2008). The approach finds lines and textures

indicative of crystals and nanocrystals and could reach an

AUC-ROC score of 0.92. Each square of the image encodes a

feature vector of 466 values and is propagated differently

through the alternating decision tree. The maximum score

over all squares is taken as the image score which is then used

for discrimination. Feature extraction relies on Gabor wavelet

responses to detect edges and texture (Pan et al., 2006).

Selecting the top 20% ranked images of each set was

successful in picking an image that led to a good crystal in 145

out of 150 cases, proving the effectiveness of the selection

method.

Traditional ML approaches leveraged the potential of edge

detection followed by curve tracking (Bern et al., 2004),

employing a two-tier cascade classifier using naı̈ve Bayes and

RF (Hung et al., 2014; Cumbaa & Jurisica, 2010). The authors

used massive feature engineering and a set of 165 351 hand-

scored images to train an RF classifier for crystallization

detection. In both 10-way and 3-way classifiers, ‘precipitates’

and ‘clear drops’ were easily recognized. 80% of crystals were

correctly detected in the classification task as well. However,

the classifier rejected all observations within the ‘phase &

precip’ category. An extensive list of other analytical and

traditional ML techniques for crystallization monitoring is

described elsewhere (Sigdel et al., 2013).

While traditional ML methodologies attempt to alleviate

the crystallization monitoring challenge, the degree of preci-

sion obtained is not sufficient to replace manual inspection.

Observed external regularity, as captured in images by strong

edges, symmetry and polygonal shapes, may not always

correlate with high-resolution diffraction. Employing

advanced deep learning techniques, described here, could

remove this shortcoming.

CrystalNet employs a CNN that was trained on 163 894

high-resolution grayscale labeled images of protein crystal-

lization trials on 1536-well plates, and achieved a 0.908 in

accuracy, with an AUC-ROC of 0.9903 for crystal class clas-

sification (Yann & Tang, 2016). CrystalNet’s first-layer filters

catch useful edge information, giving a clue as to the features

most discriminative for the classification. As expected, sharp

images were required, as low-resolution, blurred image data

resulted in a significant drop in accuracy. When operating in

real time, CrystalNet could handle more than 750 images per

second, making it a good choice for the automated evaluation

of microarray plates.

CrystalNet and other, more sophisticated CNN archi-

tectures, using the topology of AlexNet (Krizhevsky et al.,

2012), VGG (Simonyan & Zisserman, 2014) Inception-V3

(Szegedy et al., 2016) and ResNet (He et al., 2016) (for details,

see Appendices A2.10 and A2.11), were benchmarked for

crystallization monitoring (Ghafurian et al., 2018). A training

data set of 486 000 images was manually annotated into ten

classes. The data set was augmented1 to mitigate class imbal-

ance (class imbalance refers to a situation in data sets where

one class significantly outnumbers the others, potentially

leading to biased model predictions). The highest-performing

CNNs were ResNet-56, ResNet-32 and Inception-V3, with

testing accuracy of 0.814, 0.806 and 0.794, respectively. Due to

the use of residual blocks, ResNet-56, even though it is the

deepest network, did not suffer from depth-related degrada-

tion (for details of vanishing and exploding gradients, see

Appendix C6) and showed the best results. Unlike the ResNet

architecture, the addition of more layers to VGG resulted in a

small decrease in accuracy. ‘Micro crystal’ and ‘medium

crystal’ classifications showed the most significant variability

across architectures: ResNet-56 showed an accuracy of 0.611,

while CrystalNet only managed 0.493. ‘Small crystal’ appears

to be the hardest class to identify for most architectures, with

the lowest average accuracy.

The Inception-V3 architecture was also used in another

study, trained on the Machine Recognition of Crystallization

Outcomes (MARCO) initiative data set (Bruno et al., 2018).

The MARCO collaboration of five institutes collects and

shares a large data set of images of crystallization trials for

improving analysis techniques. The MARCO data set contains

images produced by imagers of two different manufacturers

and from in-house-developed systems, all with different optics.

The four categories in this study were: ‘clear’, ‘precipitate’,

‘crystal’ and ‘other’. The data were augmented prior to

training. During the relabeling phase, crystallographers were
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asked to relabel the images that disagreed strongly with the

classifier. The MARCO model reached an accuracy of 0.942

with a mere 0.3% improvement after the relabeling. The study

demonstrates that the model can effectively classify images of

crystallization trials, independent of the systems used to create

them. This approach offers consistency and efficiency, making

it suitable for high-throughput settings and data mining of past

image repositories. Although high classification rates were

reported for the MARCO model, using images from multiple

platforms, transferability remains an issue. In cases where the

model gives inaccurate results, retraining the model on local

data improved classification accuracy even if the training was

performed on a significantly smaller data set (Milne et al.,

2023). Future efforts should focus on increasing the robustness

and versatility by maintaining consistent performance across

various experimental conditions, sharing the weights of the

model and allowing transfer learning.

To facilitate protein crystallization experiments, an auto-

mated system called Real Time Protein Crystal Monitoring

System (RT-PCMS) was developed (Sengar et al., 2022). It has

precise robotics and a custom-designed motorized microscopic

imaging system capable of capturing multi-focus composite

images of protein crystals in droplets across multiple wells. It is

a high-throughput system for imaging crystals in 24- or 96-well

crystallization plate formats, and monitoring their growth at

frequent time intervals. In multi-well plates, where images may

be captured under different illumination conditions, crystals

appear at varying depths of field, and crystal growth phases

may vary. To address these challenges, a multi-directional

contourlet-based segmentation algorithm was implemented

for extracting crystal features. To increase the overall depth of

field of the scanned well, a fusion algorithm was used

combining non-subsampled wavelet transform (NSWT) and a

guided filter. The last step was the adoption of the Inception-

V3 network. Compared with the MARCO model, the modi-

fied network has fewer coefficients, potentially allowing faster

classification.

Microfluidic technology has emerged as a promising tool for

screening crystallization conditions (Huang et al., 2022). It

offers several advantages including high speed, low reagent

consumption and low cost. However, several bottlenecks exist,

including insufficient high-speed data analysis, lack of time-

resolved information, and inadequacy in yielding large enough

crystals for direct use. Moreover, nanolitre-scaled trial

volumes may have a reduced nucleation rate (Bodenstaff et al.,

2002), and can potentially augment the probability of ‘false

negatives’ or ‘false positives’ (Maeki et al., 2014).

The Deep Learning-Aided High-Throughput Program-

mable Microlitre-Droplet System (DL-HTPMS) was designed

to address some of these limitations by combining micro-

fluidics and deep learning. This system enables efficient

screening of protein crystallization conditions in microlitre-

scaled droplets, while also providing time-resolved informa-

tion on protein crystalline states. To accelerate the screening

process, a dense convolutional neural network (DenseNet)

model was constructed to classify the different crystalline

states or morphologies. This model exhibited high accuracy

and recall (0.993). The temporal diagrams demonstrated high

consistency (�93%) with those obtained in the scale-up

experiment.

Deep learning has been used for assessing and improving a

novel approach that uses bioconjugate-functionalized nano-

particles (McCue et al., 2023). The goal was to assess the effect

of such nanoparticles on the nucleation rate and induction

time of protein crystallization, particularly at low protein

concentration conditions. A custom CNN-enabled emulsion

crystallization setup for accurately quantifying nucleation

parameters allowed the capture of a wealth of data regarding

the crystallization process and prediction of the outcomes

under different conditions. While nucleation of protein crys-

tals has been studied for decades, significant breakthroughs in

terms of robust, predictable and general protocols for

improving crystal growth by including crystal nucleants, were

scarce. Presumably, the high number and unpredictable nature

of potentially relevant parameters have been a limiting factor,

and it is therefore possible that deep learning may be able to

extract complicated, hitherto overlooked, patterns and

correlations.

Deep learning has a role in advancing protein crystallization

monitoring, enabling efficient, accurate and quick identifica-

tion of crystal formation. One of the main problems is that

imagers may not be able to capture crystal formation at

sufficiently high resolution and contrast, because of the

experimental specifics of crystal screening. Images of more or

less spherical droplets may suffer from distortions and uneven

light transmission, and crystals may grow anywhere within a

droplet, so a through-focus series may be required for obser-

ving the early stages of crystal growth. These shortcomings are

the most likely explanation for the discrepancies found in

expert human assessments of images of crystallization trials.

Additional image modalities and more accurate and detailed

three-dimensional imaging are likely to be required for further

improvements. With these provisos, we consider that current

deep learning approaches can be highly effective in both high-

throughput settings and for data mining of past image repo-

sitories.

2.3. Diffraction data collection

Deep learning techniques have also been used for auto-

mating diffraction data processing and analysis in protein

crystallography. The introduction of XFELs as a source of

extremely bright and short pulses of X-ray radiation allowed

the study of proteins that are difficult to crystallize or that

degrade quickly under the intense X-ray radiation used in

traditional crystallography methods. The femtosecond XFEL

sources allow a ‘diffract before destroy’ approach, and

radiation damage effects are significantly evaded (Bücker et

al., 2020). In this scenario, it is important to have data

processing capabilities that give real-time feedback so that the

characteristics of the experimental results can be tracked. By

analyzing data quickly, key indicators such as the rate of

increase in reciprocal-space coverage can be monitored,

allowing experimental parameters to be adjusted before the
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sample and beam time are exhausted. However, providing

sufficient computing resources for real-time analysis is a

challenge. As data collection capacity increases, it is important

to ensure that the data production rates do not exceed the

speed of analysis. To prevent overloading the network and

data processing resources with useless data, a screening tool

that can quickly identify and store patterns with Bragg spots is

vital (Ke et al., 2018).

An AlexNet type of deep learning architecture was used for

classifying diffraction frames as ‘hit’, ‘maybe’ or ‘miss’, with

‘maybe’ indicating a small number of Bragg spots (Ke et al.,

2018). For training, 2000 center-cropped images were

preprocessed by local contrast normalization and were

augmented. The data sets were chosen from a diverse range of

imaging detectors, beam energies and sample delivery

methods to ensure a representative cross section. The training

data set included crystals with different space groups and unit-

cell parameters. Two methods provided the reference for the

training: annotation by a human expert, and an automated

spotfinder in conjunction with thresholding. The accuracy of

CNN classification was largely influenced by the quality of the

annotated data used to train the network. With the exception

of one data set, the confidence level of most correctly classified

images was above 90%. When the training data set had a

limited number of images with clearly visible and/or a small

number of identifiable Bragg spots within the images, the CNN

tended to have lower accuracy. Additionally, the accuracy was

affected by factors such as the type of detector used, beam

properties and sample preparation methods. Preprocessing

the data using local contrast normalization was crucial for

accurate CNN predictions. Without contrast adjustment, the

CNN training was negatively affected by artifacts and back-

ground noise. The most informative pixels for the CNN clas-

sification not only covered the Bragg spots but also included

their surrounding area, assisting the CNN in recognizing the

presence of Bragg diffraction against the background.

DeepFreak was developed for selecting diffraction patterns

for downstream analysis (Souza et al., 2019). Three types of

classifiers were trained on 25 000 simulated and 547 real

512 � 512 grayscale labeled diffraction patterns. The models

used five classes for simulated (‘blank’, ‘no-crystal’, ‘weak’,

‘good’, ‘strong’) and two classes for experimental (‘diffraction’

and ‘no diffraction’) diffraction patterns. The training data

were made publicly available as the DiffraNet data set (https://

dawn.cs.stanford.edu/diffranet/). The classifiers were RF, SVM

and a CNN topology based on ResNet-50. The end-to-end

CNN could reach 0.985 accuracy on synthetic and 0.945

accuracy on real diffraction patterns. Even though the accu-

racy of these models is promising for benchmarked data sets,

significant hyperparameter tuning and preprocessing are

needed. DeepFreak uses the BOHB (Falkner et al., 2018)

algorithm for robust hyperparameter optimization, and when

optimized for the simulated data set, the network accuracy

degraded by at least 22.45% for real images. Local contrast

optimization proved essential when using the AlexNet

topology, and factors such as background noise and detector

artifacts degraded the network performance.

Deep learning has also been used for crystal positioning in

X-ray crystallography. Diffraction-based crystal centering

induces radiation damage even though the beam is attenuated

(Song et al., 2007). Second-harmonic-generated microscopy

has also been used for accurate crystal positioning but requires

additional femtosecond IR lasers (Kissick et al., 2013). The

recently developed DeepCentering CNN also facilitates cryo-

loop and crystal detection in automated centering processes.

The system employs a unique object detection algorithm that

ignores alterations in the background and also works when the

crystal and mother liquor are difficult to distinguish (Ito et al.,

2019). Two programs, LoopDetector and CrystalDetector, were

created as DeepCentering components and trained with the

Single Shot MultiBox Detector algorithm (Liu et al., 2015).

Although initial training data for CrystalDetector were insuf-

ficient, the use of various polygon patterns led to effective

training. This approach reduced the ambiguity in boundaries

between crystals and mother liquor. Crystal detection was

considered to be successful when the crystal was within 30 mm

of the beam center. The success rate was 90.5% (869/960

images). DeepCentering was successful in a fully automated

structure determination, including ligand screening. However,

DeepCentering tended to center on a thinner part of the

crystal, compared with manual centering. This resulted in a

smaller diffracted volume compared with manual centering,

and is a downside of this approach.

Overall, while deep learning offers potential solutions for

the improvement of diffraction data collection, there are

significant challenges remaining. These include extensive

hyperparameter tuning and tailored preprocessing of diffrac-

tion patterns. These problems seem tractable, and we consider

this aspect of crystallography one of the most promising areas

of development. It is likely that, in the not-too-distant future,

high-end data collection stations will be controlled by systems

that will automatically determine optimal data collection

strategies in real time.

2.4. Model generation

To determine protein structure one has to infer the phases

of the diffraction data, to produce an electron-density map

through a Fourier synthesis. Traditionally, phasing techniques

such as molecular replacement (Evans & McCoy, 2008), single

isomorphous replacement (SIR) (Blow & Rossmann, 1961),

single-wavelength anomalous dispersion (SAD) (Brodersen et

al., 2000) and multi-wavelength anomalous diffraction (MAD)

(Hendrickson, 1991) have been used. In molecular replace-

ment, the known structure of a homologous protein is used as

an initial model to estimate the phases of target protein

diffraction data. The emergence of deep learning based

protein structure prediction tools like AlphaFold2 (Jumper et

al., 2021), RoseTTAFold (Baek et al., 2021) and ESMFold (Lin

et al., 2023) has opened up new possibilities for phasing. In

the 14th edition of CASP (Critical Assessment of Structure

Prediction) (CASP14), AlphaFold2 ranked first on Z-score

for the Global Distance Test Total Score, which is the

average percentage of C� atoms that are found within
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certain distance cutoffs of one another between the model

and target of four cutoff distances (1, 2, 4 and 8 Å) (McCoy et

al., 2022).

AlphaFold2 predicts protein structures with remarkable

accuracy, significantly advancing the field of protein structure

determination. First, it generates a multiple sequence align-

ment (MSA) of homologous protein sequences by aligning the

target protein sequence with its evolutionarily related

sequences sourced from publicly available databases. This

reveals conserved regions and identifies the sequence varia-

bility across different organisms. In the next feature extraction

phase, the model generates pairwise residue distances and

sequence profiles, replacing commonly used two-dimensional

convolution (for details, see Appendix A2.3) with an attention

mechanism. The extracted features serve as inputs for the

deep learning model. These features capture essential infor-

mation about the protein sequence, such as the conservation

of residues, and the co-evolutionary relationships between

pairs of residues that might be in close proximity within the

three-dimensional structure. The architecture involves an

SE(3)-equivariant (Fuchs et al., 2020) Transformer [an SE(3)-

equivariant Transformer is a variant of the self-attention

module for three-dimensional point clouds and graphs, and is

based on the equivariance with respect to the group of rigid-

body transformations in three-dimensional space]; by passing

the input through multiple self-attention layers, AlphaFold2

predicts the three-dimensional structure of the protein. The

next iteration updates the pairwise distance and orientation

predictions between amino acid residues, refining the

predicted three-dimensional structure. AlphaFold2 provides a

measure of confidence for each predicted protein structure,

called predicted value of the local distance difference test or

pLDDT score. It ranges from 0 to 100, with higher values

indicating higher confidence in the predicted structure. The

predicted structures can serve as a template for molecular

replacement, and can be used to tailor proteins that are

difficult to crystallize, by suggesting which parts may be

disordered and can be deleted from the protein construct. By

using these models, experimentalists can significantly reduce

the number of heavy-atom derivatives needed for phasing,

streamlining the process and minimizing the cost and time

associated with structure determination.

RoseTTAFold builds upon the ideas presented by Alpha-

Fold2, and is a three-track network integrating information at

the one-dimensional sequence level, the two-dimensional

distance map level and the three-dimensional coordinate level.

The information flows back and forth within these three

modalities, progressively transforming and integrating the

data, to identify relationships within and between sequences,

distances and coordinates. The averaged one-dimensional and

two-dimensional features are fed into a final SE(3)-equivar-

iant layer, and end-to-end training directly generates the

backbone coordinates. The architecture was developed after

CASP14, and was tested on the Continuous Automated Model

Evaluation (CAMEO) experiment (Haas et al., 2018). Out of

69 medium and hard targets, it outperformed all other servers

evaluated in the experiment, including Robetta (Yang et al.,

2020), IntFold6-TS (McGuffin et al., 2019) and SWISS-

MODEL (Waterhouse et al., 2018).

Another recent sequence-to-structure predictor, ESMFold,

used a Transformer (for details of the Transformer archi-

tecture, see Appendix A2.5) language model, that resulted in

faster and almost equally accurate predictions, compared with

AlphaFold2 and RoseTTAFold. A Transformer model called

ESM-2, which had up to 15 billion parameters, was trained

using a masked language modeling objective. Amino acids

were masked out, and the network was trained to retrieve the

identities of these masked-out residues, based on the

surrounding amino acid sequence. Training was carried out on

millions of protein sequences from the UniRef database

(Suzek et al., 2015). By adding an additional module, designed

for extracting and structurally interpreting the correlations

that ESM-2 had captured, protein structures could effectively

be predicted from protein sequences. The ESMFold model is a

simplification as compared with AlphaFold2 and RoseTTA-

Fold and exhibits significant enhancements in prediction

speed, currently at the expense of a slightly lower prediction

accuracy.

The integration of AlphaFold2, ESMFold and RoseTTA-

Fold in the phasing process holds great promise for protein

crystallography. However, there are still challenges to over-

come. For instance, the quality of predicted structures may

vary depending on the protein family or the presence of

specific domains. Many AlphaFold2 models have large errors

in relative orientations of domains (Read et al., 2023),

although AlphaFold2 provides warnings in a predicted aligned

error (PAE) matrix in these cases. Experimental structures

from various crystal forms generally outperform AlphaFold

models. These models provide a single structure rather than a

repertoire of possible conformations that may be influenced

by external factors. Nevertheless, the predicted structures are

sufficient for molecular replacement in the majority of cases

(Millán et al., 2021).

2.5. Map interpretation

Several problems can arise when inferring a protein’s

electron density from diffraction data. When phasing by

molecular replacement, the resolution of the data may not be

high enough for the resulting electron-density map to be

unbiased by the model phases, potentially leading to chal-

lenges in accurately interpreting the structural details of the

target macromolecule. While secondary structures and rigid

inner parts of the protein often exhibit clear electron-density

maps, side chains and disordered regions are often not visible,

which can be attributed to factors like thermal atom vibrations

or multiple conformations.

To overcome some of these challenges, Miyaguchi et al.

(2021) trained a three-dimensional CNN called QAEmap

(quality assessment based on an electron-density map) using

electron-density maps and their corresponding coordinates as

input. They were able to predict the correlation between the

local structure and the putative high-resolution experimental

electron-density map (Miyaguchi et al., 2021). They intro-
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duced the box correlation coefficient (bCC) as a new metric

for evaluating the local quality of protein crystal structures.

The method considers the ‘correct’ structure of a protein to be

defined by a high-resolution electron-density map, and the

bCC serves as a measure of correlation between the coordi-

nates and the electron-density map of the correct structure.

The model predicts the bCC even in cases where no high-

resolution structure is available. The study compared the

performance of the bCC with the real-space correlation

coefficient (RSCC). Even though the results suggested that

the bCC could offer improvements over existing evaluation

methods, it depended on the availability of high-resolution

structures as references. bCC potentially neglects broader

interactions and structural alignments in the protein, and the

presence of multiple conformations and thermal vibrations

can lead to a range of potential bCC maxima values.

Human experts and model-building software focus on the

distinct shapes of residues for assigning the amino acid

sequence of the protein to the electron-density maps. Manu-

ally assigning residues can take several days and it still does

not ensure that a comprehensive or sufficiently accurate

model can be built. As the resolution decreases, it becomes

increasingly difficult to observe and differentiate between side

chains (Godo et al., 2022). Popular crystallographic methods

are using iterative approaches for model building (Liebschner

et al., 2019; Langer et al., 2008), while Buccaneer uses Bayesian

theory for main-chain tracing (Cowtan, 2006).

3DFC-DenseNet is a three-dimensional CNN architecture

capable of directly operating on volumetric data and does not

use amino acid sequence information. Data sets of protein

density maps at fixed resolutions of 2, 3 and 4 Å were used for

training and validation, generating separate models for high-,

medium- and low-resolution maps. The evaluation of the

model was performed on a data set with varying map resolu-

tions, which were calculated using the experimental X-ray

structure factors and phases derived from the atomic model

(Godo et al., 2022). 3DFC-DenseNet could assign amino acid

labels to proteins within seconds, outperforming current

techniques in the medium-resolution range of 2.5–3.5 Å. It is

even effective in the challenging low-resolution range worse

than 3.5 Å, where conventional methods struggle. Further

addition of residue information into these types of models has

the potential to significantly boost the performance.

Building a model in regions of unknown sequence is a

challenge. Identifying sequences manually in high-resolution

density maps is feasible, but distinguishing between similarly

shaped amino acid side chains requires additional information.

The task becomes harder at lower resolutions, as model

tracing itself is nontrivial without the sequence information

(Chojnowski et al., 2019). To address these issues, researchers

developed ‘findMySequence’, a ML-based solution, which

predicts residue-type probabilities to query sequence data-

bases (Chojnowski et al., 2022). The network, consisting of two

hidden layers, was trained on crystal structures from the

Protein Data Bank, where the selection criteria included

pairwise sequence identity below 50% and with a resolution

between 2 and 3 Å. The model achieved 0.86 accuracy on

benchmarked data sets when identifying the most plausible

protein sequence.

While existing refinement techniques can introduce

restraint conditions from a high-resolution structure of a

homologous protein and provide structural checks, subjective

decisions are often required and may introduce bias and

errors. The described methods enhance processing and inter-

pretation of electron-density maps, and facilitate the deter-

mination of protein structures at varying resolutions. They can

assist human interpretation of density maps and may provide

alternative fittings in poorly ordered density. Structural

biology is increasingly being confronted with well phased, but

poor-resolution electron-density maps, and we predict that

deep learning approaches will have a major impact on the

interpretability of such maps.

3. Discussion

Overall, the application of deep learning techniques in protein

crystallography has shown great promise in improving all

stages of protein structure determination. These techniques

have the potential to provide automated and efficient

approaches to all stages of protein structure determination,

which can lead to significant advancements. The models may

recommend additives for protein crystallizations. Generative

models can be used to predict the optimal conditions for

growing protein crystals based on previous experimental data.

AlphaFold2 models have been used to improve protein

expression constructs for better crystallization outcomes

(https://ccd.rhpc.nki.nl/) (Perrakis & Sixma, 2021). The

implementation of screening in dedicated hardware, such as

energy-efficient neuromorphic chips (Esser et al., 2016), could

potentially allow direct integration with data acquisition

systems. Although already yielding promising results, deep

learning models are still in their early stages of development

and face challenges in handling the multi-stage process of

protein structure determination through crystallography.

Crystallization of proteins is highly dependent on many

factors, with high-quality protein purification being a crucial

contributing factor. This dependence on multiple variables

makes it challenging to achieve consistent outcomes, but deep

learning techniques are particularly suited to deal with such

high-dimensional data.

Automatic labeling in crystallization outcome prediction

and diffraction data collection steps can bypass the inherent

variability associated with human labeling. Unlike manual

labeling by researchers, computational methods maintain a

consistent level of accuracy even across thousands of images,

eliminating inconsistencies caused by fatigue. Additionally,

inconsistencies arise when multiple crystallographers assign

labels to the same data due to variations in their interpreta-

tions. However, our review reveals that even with the most

advanced nonlinear networks, accurately differentiating

between finer-grained classes remains challenging. Expert

human reasoning can often prove to be a challenge to model.

Recent trends have shifted to using synthetic data sets for

supervised learning, which involves creating photorealistic
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images of virtual protein crystals using ray-tracing algorithms

and specialized data augmentations (Bischoff et al., 2022). The

synthetic data sets have been found to result in better-

performing models when compared with models fine-tuned

with real data, and have also been experimentally validated

using high-resolution images from protein crystallization

processes. However, in some scenarios, deep learning models

fine-tuned to simulated data fail when confronted with real

data. Including real data in the training can significantly

improve model robustness. Moreover, advancements in

imaging capabilities and the introduction of novel systems

have the potential to significantly enhance the quality of the

data and decision-making abilities of models.

In this context, good-quality data collection, assessment and

labeling workflow is not just a preliminary step but the

backbone of the entire model development process, playing a

pivotal role in ensuring the model’s robustness, reliability and

reproducibility. Such a foundation ensures that the model is

not overly fitted to a specific subset of the data or overly

sensitive to minor variations, thus enhancing its robustness. If

achieved through a systematic and efficient workflow, the

model performance metrics should be replicable by other

researchers using the same data and parameters.

With the advent of deep learning based protein structure

modeling, structural biology witnessed a revolution (Read et

al., 2023). Even though AlphaFold2 knows almost nothing

about various factors that can influence protein conforma-

tions, these models are already a very useful resource.

However, the complexity of Transformer models and their

lack of interpretability can impede the identification of crucial

features and cannot replace the need for experimental vali-

dation of structures and their stoichiometries (Read et al.,

2023).

Deep learning is a relatively young field that is rapidly

expanding its applications into many areas. This comes with

opportunities, and with risks. We have highlighted the

opportunities in our review. Currently, we consider the main

risks that cannot be ignored to be underestimation and over-

enthusiasm. Underestimation of the potential of deep learning

may slow down progress, while over-enthusiasm leads to

feeding large data sets indiscriminately into the latest deep

learning architecture, with apparently great results that may

be very difficult to validate. Also, when prediction models with

billions of parameters are being developed and assessed, one

might wonder to what extent these can be properly justified.

Now that the application of deep learning in the field of

protein crystallography is moving beyond the initial explora-

tory stages, we strongly suggest expanding the scope of the

CASP competition beyond comparing structure predictions to

also include other fields of structural biology. Good candidates

would be crystallization prediction, crystallization trial

evaluation, and refinement using experimental data.

APPENDIX A
ML architectures

A1. Traditional ML techniques

Naı̈ve Bayes is a class of probabilistic classifiers based on

Bayes’ theorem with the strong assumption that each input

variable is independent of the other variables. Despite this

simplification, the model is easy to build, particularly for large

data sets, and it is fast compared with more sophisticated

methods for classification tasks (Fig. 2).

Decision trees recursively split the input data into smaller

subsets based on a set of rules until a stopping criterion is

reached. Such decision trees are used for both classification

and regression tasks. Random forests (RF) are an extension of

decision trees that combine multiple decision trees to improve

their performance (Song & Lu, 2015). By constructing

multiple trees on randomly sampled subsets of the input data

and aggregating their predictions, random forests aim to

improve accuracy. However, decision trees and random forests

are prone to overfitting, especially if the tree architecture

becomes complex.

Boosting is a technique that improves the performance of

weak classifiers by iteratively training weak classifiers on

different subsets of the input data and assigning a higher

weight to misclassified samples in each iteration (Friedman,

2001). The goal is to combine these weak classifiers into a

strong classifier. Boosting is sensitive to the choice of weak

classifiers and the number of iterations, and careful consid-

eration must be given to these factors to achieve optimal

results. Gradient boosting, being the advanced form of the

boosting technique, identifies the shortcomings of weak clas-

sifiers by using gradients in the loss function. It leverages the

concept of gradient descent (for details, see Appendix C5),

and at each iteration, a new weak classifier is trained not just

on the misclassified samples, but on the residuals or errors of

the previous prediction.

Support vector machines (SVMs) aim to find the hyperplane

that maximizes the margin between the different classes in the
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input data (Cortes et al., 1995). (Hyperplanes are decision

boundaries for the classification of data points. Data points

falling on either side of the hyperplane can be attributed to

different classes. The dimension of the hyperplane depends on

the number of features in the input data set.) The margin is

defined as the distance between the hyperplane and the closest

data points from each class. SVMs can also transform the input

data into a higher-dimensional space, where it may be easier to

separate the different classes. However, this transformation

can lead to nonlinear behavior. SVMs can handle high-

dimensional data sets but can be computationally expensive.

A2. Deep learning architectures

A2.1. Multi-layer perceptrons. Multi-layer perceptrons

(MLPs) are supervised learning algorithms, and are known as

the foundation architecture of deep learning. A typical MLP

consists of an input layer that receives input data, and an

output layer that makes a prediction (Fig. 3). The processing in

hidden layers is nonlinear, with each node generating an

output value based on its input values and some internal

parameters that are optimized by training with characterized

data and the ground truth (Karhunen et al., 2015). Training

involves passing data through the network with the nodes

having initial, suboptimal parameters. This forward pass

results in predictions for a given input. Especially early in the

training, these predictions have errors reflecting the differ-

ences between the predictions and the ground truth. By

reversing the errors back into the network through back-

propagation, the gradient of the loss function (for details, see

Appendices C2 and C3) with respect to the parameters of the

network is calculated. This allows optimization of the

network’s parameters by steepest descent or conjugate

gradient methods. This iterative process is repeated until the

model converges to a minimum of the loss function. The

number of layers and nodes varies based on the specific task.

MLPs having enough nodes in a single hidden layer can

approximate any smooth enough nonlinear input–output

mapping.

A2.2. Autoencoders. Autoencoders (AEs) are deep latent

models consisting of two subnetworks: encoder and decoder

(Fig. 4). (The term ‘latent space’ refers to hidden or underlying

features or variables in data which are not directly observable,

but can be inferred or learned through ML models.) The

encoder network learns to map data points to low-dimen-

sional, compressed feature vectors, while the decoder network

learns to reconstruct data points from their low-dimensional

latent-space representation (Hawkins-Hooker et al., 2021). In

protein crystallography AEs are mainly used to learn the

representation of the content of protein sequences or trans-

form huge numbers of protein-specific input parameters into

corresponding, compressed features.

A2.3. Convolutional neural networks. A convolutional

neural network (CNN) is a supervised deep learning neural

network initially designed for image and video recognition

tasks (Cun et al., 1990). It consists of stacked convolutional

and pooling layers, which work together to learn and extract

hierarchical features from input data in an adaptive and

automatic way (Fig. 5).

In a CNN, a convolutional layer applies a set of learnable

filters or kernels to the data. In the case of image data, a kernel

is a small matrix, which slides across the image and computes a

dot product between its weights and the corresponding local

field of the input data, resulting in a feature map. Thus, it maps

the location and strength of specific features – like edges,

textures or shapes in the input data. A pooling layer down-

samples its input data while retaining the most salient features.

This is done by dividing the input into non-overlapping

regions and computing a summary statistic, such as the

maximum or average, for each region. The output of a pooling

layer typically has smaller dimensions than the input (Fig. 5).

Once the data have passed through the last pooling step,

they are flattened into a one-dimensional array. This array is

multiplied by a weight matrix in the fully connected layer and

passed through an activation function, which produces a
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Figure 3
MLP architecture consists of input, output and hidden layers.

Figure 4
The encoder and decoder parts of the autoencoder network. The encoder
transforms the input features into low-dimensional space, which then can
be retrieved by the decoder network.

Figure 5
Schematic illustration of a CNN architecture that generates probabilities,
indicating how likely it is that input data belong to a specific class. The
input image is convolved with a kernel (green), and the resulting feature
map is propagated through the network.



probability score for each specific class. The probabilities that

a CNN assigns to its set of potential classifications depend on

the kernel weights, pooling parameters and weight matrices.

A2.4. Recurrent neural networks. Recurrent neural

networks (RNNs) process sequential data (Lipton et al., 2015),

such as time series or natural language processing (NLP) tasks.

Unlike other types of neural networks, RNN nodes each have

a ‘memory’ in the form of a hidden state, which allows them to

maintain and propagate information about the previous inputs

in a sequence (Fig. 6). The output of a node in the network

therefore depends not only on the current input but also on

previous inputs. When RNNs have many layers, training can

become problematic when the gradients of successive layers

must be multiplied. When successive weights are all low (or

high), the gradients vanish (or explode) (for details, see

Appendix C6), resulting in instabilities and failure to

converge. To minimize such problems, long short-term

memory (LSTM) and gated recurrent units (GRUs) were

introduced.

In LSTMs and GRUs, the weight of previous inputs is

controlled by the gating mechanisms, allowing the models to

selectively remember or forget information from previous

inputs (Fig. 6). The contributions of recent and earlier events

are determined by the gating mechanisms, rather than a

progressive reduction in the weight of previous inputs. This

allows the network to ‘remember’ significant long-range

patterns, and ‘forget’ insignificant ones (Fig. 6). GRU nodes

simplify the LSTM structure by combining the forget and

input gates into a single gate.

LSTMs can therefore be more effective at capturing long-

term dependencies in sequential data than GRUs, but they

tend to be more computationally expensive.

A2.5. Transformers. The Transformer architecture was first

introduced by Vaswani et al. (2017). It revolutionized the field

of NLP and found applications in various other domains

including protein structure prediction. Basic data structures,

referred to as ‘tokens’, play a crucial role in NLP tasks as they

provide the basis for the model to learn patterns and rela-

tionships. In the context of language, tokens can be words,

while in protein structure prediction, tokens can be amino

acids.

The Transformer relies on the self-attention mechanism (for

details, see Appendix A2.7), which captures dependencies

between tokens without relying on recurrent or convolutional

layers, making it possible to process entire sequences in

parallel. The encoder and decoder in the Transformer archi-

tecture comprise multiple identical layers (Fig. 7). The

encoder processes input sequences, and is connected to the

decoder through an attention mechanism, to facilitate infor-

mation flow between them. In Transformers, due to the

introduction of the multi-head attention mechanism, the

network attends to different parts of the input sequence

simultaneously, capturing various aspects of the context. As in

this scenario the order of tokens in the input sequence is not

preserved, the Transformer uses positional encoding, which

helps the model to infer the position of each token in the

sequence.
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Figure 7
(a) The encoder and decoder blocks of the Transformer. The architecture
employs a self-attention mechanism to efficiently process sequences in
parallel. Multi-head attention and positional encodings provide the
model with rich contextual information. (b) The attention mechanism.
The sequence of X0, Y0, Z0 and F0 is generated based on the importance or
attention to specific input tokens X, Y, Z and F. The attention weights are
calculated using a compatibility function that measures the relevance of
each input to the output being generated.

Figure 6
The main building blocks of RNNs, LSTMs and GRUs. (a), (b) The main building block of RNN. The previous step information is added to the current
input and passed through the activation function. The output is then used for the prediction and passed to the next timestep. (c) LSTM uses gating
mechanisms (for details, see Appendix C4) to control the flow of information through the hidden state and has three gates. The forget gate controls how
much information from the previous timestamp should be forgotten. The input gate controls how much of the new input should be added. The third gate
passes the current cell state to the next timestep. (d) The GRU uses a similar mechanism to the LSTMs; however there are only two gates.



A2.6. Attention mechanism. The attention mechanism is a

technique used in deep learning models to selectively focus on

specific aspects of the input data (Vaswani et al., 2017). It was

initially introduced to improve the performance of RNNs in

capturing long-range dependencies between input and output

data.

The attention mechanism computes a set of weights or

correlations between the input data and the output data, using

the hidden states of the RNN nodes. These weights allow the

model to focus on the most relevant parts of the input

sequence, regardless of their spatial distance, effectively

enabling the model to capture long-range dependencies [Fig.

7(b)].

By giving more weight to the specific features or patterns of

the training data that correlate well with the desired output,

the attention mechanism allows the model to selectively

emphasize the most informative aspects of the input data,

thereby improving its performance in a variety of tasks. The

attention mechanism is widely adopted in sequence-based

models, such as Transformers and graph attention neural

networks, among others.

A2.7. Self-attention mechanism. A self-attention is an

attention mechanism that computes attention scores for all

parts of the input relative to all other parts. This means that

every part of the input has the potential to influence every

other part in the output, which makes self-attention particu-

larly powerful for handling complex dependencies within the

data. Furthermore, multiple ‘heads’ of the self-attention

mechanism can operate in parallel. In this scenario, each head

can perform parallel computing, which means that the

computation time will be greatly reduced.

A2.8. Graph convolutional neural networks. Graph

convolutional neural networks (GCNNs) generalize the

convolution operation from regular grids, such as images, to

graph-structured data. In a GCNN, the convolution operation

is replaced with a graph convolution operation that takes into

account the topology of the graph, as well as the features of

the nodes and their neighbors. In GCNNs, a protein may be

represented as a graph, where the nodes may contain the

amino acid residue information of the protein with various

embedding features assigned to it, and the edges are the

interactions between the residues [Fig. 8(a)].

A2.9. Graph attention neural networks. While GCNNs

leverage graph topology and node features for network

learning, graph attention neural networks (GATs) leverage

the attention mechanism that allows nodes to weigh the

importance of their neighbors. In GATs, each node in the

network can focus on different neighboring nodes and capture

more nuanced and context-dependent interactions. In this

case, when representing the protein, the influence of each

interaction (edge) between residues can be adjusted based on

the context, allowing a more flexible and adaptive model [Fig.

8(b)].

A2.10. Residual neural networks. Residual neural networks

(ResNets) were developed to solve the vanishing gradient

problem (for details, see Appendix C6) in deep CNNs for

image analysis (He et al., 2016). They allow efficient training of

very deep networks (e.g. hundreds of layers) without sacrifi-

cing network performance. They work by adding the weighted

input of a layer to the output of a subsequent layer. This can

greatly facilitate training, as it allows non-discriminating nodes

to be skipped when calculating the gradients through back-

propagation (Fig. 9).

A2.11. Inception convolutional neural networks. Inception

networks use several convolutional kernels with different sizes

in the same layer, unlike traditional CNNs (Szegedy et al.,

2016). This design enables the network to adaptively learn

features at different scales and complexities. Their core

component is the inception module, consisting of parallel

branches that perform different types of convolutions with

varying filter sizes (e.g. 3 � 3, 5 � 5) and pooling operations

lead articles
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Figure 8
Schematic illustration of convolution operation and attention mechanism
on protein graphs. (a) In GCNNs convolution is described as having a
receptive field of neighboring residues and the activation updates the
center residue. (b) In GATs, the influence of each interaction can be
adjusted in order to capture more nuanced and context-dependent
interactions.

Figure 9
The classical (a) and residual (b), (c) mapping of the input. (a) In a
classical CNN, the network directly learns input to the output mapping
function, passing the result to the activation function. (b), (c) In ResNets
the network primarily learns the residual or difference between the input
and the output, as opposed to the complete output mapping, either by
identity mapping or by a so-called 1 � 1 convolution that collapses one or
more dimensions. This approach enables each layer to capture additional
nuances without losing the information learned by previous layers.



(Fig. 10). The outputs from these branches are concatenated

which increases dimensionality. Dimensionality is reduced in

1 � 1 convolutional layers, which are projections that

compress the feature maps while preserving spatial informa-

tion. Auxiliary classifiers address the vanishing gradient

problem that can occur in deep architectures. These classifiers

provide additional supervision during training, encouraging

the network to learn more discriminative features. Inception

networks are used for image classification, object detection

and semantic segmentation. Since the introduction of the

Inception architecture, several variants and improvements

have been proposed, such as Inception-V2, Inception-V3 and

Inception-ResNet (Szegedy et al., 2016). These updated

versions incorporate advanced techniques like batch normal-

ization, factorized convolutions and residual connections to

further enhance the performance and efficiency of the

network.

APPENDIX B
Evaluation metrics

B1. Classification metrics

Accuracy is used to evaluate the performance of a classifi-

cation model. It is defined as the ratio of the number of correct

predictions made by the model to the total number of

predictions. It can be expressed as

Accuracy ¼
True positivesþ True negatives

Total predictions
: ð1Þ

Precision is defined as the proportion of true positive

predictions among the positive predictions made by the

model. Mathematically, it is expressed as

Precision ¼
True positives

True positivesþ False positives
: ð2Þ

Recall is a measure of the quantity of the positive predic-

tions. It is defined as the proportion of positive instances that

were correctly identified by the model and is expressed as

Recall ¼
True positives

True positivesþ False negatives
: ð3Þ

F1-Score provides a balance between precision and recall. It

is defined as the harmonic mean of precision and recall:

F1-Score ¼ 2�
Precision� Recall

Precision þ Recall
: ð4Þ

AUC-ROC (area under the receiver operating character-

istic curve) is a widely used metric for evaluating the perfor-

mance of a binary classification model. AUC-ROC is defined

as the area under the receiver operating characteristic (ROC)

curve, which plots the true positive rate (TPR) against the

false positive rate (FPR) at various classification thresholds.

AUC-ROC ranges between 0 and 1, where a value of 1

represents a perfect classifier and a value of 0.5 represents a

random classifier.

Matthew’s correlation coefficient (MCC) takes into account

true positives, false positives and true negatives and is

generally regarded as a balanced measure since it can be used

even if the classes are of very different sizes. The MCC returns

a value between �1 and +1. A coefficient of +1 represents a

perfect prediction, 0 no better than random prediction, and�1

indicates total disagreement between prediction and obser-

vation. The MCC is calculated using the formula

MCC ¼
TP� TNð Þ � FP� FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ
p ; ð5Þ

where TP is the number of true positives, TN is the number of

true negatives, FP is the number of false positives and FN is

the number of false negatives.

B2. Regression metrics

The mean absolute error (MAE) measures the average

magnitude of the errors in a set of predictions, without

considering their direction:

MAE ¼
1

n

Xn

i¼1

yi �byyi

�� ��: ð6Þ

The mean-squared error (MSE) measures the average

squared difference between the predicted and actual values.

RMSE is the square root of the mean-squared error and is

expressed in the same units as the target variable,

MSE ¼
1

n

Xn

i¼1

yi �byiyið Þ
2
; RMSE ¼

ffiffiffiffiffiffiffiffiffiffi
MSE
p

: ð7Þ

The R-squared (coefficient of determination) measures the

proportion of variance in the target variable that is explained

by the model. Mathematically, it can be expressed as
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Figure 10
Inception module with dimension reductions described in GoogLeNet.
Parallel branches perform different types of convolutions with varying
kernel sizes and pooling operations.



R2 ¼ 1�

Pn
i¼1 yi �byiyið Þ

2

Pn
i¼1 yi � �yyð Þ

2
; ð8Þ

where n is the number of observations, yi is the target value,byyi

is the predicted value for the ith observation and �yy is the

average of the observed data.

APPENDIX C
Model details

C1. Activation functions

Activation functions introduce nonlinearities into the

network’s computations. This allows the network to learn from

complex data. An activation function processes the weighted

sum of the inputs, alongside a bias, then determines whether a

neuron should be activated based on the input.

Sigmoid function. The sigmoid function, represented as

�ðxÞ ¼ 1=½1þ expð�xÞ�, outputs a value between 0 and 1. In a

binary classification neural network, the output of the sigmoid

function can be interpreted as a probability for binary class.

Hyperbolic tangent or tanh function. The tanh

function, represented as tanhðxÞ = ½expðxÞ � expð�xÞ�=
½expðxÞ þ expð�xÞ�, is similar to the sigmoid function.

However, the outputs are in a range between �1 and 1. This

can be advantageous because the negative inputs will be

mapped strongly negative, and the zero inputs will be mapped

near zero.

Rectified linear unit or ReLU. The ReLU function, repre-

sented as f ðxÞ ¼ maxð0; xÞ, is one of the most commonly used

activation functions in deep learning models. The function

returns 0 if the input is negative, and the value for any positive

input is x.

Each of these functions can be utilized in different scenarios

based on the specific requirements and the neural network

architecture.

C2. Loss function

A loss function (or cost function) L, in the context of neural

networks, is a function that calculates the difference between

the predicted output ŷy and the true output y. The goal of

training a neural network is to minimize the loss function. As

an example, in regression tasks, a common loss function is the

mean-squared error (MSE; see Appendix B2), which is

calculated as

L ¼
1

N

XN

i¼1

yi �byiyið Þ
2
; ð9Þ

where N is the number of observations, yi is the true output for

the ith observation, andbyy is the predicted output for the ith

observation.

C3. Backpropagation

Backpropagation is an algorithm to calculate the gradient of

the loss function with respect to the weights in the neural

network. This is done by backpropagating the error of the

output layer through the network layers, starting from the

output layer and moving back towards the input layer. If we

have a loss function L and weights W, we calculate @L=@W for

this purpose. The weights of the network are then iteratively

updated in the negative direction of the gradient to minimize

the loss.

C4. Gating mechanism

In LSTMs and GRUs a gating mechanism is used to control

the flow of information. A gate in these networks is usually a

sigmoid layer and a pointwise multiplication operation.

Mathematically, a gate g can be expressed as g =

�ðWxþ Uyþ bÞ; here � is the sigmoid activation function, W

and U are the weight matrices, x is the input, y is the previous

output and b is the bias term. The output of the sigmoid

function, which ranges from 0 to 1, determines whether a

particular piece of information is allowed to pass through

(close to 1) or blocked (close to 0).

C5. Gradient ascent and descent

Gradient ascent and descent are utilized to find local

minima and maxima of a function iteratively. The calculation

of the gradient or derivative of the function at a specific point

gives the direction of steepest ascent or descent.

The parameters of the function are adjusted in the opposite

direction of the gradient to minimize the output in the case of

gradient descent and in the same direction in the case of

gradient ascent. These adjustment steps are defined by a

parameter called the learning rate, in order not to overshoot

the optimum point.

C6. Vanishing and exploding gradients

The vanishing gradients problem arises when the gradients

of the loss function become very small with respect to the

weights of the network. In deep layers of the network the

gradients of the loss function can decrease exponentially with

the depth of the network during backpropagation. Conse-

quently, the weights in the earlier layers of the network are

updated very little during each iteration of gradient descent,

slowing down learning or causing it to stop entirely. This

problem is even more pronounced when activation functions

squash their inputs into a narrow range.

Conversely, the exploding gradients problem refers to the

situation when the gradients become too large, causing the

updates to the weights during gradient descent to be extre-

mely high. In this scenario the network becomes unstable and

fails to converge.

Several techniques, like gradient clipping, weight initi-

alization strategies, batch normalization and the use of

different activation functions, have been developed to miti-

gate these problems.
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D., Strüder, L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S.,
Schaller, G., Schopper, F., Soltau, H., Kühnel, K. U., Messersch-
midt, M., Bozek, J. D., Hau-Riege, S. P., Frank, M., Hampton, C. Y.,
Sierra, R. G., Starodub, D., Williams, G. J., Hajdu, J., Timneanu, N.,
Seibert, M. M., Andreasson, J., Rocker, A., Jönsson, O., Svenda, M.,
Stern, S., Nass, K., Andritschke, R., Schröter, C. D., Krasniqi, F.,
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