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The concept of monoclinic ferroelectric phases has been extensively used over

recent decades for the understanding of crystallographic structures of

ferroelectric materials. Monoclinic phases have been actively invoked to

describe the phase boundaries such as the so-called morphotropic phase

boundary in functional perovskite oxides. These phases are believed to play a

major role in the enhancement of such functional properties as dielectricity and

electromechanical coupling through rotation of spontaneous polarization and/or

modification of the rich domain microstructures. Unfortunately, such micro-

structures remain poorly understood due to the complexity of the subject. The

goal of this work is to formulate the geometrical laws behind the monoclinic

domain microstructures. Specifically, the result of previous work [Gorfman et al.

(2022). Acta Cryst. A78, 158–171] is implemented to catalog and outline some

properties of permissible domain walls that connect ‘strain’ domains with

monoclinic (MA/MB type) symmetry, occurring in ferroelectric perovskite

oxides. The term ‘permissible’ [Fousek & Janovec (1969). J. Appl. Phys. 40, 135–

142] pertains to the domain walls connecting a pair of ‘strain’ domains without a

lattice mismatch. It was found that 12 monoclinic domains may form pairs

connected along 84 types of permissible domain walls. These contain 48 domain

walls with fixed Miller indices (known as W-walls) and 36 domain walls whose

Miller indices may change when free lattice parameters change as well (known

as S-walls). Simple and intuitive analytical expressions are provided that

describe the orientation of these domain walls, the matrices of transformation

between crystallographic basis vectors and, most importantly, the separation

between Bragg peaks, diffracted from each of the 84 pairs of domains,

connected along a permissible domain wall. It is shown that the orientation of a

domain wall may be described by the specific combination of the monoclinic

distortion parameters r = [2/(� � �)][(c/a) � 1], f = (� � 2�)/(� � 2�) and p =

[2/(� � � � �)] [(c/a) � 1]. The results of this work will enhance understanding

and facilitate investigation (e.g. using single-crystal X-ray diffraction) of

complex monoclinic domain microstructures in both crystals and thin films.

1. Introduction

Monoclinic ferroelectric phases (MFEPs) have played an

important role in understanding the structural mechanisms

behind enhancement of properties in functional ferroelectric

materials, particularly in mixed-ion perovskite oxides. The

concept of ‘monoclinic ferroelectrics’ revolutionized the view

on ferroelectricity by suggesting that spontaneous polarization

can be rotated, rather than inverted or extended only (Davis et

al., 2007; Damjanovic, 2010). Evidence of MFEPs was first

reported by Noheda et al. (1999, 2000), Guo et al. (2000) and

supported by the splitting of Bragg reflections in high-reso-

lution X-ray diffraction patterns. MFEPs were later incorpo-

rated into the higher-order Devonshire theory (Vanderbilt &

Cohen, 2001) and invoked to explain the enhancement of the
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giant piezoelectric effect in PbZr1�xTixO3 at the so-called

morphotropic phase boundary (MPB) (Fu & Cohen, 2000).

The monoclinic space groups of ferroelectrics were used for

many structural refinements based on X-ray and neutron

scattering experiments (Gorfman & Thomas, 2010; Choe et al.,

2018; Zhang et al., 2015; Zhang, Yokota et al., 2014; Aksel et

al., 2011), and for the interpretation of the results of polarized

light/birefringence experiments (Bokov et al., 2010; Gorfman

et al., 2012). However, the true nature of the MFEPs is still

debated: it is not clear if the MFEPs are truly long-range

ordered or if the apparent long-range monoclinic order is

‘mimicked’ by the so-called adaptive state, consisting of

assemblies of locally tetragonal or rhombohedral nano-

domains (Jin et al., 2003; Viehland & Salje, 2014; Zhang,

Xue et al., 2014). Regardless of the true character of MFEPs,

the concept remains useful for the description of various

phenomena in single-crystal ferroelectrics (Noheda et al.,

2001; Choe et al., 2018; Gorfman et al., 2012), ferro/piezo-

ceramics (Liu et al., 2017; Zhang, Yokota et al., 2014),

epitaxial thin films (Wang et al., 2003; von Helden et al., 2018;

Braun et al., 2018; Schmidbauer et al., 2017; de Oliveira

Guimarães et al., 2022) and shape memory alloys (Bhatta-

charya, 2003).

Besides the interesting intrinsic properties of MFEPs, rich

microstructures of monoclinic domains (MDs) and domain

walls (DWs) between them attract a great deal of interest

(Nakajima et al., 2022; Mantri & Daniels, 2021). Any domain

microstructures may underpin exotic physical properties such

as giant electromechanical coupling (Hu et al., 2020),

enhanced dielectric permittivity (Trolier-McKinstry et al.,

2018), superelasticity (Viehland & Salje, 2014), the shape

memory effect (Bhattacharya, 2003) and domain-wall super-

conductivity (Catalan et al., 2012). These microstructure-

driven properties are particularly diverse when individual

domains host several order parameters (e.g. electric, magnetic

and elastic). Remarkably, such properties are often absent

in a single domain. Their appearance and magnitude depend

on the mobility of DWs. MFEPs should have rich and

volatile domain microstructures. Therefore, the properties of

DWs in MFEPs (such as crystallographic orientation and

mobility) are relevant for the understanding of physical

properties of materials. Although the algorithms for the

prediction of DWs between domains of different symmetry are

known (Fousek & Janovec, 1969; Sapriel, 1975; Authier, 2003),

the underlying complexity of the subjects prevents any

comprehensive understanding of domain microstructures of

MFEPs.

The aim of this work is to describe the geometry of

permissible DWs (PDWs) between domains of MFEPs. The

term permissible [coined by Fousek & Janovec (1969), see also

Sapriel (1975)] denotes a planar DW connecting two domains

without any lattice mismatch. For example, tetragonal

domains are permitted to connect along DWs of six different

orientations (with the Miller indices belonging to the family

{110}), rhombohedral domains are permitted to connect along

DWs of 12 different orientations [with the Miller indices

belonging to the families {110} and {100}, and exhibiting

different physical properties (such as e.g. scattering of light)

(Qiu et al., 2020)].

We demonstrate that, most generally, MDs are permitted to

connect along 84 types of DW of 45 different orientations and

five different orientational families. More specifically, we show

that all the 84 DWs contain 48 prominent DWs (W-walls)

which have fixed crystallographic orientation and 36 S-walls

which change their orientation when free monoclinic lattice

parameters change too. In addition, we present the analytical

expressions for the matrices of transformation between the

lattice basis vectors of matched domains and for the separa-

tion between Bragg peaks, diffracted from such domains. The

presented equations create the direct path for the calculations

of DW-related quantities, such as angles between polarization

directions, the direction of DW motion under an electric field

and so on.

2. Monoclinic ferroelectric phases: important
definitions

This paper implements the list of notations and abbreviations

introduced by Gorfman et al. (2022). Appendix A summarizes

the most important ones. This section describes the definitions

relevant for the description of the monoclinic phases of

ferroelectric perovskites.

According to Fu & Cohen (2000), MFEPs can be of MA=MB

or alternatively MC types. These types differ from one another

by the set of independent pseudocubic lattice parameters and

by the direction in which spontaneous polarization may

develop. Note that while the spontaneous polarization vector,

P (SP), is not mandatory in ferroelastic domains, it exists in

practice for the case of ferroic perovskite oxides. Even if the

magnitude of such polarization is zero, it is still useful to

consider the potential SP direction(s) for domain referencing

and numbering.
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Figure 1
Schematic illustration of the MA=MB monoclinic domains and numera-
tion of their variants. (a) The unit-cell distortion along with the rotation
of the SPD (if such polarization is present). (b) The stereographic
projection, showing these directions for the domains of tetragonal (red
squares), rhombohedral (green triangles) and monoclinic (blue circles)
symmetry. The tetragonal domains (1), (2), (3) correspond to the SPD
along [100], [010] and [001], respectively. The rhombohedral domains (1),
(2), (3) and (4) correspond to the SPD along [111], [111], [111] and [111]
directions, respectively. The SPDs within the 12 monoclinic domains are
further explained in Table 1.



This paper focuses on the MA=MB case. The case of MC

domains will be described in a follow-up paper.

2.1. The definition of MA/MB monoclinic domains

The crystallographic structures of the MA=MB phases of

perovskite oxides belong to the space-group types Cm, Cc

(Zhang, Yokota et al., 2014). These structures are obtained by

the symmetry-lowering phase transitions from those described

by the rhombohedral (R) space-group types R3m, R3c. The

mirror (m)/glide (c) plane is parallel to two mutually

perpendicular face-diagonals and the edge of the pseudocubic

unit cell. These space-group types allow for rotation of the

polar axis (e.g. the direction of the spontaneous polarization

vector) within this mirror plane. Additionally, these space

groups permit any distortion of the unit cell that maintains the

mirror plane. Both the distortion of the pseudocubic unit cell

(alongside the mirror plane) and the polar axis direction are

shown in Fig. 1(a).

2.1.1. The numeration of the monoclinic domains and the
potential spontaneous polarization. It is convenient to illus-

trate the monoclinic domains using stereographic projection

and the corresponding potential spontaneous polarization

direction (SPD). Since MA=MB domains arise from the tran-

sition from the rhombohedral R phase, we define the SPD by a

small rotation angle � from any of the four body-diagonal

directions h111i towards any of the three adjacent unit-cell

edges h001i. We mark the corresponding 12 monoclinic

domains as Mnm where the first index n lists the SPDs, Rn in

the ‘parent’ rhombohedral domain. In this case, R1 ¼ ½111�,

R2 ¼ ½
�1111�, R3 ¼ ½1�111� and R4 ¼ ½

�11�111�. The second index m

ðm ¼ 1 . . . 3Þ marks the pseudocubic axis Tm so that

T1 ¼ �½100�, T2 ¼ �½010�, T3 ¼ �½001� to which the polar-

ization rotates. For example, the monoclinic domain M13 has

its SPD rotated from ½111� towards ½001�, while M21 has its SPD

rotated from ½�1111� towards ½�1100�. The SPDs in all 12 mono-

clinic domains are shown on the stereographic projections in

Fig. 1(b).

114 Biran and Gorfman � Permissible domain walls in ferroelectric phases Acta Cryst. (2024). A80, 112–128

research papers

Table 1
The definition of the 12 monoclinic (MA/MB-type) domain variants.

The first column contains the domain variant identifier [as also displayed in Fig. 1(b)]. The second column contains the twinning matrix [the definition of this matrix
is explained by Gorfman et al. (2022) but also presented in equation (66)]. The third column contains the SPD for each domain, relative to the domain-related
crystallographic coordinate system. The fourth column contains the pseudocubic lattice parameters expressed in terms of free parameters a, c, �, �. The notations
��� ¼ �� � and ��� ¼ �� � are used. The last column contains the reduced matrix ½G0�mn ¼ ð½G�mn=a2Þ � ½I�. The calculations of the ½G0�mn and corresponding lattice
parameters are done using equation (67).

Domain
name

Twinning
matrix [T] [P]mn

Pseudocubic
Lp [G0]mn

M11

0 1 0

0 0 1

1 0 0

2
4

3
5 ½x11� c a a � ��

C A A

A 0 B

A B 0

2
4

3
5

M12

0 0 1

1 0 0

0 1 0

2
4

3
5 ½1x1� a c a � � �

0 A B

A C A

B A 0

2
4

3
5

M13

1 0 0

0 1 0

0 0 1

2
4

3
5 ½11x� a a c �� �

0 B A

B 0 A

A A C

2
4

3
5

M21

0 1 0

0 0 1
�11 0 0

2
4

3
5 ½�xx11� c a a � ��� ���

C �AA �AA
�AA 0 B
�AA B 0

2
4

3
5

M22

0 0 1
�11 0 0

0 1 0

2
4

3
5 ½�11x1� a c a � ��� ���

0 �AA �BB
�AA C A
�BB A 0

2
4

3
5

M23

�11 0 0

0 1 0

0 0 1

2
4

3
5 ½�111x� a a c � ��� ���

0 �BB �AA
�BB 0 A
�AA A C

2
4

3
5

Table 1 (continued)

Domain
name

Twinning
matrix [T] [P]mn

Pseudocubic
Lp [G0]mn

M31

0 �11 0

0 0 1

1 0 0

2
4

3
5 ½x�111� c a a ��� � ���

C �AA A
�AA 0 �BB
A �BB 0

2
4

3
5

M32

0 0 1

1 0 0

0 �11 0

2
4

3
5 ½1�xx1� a c a ��� � ���

0 �AA B
�AA C �AA
B �AA 0

2
4

3
5

M33

1 0 0

0 1 0

0 0 �11

2
4

3
5 ½1�11x� a a c ���� ���

0 �BB A
�BB 0 �AA
A �AA C

2
4

3
5

M41

0 �11 0

0 0 1
�11 0 0

2
4

3
5 ½�xx�111� c a a ��� ����

C A �AA
A 0 �BB
�AA �BB 0

2
4

3
5

M42

0 0 1
�11 0 0

0 �11 0

2
4

3
5 ½�11�xx1� a c a ��� ��� �

0 A �BB
A C �AA
�BB �AA 0

2
4

3
5

M43

�11 0 0

0 1 0

0 0 �11

2
4

3
5 ½�11�11x� a a c ��� ��� �

0 B �AA
B 0 �AA
�AA �AA C

2
4

3
5



In the following, we express the coordinates of the SPD

relative to the axes of the Cartesian coordinate system, that

are nearly parallel to the pseudocubic basis vectors. For the

cases of domains M13 we obtain

P½ �13¼ ½11x�: ð1Þ

Here, we introduced the notation

x ¼
ffiffiffi
2
p

cot �0 � �ð Þ ð2Þ

with �0 ’ 54:7� the angle between the body-diagonal and the

edge of a cube, so that cos �0 ¼ 1=
ffiffiffi
3
p

, sin �0 ¼
ffiffiffi
2
p
=
ffiffiffi
3
p

.

Assuming the SPD rotation angle � is small and keeping the

first term in the Taylor expansion with respect to �, we can

rewrite equation (2) as

x ¼ 1þ
3ffiffiffi
2
p �þO �2

� �
: ð3Þ

Note that the cases of �> 0 and �< 0 are referred to as MA

and MB phases, correspondingly.

2.1.2. Pseudocubic lattice parameters of the monoclinic
MA/MB domains. Fig. 1(a) shows the MA/MB distortion of the

pseudocubic unit cell. The corresponding pseudocubic lattice

parameters ai; �i ði ¼ 1 . . . 3Þ are described by four indepen-

dent variables: a; c; �; � (Gorfman & Thomas, 2010; Aksel et

al., 2011; Choe et al., 2018): e.g. for the domain M13

a1 ¼ a2 ¼ a, a3 ¼ c, �1 ¼ �2 ¼ �, �3 ¼ �. The corresponding

matrix of the dot product is

½G�13 ¼

a2 a2 cos � ac cos�
a2 cos � a2 ac cos�
ac cos� ac cos � c2

2
4

3
5 ¼ a2

ð½I� þ ½G0�13Þ:

ð4Þ

Here, [I] is the unitary matrix and

½G0�13 ¼

0 B A

B 0 A

A A C

2
4

3
5: ð5Þ

Assuming that the monoclinic distortion is small and keeping

the first power of ½ðc=aÞ � 1�, ð�=2Þ � �, ð�=2Þ � �, we can

write

C ’ 2
c

a
� 1

� �
A ’

�

2
� �

� �
¼ ��

B ’
�

2
� �

� �
¼ ��: ð6Þ

The resulting monoclinic crystal lattice is invariant with

respect to NM ¼ 4 symmetry operations of the holohedry

point group 2=m. The parent cubic crystal lattice is invariant

with respect to NC ¼ 48 operations of the holohedry point

group m3m. Because the monoclinic distortion may

commence from any of these 48 equivalent variants, there are

NC=NM ¼ 12 variants of the monoclinic domain’s variants.

These are listed in Table 1, which contains domain identifi-
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Table 2
The definitions of monoclinic MA=MB domain pair types.

The first two columns contain the domain pair name (full and short), the third column defines the pair, the fourth column lists the angle � between the SPDs as a
function of �. This angle can be calculated by using Table 1, equation (2) and keeping the first power of � in the Taylor series expansion. The fifth column contains
the number of the corresponding domain pairs, the last column refers to the corresponding figure.

Full name Short name Formal definition �; ~�� No. of pairs Fig.

R-sibling RSB Mnk Mnl

ffiffiffi
3
p
� 12 Fig. 2

R-planar RP MmkMnk, k ¼ Lðm; nÞ �R þ 2� 6 Fig. 3
R-semi-planar RSP MmkMnk, k 6¼ Lðm; nÞ �R � � 12 Fig. 4
R-semi-crossed RSC MmkMnl , k 6¼ Lðm; nÞ, l 6¼ Lðm; nÞ, k 6¼ l �R � � 12 Fig. 5
R-crossed RC MmkMnl , k 6¼ Lðm; nÞ, l ¼ Lðm; nÞ or k ¼ Lðm; nÞ,

l 6¼ Lðm; nÞ
�R � ð�=2Þ 24 Fig. 6

Figure 2
Schematic illustration of the ‘R-sibling’ type of monoclinic domain pairs.
The term ‘R-sibling’ refers to the case when both pair members originate
from the same R domain. The figure includes: (a) stereographic
projection viewed along the [001] direction, showing the SPDs in the
12 monoclinic domains. (b) Stereographic direction viewed along the
direction [110], highlighting the sibling pair types, originating from R1 and
R2.

Figure 3
The same as Fig. 2 but for the case of the ‘R-planar’ type of DW pairs.



cations, Mnm, the ½G0� metric tensors, the SPD and the lattice

parameters a1, a2, a3, �1, �2, �3.

2.2. Domain pairs

Twelve ferroelastic domains (Table 1) can form 66 domain

pairs. Some of these pairs can be connected via PDWs and

some of them cannot. Before analyzing PDWs between

various pairs of monoclinic domains, we will introduce five

different pair types. These types are referred to as ‘R-sibling’,

‘R-planar’, ‘R-semi-planar’, ‘R-semi-crossed’ and ‘R-crossed’.

Each type has its own angle between the SPDs and its own

expressions for the indices of PDWs. Accordingly, we expect

different properties from various domain pair types, with

respect to e.g. DW motion under an external electric field.

Table 2 presents the information about all five domain pairs,

including pair name, abbreviation, formal definition, the

angles between SPDs and the reference figure.

2.2.1. Domain pairs of the type ‘R-sibling’. We will use the

term ‘R-sibling’ for 12 pairs of monoclinic domains Mnk Mnl

such that the members of each pair originate from the same

parent/rhombohedral domain Rn. Three R-sibling pairs can be

formed for each Rn: Mn1 Mn2, Mn2 Mn3 and Mn3 Mn1. All such

pairs are illustrated on the stereographic projections (viewed

along [001] and [110] directions) in Fig. 2.

2.2.2. Domain pairs of the type ‘R-planar’. We will use the

term ‘R-planar’ for six pairs of monoclinic domains MmkMnk,

originating from different rhombohedral domains Rm and Rn

(m 6¼ n) but such that k ¼ Lðm; nÞ, where Lðm; nÞ marks the

pseudocubic axis that is parallel to the RmRn plane so that

Lð1; 2Þ ¼ 1 Lð1; 3Þ ¼ 2 Lð1; 4Þ ¼ 3 Lð2; 3Þ ¼ 3

Lð2; 4Þ ¼ 2 Lð3; 4Þ ¼ 1: ð7Þ

All the R-planar domain pairs are illustrated in Fig. 3 on the

same type of stereographic projection as in Fig. 2.

2.2.3. Domain pairs of the type ‘R-semi-planar’. We use the

term ‘R-semi-planar’ for 12 pairs of monoclinic domains

MnkMmk originating from different rhombohedral domains Rm

and Rn (m 6¼ n) but such that k 6¼ L m; nð Þ. Each RmRn pair

produces two monoclinic domain pairs of this type, e.g.

M12 M22 and M13 M23 for the case of R1R2. All the R-semi-

planar domain pairs are illustrated in Fig. 4.

2.2.4. Domain walls of the type ‘R-semi-crossed’. We will

use the term ‘R-semi-crossed’ for 12 pairs of monoclinic

domains Mmk and Mnl, originating from different rhombohe-

dral domains Rm and Rn (m 6¼ n) and such that both

k 6¼ Lðm; nÞ and l 6¼ Lðm; nÞ. In addition, k 6¼ l because the

cases of k ¼ l are already included in the ‘R-semi-planar’ type

of domain pairs. Each RmRn pair produces two pairs of

monoclinic domains of this type, e.g. M12 M23 and M13M22 for

the case of R1R2. All the R-semi-crossed pairs of domains are

illustrated in Fig. 5.

2.2.5. Domain pairs of the type ‘R-crossed’. We will finally

use the term ‘R-crossed’ for 24 pairs of monoclinic domains

Mmk and Mnl such that m 6¼ n; k 6¼ l, while either k ¼ Lðm; nÞ

or l ¼ Lðm; nÞ. Each RmRn pair produces four pairs of

monoclinic domains of this type, for example M11M23, M11M22,

M13M21 and M12M21 for the case of R1R2. All the R-crossed

domains are illustrated in Fig. 6. We will see later that these

pair types may generally not be connected via PDWs.

3. The orientation of PDWs between different pairs of
domains

According to Fousek & Janovec (1969), the term PDW stands

for a planar DW that enables mismatch-free connection of

one domain to another. PDWs are parallel to lattice planes

with specific Miller indices (hkl) which have the same two-

dimensional lattice parameters in both domains connected.

For any two arbitrary domains, described by the matrices of
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Figure 4
The same as Fig. 2 but for the case of the ‘R-semi-planar’ type of DW
pairs.

Figure 5
The same as Fig. 2 but for the case of the ‘R-semi-crossed’ twin domain
pairs.

Figure 6
The same as Fig. 2 but for the case of the ‘R-crossed’ type of domain pair.



dot products ½G�n and ½G�m, such a plane should satisfy

the equations hx1 þ kx2 þ lx3 ¼ 0 and �Gijxixj ¼ 0 (here

½�G� ¼ ½G�n � ½G�m). The key steps (see Gorfman et al., 2022)

for finding the orientation of the PDWs between two arbitrary

domains (Table 1) are:

(i) Finding the eigenvalues (�1, �2 and �3) of ½�G� or,

equivalently, ½�G0� ¼ ½G0�n � ½G
0�m.

(ii) Checking if these domains have PDWs. This is the case if

at least one eigenvalue is zero (e.g. �2 = 0). This condition is

fulfilled if and only if j�G0j ¼ 0.

(iii) Rearranging the eigenvalues so that �2 = 0, �3 > 0.

Importantly, for all the cases considered in this paper

�G11 þ�G22 þ�G33 ¼ 0, which means that �1 þ �2 þ �3 = 0

and �1 ¼ ��3.

(iv) Forming the orthogonal matrix [V] (½V��1
¼ ½V�T)

whose columns are the corresponding normalized eigenvec-

tors of ½�G0�.

(v) Finding the PDW indices (the coordinates of the PDW

normal with respect to the reciprocal basis vector a�im)

according to h0i ¼ Vi1 � Vi3 or h0i ¼ Vi1 þ Vi3.

(vi) When possible, h0i can be extended to the nearest all-

integer values to get the Miller indices of the corresponding

DW hkl.

Besides the ability to calculate the Miller indices of the

PDW, this approach provides the basis for the calculation of

the orientation relationship between the domain’s basis

vectors and separation of Bragg peaks, diffracted from a

matched pair of domains. This possibility is the main advan-

tage of this approach over those already existing (Fousek &

Janovec, 1969). The relevant information for calculating these

quantities is given further in Section 5.

3.1. PDWs connecting domain pairs of the type ‘R-sibling’

We will demonstrate the derivation of the PDWs connecting

the representative domain pair M12 M13 and obtain similar

results for all the other pairs of this type analogously. Using

the last column of Table 1 and equations (6) we obtain

½G0�13 � ½G
0
�12 ¼ ðB� AÞ½�GRSB�: ð8Þ

The following notation is introduced here:

½�GRSB� ¼

0 1 �11
1 r 0
�11 0 �rr

0
@

1
A ð9Þ

and

r ¼
C

A� B
’

2

� � �

c

a
� 1

� �
: ð10Þ

The eigenvalues of the ½�GRSB� can be found trivially as

��RSB, 0; �RSB with

�RSB ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2þ r2
p

: ð11Þ

The corresponding eigenvalues of the matrix ½G0�13 � ½G
0�12

are ��3 RSB; 0; �3 RSB with

�3 RSB ¼ B� Að Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2þ r2
p

’ �� �ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2þ r2
p

: ð12Þ

The orthogonal matrix of eigenvectors of ½�GRSB� (as well as

½G0�13 � ½G
0�12) can be expressed as

½VRSB� ¼
1

2�RSB

2 2r 2

r� �RSB
�22 rþ �RSB

rþ �RSB
�22 r� �RSB

0
@

1
A: ð13Þ

Accordingly, two PDWs normal to the vectors RSB
ð1;2Þ
i �

ðVi1 	 Vi3) are possible:

RSBð1Þ
� �

¼

0
�11
1

0
@

1
A; RSBð2Þ

� �
¼

2

r

r

0
@

1
A: ð14Þ

The ½RSBð1Þ� normal has fixed coordinates that do not

depend on the free lattice parameters. According to Fousek &

Janovec (1969), such a wall can therefore be referred to as a

W-wall. In contrast, the ½RSBð2Þ� depends on the monoclinic

distortion parameter r and according to Fousek & Janovec

(1969) it can be referred to as an S-wall (‘strange’ DW).

Although the monoclinic distortion parameters C, A, B are

small, the value of r (as a ratio of C and A � B) is not. This

means that even a small change of monoclinic distortion may

cause significant reorientation of the PDW. Table 3 highlights

several favorable cases of the monoclinic distortion parameter

r which sets the S-wall to have rational ‘Miller’ indices. For

example, r = 2 [when 1� ðc=aÞ ¼ � � �] creates a PDW along

the (111) plane. Approaching r ¼ 1 (e.g. � = �) would mean

the appearance of a PDW parallel to (011).

3.2. PDWs connecting domain pairs of the type ‘R-planar’

We will demonstrate the derivation of the PDWs connecting

the representative domain pair M11 M21 and obtain similar

results for the other pairs of this type analogously. Using the

last column of Table 1 and equations (6),

½G0�21 � ½G
0
�11 ¼ �2A½�GRP� ’ �2��½�GRP�: ð15Þ

Here, we introduce the following notation:

½�GRP� ¼

0 1 1

1 0 0

1 0 0

0
@

1
A: ð16Þ

It is straightforward to see that the eigenvalues of ½�GRP�

are �
ffiffiffi
2
p
; 0;

ffiffiffi
2
p

. Similarly, the eigenvalues of the matrix

½G0�21 � ½G
0�11 are ��3 RP; 0; �3 RP with
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Table 3
The special cases of monoclinic distortion, leading to the appearance of S-
walls with rational Miller indices.

The first column contains the relevant condition for the lattice parameters, the
second column contains the corresponding value of r. The third column
contains the eigenvalue �3 RSB of the matrix ½G0�13 � ½G

0�12. The condition of
mismatch-free connection is only relevant for the case if �3 RSB 6¼ 0 (otherwise
the domains may connect along any plane). The last column contains the
Miller indices of the DW.

Lattice parameters r �3 RSB S-wall orientation

c = a 0 ð�� �Þ
ffiffiffi
2
p

(100)
� = � 1 2½ðc=aÞ � 1� (011)
� � � ¼ ½1� ðc=aÞ� 2 þ

ffiffiffi
6
p
ð�� �Þ (111)



�3 RP ¼ �2
ffiffiffi
2
p

��: ð17Þ

The orthogonal matrix of eigenvectors of both ½�GRP� and

½G0�21 � ½G
0�11 is

½VRP� ¼
1

2

�
ffiffiffi
2
p

0
ffiffiffi
2
p

1 �
ffiffiffi
2
p

1

1 þ
ffiffiffi
2
p

1

0
@

1
A: ð18Þ

Accordingly, two PDWs normal to the vectors RP
ð1;2Þ
i �

ðVRP i1 	 VRP i3) exist:

½RPð1Þ� ¼

1

0

0

0
@

1
A; ½RPð2Þ� ¼

0

1

1

0
@

1
A: ð19Þ

Both are W-walls, i.e. the crystallographic orientation of these

walls does not depend on the values of the lattice parameters.

3.3. PDWs connecting domain pairs of the type ‘R-semi-
planar’

We will demonstrate the derivation of the PDWs connecting

the representative domain pair M12 M22 and obtain similar

results for the other pairs of this type analogously. According

to the last column of Table 1 and equations (6),

½G0�22 � ½G
0
�12 ¼ �2A½�GRSP� ’ �2��½�GRSP�: ð20Þ

Here, we introduce the following notation:

½�GRSP� ¼

0 1 f

1 0 0

f 0 0

0
@

1
A ð21Þ

and

f ¼
B

A
¼

��

��
: ð22Þ

The eigenvalues and eigenvectors of ½�GRSP� can be written as

��RSP; 0; �RSP,

�RSP ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ 1

p
: ð23Þ

Accordingly, the corresponding eigenvalues of ½G0�22 � ½G
0�12

are ��3 RSP; 0; �3 RSP with

�3 RSP ¼ �2���RSP: ð24Þ

It is straightforward to see that the orthogonal matrix of

eigenvectors of ½�G0RSP� (as well as ½G0�22 � ½G
0�12) can be

expressed as

½VRSP� ¼
1ffiffiffi

2
p
�RSP

��RSP 0 �RSP

1
ffiffiffi
2
p

f 1

f �
ffiffiffi
2
p

f

0
@

1
A: ð25Þ

Accordingly, two PDWs normal to the vectors RSP
ð1;2Þ
i �

ðVRSPi1 	 VRSP i3) exist:

½RSPð1Þ� ¼

1

0

0

0
@

1
A; ½RSPð2Þ� ¼

0

1

f

0
@

1
A: ð26Þ

As in the case of PDWs connecting domain pairs of the type

R-sibling, both W- and S-type DWs are present. Notably, it is

shown in equation (22) that the orientation of the DW

depends on the ratio of the angles �� and �� rather than the

lengths of the pseudocubic cell edges. The corresponding S-

wall becomes parallel to the lattice plane with rational Miller

indices for the special case such as �� ¼ ��, �� ¼ 0 or

�� ¼ 0. Table 4 lists these favorable cases.

3.4. PDWs connecting domain pairs of the type ‘R-semi-
crossed’

We will demonstrate the derivation of the PDWs connecting

the representative domain pair M12 M23 and obtain similar

results for all the other pairs of this type analogously. Using

the last column of Table 1 and equations (6),

½G0�23 � ½G
0�12 ¼ �ðAþ BÞ½�GRSC� ’ �ð��þ��Þ½�GRSC�:

ð27Þ

Here we introduce the following notation:

½�GRSC� ¼

0 1 1

1 p 0

1 0 �pp

0
@

1
A ð28Þ

and

p ¼
C

Aþ B
’

2

��þ��

c

a
� 1

� �
: ð29Þ

The eigenvectors and eigenvalues of the ½�GRSC� can be found

as ��RSC, 0, �RSC,

�RSC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 2

p
: ð30Þ

Accordingly, the corresponding eigenvalues of ½G0�23 � ½G
0�12

are ��3 RSC; 0; �3 RSC with

�3 RSC ¼ �ð��þ��Þ�RSC: ð31Þ

It is straightforward to see that the orthogonal matrix of

eigenvectors of ½�GRSC� (as well as ½G0�23 � ½G
0�12) can be

expressed as

½VRSC� ¼
1

2�RSC

�22 2p 2

�RSC � p �22 �RSC þ p

�RSC þ p 2 �RSC � p

0
@

1
A: ð32Þ

Accordingly, two PDWs normal to the vectors RSC
ð1;2Þ
i �

ðVRSCi1 	 VRSCi3) exist:

½RSCð1Þ� ¼

2

p

�pp

0
@

1
A; ½RSCð2Þ� ¼

0

1

1

0
@

1
A: ð33Þ

As for the cases of DWs connecting domain pairs of the type

‘R-sibling’ and ‘R-semi-planar’, W-type and S-type DWs are
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Table 4
The same as Table 3 just for the case of S-walls separating the domain
pairs of the ‘R-semi-planar’ types.

Lattice parameters f �3 RSP S-wall orientation

�� ¼ �� 1 �2
ffiffiffi
2
p

�� (011)
�� ¼ 0 1 �2�� (001)
�� ¼ 0 0 �2�� (010)
�� ¼ ��� 1 �2�� (011)



present here. In addition, some favorable cases (Table 5) of

the lattice parameters turn the S-type of PDW into the PDW

with rational Miller indices.

3.5. PDWs connecting domain pairs of the type ‘R-crossed’

We will show that the corresponding domain pairs of this

type do not generally have any PDWs. Indeed, we can attempt

to find such for the case of the representative pair of domains

M32 M23. According to the last column of Table 1 and equa-

tions (6) we get

½G0�32 � ½G
0
�23 ¼

0 B� A Bþ A

B� A C �2A

Bþ A �2A �CC

0
@

1
A ¼ ½�GRC�:

ð34Þ

The determinant of ½�GRC� can be calculated as

�GRC

		 		 ¼ 4AðA2
� B2

� BCÞ: ð35Þ

Accordingly, this pair of domains may connect along the PDW

if one of the following conditions is fulfilled:

A ¼ 0 or �� ¼ 0 ð36Þ

or

A2 � B2 � BC ¼ 0: ð37Þ

These conditions are generally not fulfilled and therefore

we can consider domain pairs of the type ‘crossed’ not

compatible. The special conditions under which domain pairs

may connect could be the subject of future work.

4. The change of polarization direction across the
domain walls

The SPD changes across any DW. This section demonstrates

the calculation of the change of the SPD projection on the DW

normal. Such a change is numerically equal to the surface

density of electric charge at the wall (Jackson, 2007). We will

consider that each ferroelastic domain mn may host sponta-

neous polarization þPmn or �Pmn (the coordinates of the

vectors Pmn are defined in Table 1). Accordingly, the specific

pair of domains m1n1 and m2n2 may meet along a DW that

switches SPD according to the configuration Pm1n1
! Pm2n2

(+) or Pm1n1
!�Pm2n2

(�). We will see which of these

configurations ensures zero (or minimal) charge at the

corresponding DW using equations (14), (19), (26), (33) for

the normal to the DW of each type. Table 6 summarizes the

results. It shows that uncharged DWs occur in the following

cases:

(i) W- and S-type ‘R-sibling’ PDWs change SPD by nearly

180 or 0�, respectively.

(ii) (100)- and (011)-‘R-planar’ PDWs change SPD by 109

and 71�, respectively.

(iii) W- and S-type ‘R-semi-planar’ PDWs change SPD by

109 and 71�, respectively.

(iv) W- and S-type ‘R-semi-crossed’ PDWs change SPD by

71 and 109�, respectively.

These results have significant implications, particularly in

the context of describing the DW motion under external

electric fields and assessing the role of the specifically

connected domain pair in the extrinsic contribution to the

electromechanical coupling (Pramanick et al., 2011; Jones et

al., 2006; Tutuncu et al., 2016; Gorfman et al., 2020). Indeed,

this contribution hinges on the orientation of the SPD with

respect to the electric field: domains with positive/negative

projection of the SPD to the applied electric field would

expand/contract, respectively. Consequently, comprehending

the SPD’s orientation and its change across the DW is pivotal.

5. Derivation of the transformation matrices and the
separation between Bragg peaks

5.1. General expressions

After calculating the indices of PDWs, connecting the

specific pair of domains, it is also possible to calculate the

orientation relationship between domains and separation of

Bragg peaks diffracted from them. Full details of these

calculations are presented by Gorfman et al. (2022) and briefly

summarized here. The matrix of transformation ½�S� between

the basis vectors of the domains m and n is defined as

ða1n a2n a3nÞ ¼ ða1m a2m a3mÞð½I� þ ½�S�). This matrix can be

calculated according to

½�S� ¼ ½V�½Z�

0 0 y1

0 0 y2

0 0 0

0
@

1
A½Z��1

½V�T: ð38Þ
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Table 5
The same as Table 3 just for the case of S-walls separating the domain
pairs of the ‘R-semi-crossed’ type.

Lattice parameters p �3 RSC S-wall orientation

½ðc=aÞ � 1� ¼ ��þ�� 2 �ð��þ��Þ
ffiffiffi
6
p

(111)
a ¼ c 0 �ð��þ��Þ

ffiffiffi
2
p

(100)
�� ¼ ��� 1 2½1� ðc=aÞ� (011)

Table 6
The change of the SPD across each of the DWs described above.

The first column contains the type of domain pair. The second column contains
the PDW Miller indices. The third column contains the domain numbers m1n1 |
m2n2 meeting along the wall. The fourth column contains the sign involved in
the connection: the sign + means e.g. Pm1n1

! Pm2n2
, the sign � stands for e.g.

Pm1n1
!�Pm2n2

. The fifth column contains the projection of the Pm1n1
to the

DW normal. The last column shows the angles between the corresponding
SPDs as defined in Table 2 and at � = 0.

Type Orientation Domain pair Sign Projection �0 (�)

RSB ð0�111Þ 12 j 13 � 1� x 180
RSB ð2rrÞ 12 j 13 + 2rþ 2rx 0
RP ð100Þ 11 j 21 � x 109
RP ð011Þ 11 j 21 + 2 71
RSP ð100Þ 12 j 22 � 1 109
RSP ð01f Þ 12 j 22 + f 71
RSC ð2p�ppÞ 12 j 23 � 2þ px� p 109
RSC ð011Þ 12 j 23 + 1þ x 71



Here

½Z� ¼

1 0 0

0 1 0

�1 0 1

0
@

1
A: ð39Þ

The sign � before Z31 is used for the cases when the PDW

normal is Vi1 	 Vi3, respectively. The coefficients y1 and y2 can

be calculated according to

G
ðWÞ
m;11 G

ðWÞ
m;12

G
ðWÞ
m;21 G

ðWÞ
m;22

" #
y1

y2


 �
¼

G
ðWÞ
n;13 �G

ðWÞ
m;13

G
ðWÞ
n;23 �G

ðWÞ
m;23

" #
; ð40Þ

with ½GðWÞm;n� being defined as

GðWÞm;n

� �
¼ ½Z�T½Z� þ ½Z�T½V�T G0m;n

� �
½V�½Z�: ð41Þ

Similarly, the matrix of transformation ½�S�� between the

reciprocal basis vectors of the domains m and n is defined as

ða�1n a�2n a�3nÞ ¼ ða
�
1m a�2m a�3mÞð½I� þ ½�S��Þ and can be calcu-

lated according to

½�S��T ¼ ½V�½Z�

0 0 �yy1

0 0 �yy2

0 0 0

0
@

1
A½Z��1

½V�T: ð42Þ

We can use (42) to calculate the separation between the Bragg

peaks H, K, L so that

½�B� ¼

�H

�K

�L

0
@

1
A ¼ ½�S��

H

K

L

0
@

1
A: ð43Þ

5.2. Simplifications

Equations (38) and (42) can be used to obtain the elements

of ½�S� and ½�S�� numerically. However, we will show that

reasonable approximation leads to more visually appealing

analytical expressions. Let us notice that the right-hand side of

(40) can be derived from the elements 13 and 23 of the matrix

½�GðWÞ� ¼ ½Z�T½V�T½�G0�½V�½Z�. Considering that the columns

of the matrix [V] are the eigenvectors of ½�G0� with the

eigenvectors of ��3; 0 and �3, respectively, we can write

½�GðWÞ� ¼ �3½Z�
T

�11 0 0

0 0 0

0 0 1

0
@

1
A½Z� ¼ �3

0 0 �1

0 0 0

�1 0 1

0
@

1
A:
ð44Þ

Here, the same sign as in equation (39) is implemented instead

of �. Using (44) we can rewrite (40) as

G
ðWÞ
m;11 G

ðWÞ
m;12

G
ðWÞ
m;21 G

ðWÞ
m;22

" #
y1

y2


 �
¼ ��3

1

0


 �
: ð45Þ

We will now consider the second term in the right side of

equation (41) ½Z�T½V�T½G0m;n�½V�½Z� is proportional to the

parameters of monoclinic distortion A, B, C [see equation (6)]

and therefore it is much smaller than the first term ½Z�T½Z�.

Accordingly, we can rewrite (41) in the form

½GðWÞ�m ¼ ½Z�
T
½Z� þOðA;B;CÞ ’

2 0 �1

0 1 0

�1 0 1

0
@

1
A: ð46Þ

Considering (46) we can rewrite (45) as

y1 ¼ �
�3

2
y2 ¼ 0: ð47Þ

Substituting (47) into (38) and (42) we get

½�S� ¼ �
�3

2
½V�

1

0

�1

0
@

1
A 	1 0 1
� �

½V�T ð48Þ

and

½�S�� ¼ �
�3

2
½V�

1

0

	1

0
@

1
A �1 0 1
� �

½V�T: ð49Þ

Using the notations ½�Sþ�; ½�S�� for the case of signs + and

� in front of �3, respectively, we can see that (48), (49) lead to

½�S�� ¼ ½�Sþ�
T

½�S�þ� ¼ �½�S��

½�S��� ¼ �½�Sþ�: ð50Þ

5.3. The case of domain pairs of the type ‘R-sibling’

We will now apply (48) and (49) for PDWs connecting

domain pairs of the type R-sibling. The corresponding

transformation matrices ½�Sþ�; ½�S�� are marked explicitly

as ½�SRSB
ð0�111Þ
� and ½�SRSB

ð2rrÞ �. According to (12) we obtain �3 =

ð�� �Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2þ r2
p

. Substituting (13) into (48) and using (50) we

get

�SRSB
ð0�111Þ

h i
¼ �SRSB

ð2rrÞ

� �T
¼
�� �

2

0 2 �22
0 r �rr
0 r �rr

0
@

1
A: ð51Þ

Using (43) and (50) we can obtain the separation between

the Bragg peaks diffracted from the corresponding pair of

domains as

�BRSB
ð0�111Þ

h i
¼
�� �

2
ð2H þ rK þ rLÞ

0
�11
1

0
@

1
A ð52Þ

and

�BRSB
ð2rrÞ

� �
¼
�� �

2
ðL� KÞ

2

r

r

0
@

1
A: ð53Þ

As mentioned by Gorfman et al. (2022), the three-dimensional

separation between the Bragg peaks diffracted from a pair of

connected domains is parallel to the DW normal.

5.4. The case of domain pairs of the type ‘R-planar’

Similarly, for the case of domain pairs of the type ‘R-

planar’, the corresponding transformation matrices ½�Sþ�,
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½�S�� are marked explicitly as ½�SRP
ð100Þ� and ½�SRP

ð011Þ�.

According to (17) �3 ¼ �2
ffiffiffi
2
p

��. Substituting (18) into (48)

and using (50) we obtain

�SRP
ð100Þ

� �
¼ �SRP

ð011Þ

� �T
¼ �2��

0 0 0

1 0 0

1 0 0

0
@

1
A: ð54Þ

Equivalently we will obtain the following expression for the

separation of Bragg peaks:

�BRP
ð100Þ

� �
¼ 2��ðK þ LÞ

1

0

0

0
@

1
A ð55Þ

and

�BRP
ð011Þ

� �
¼ 2��H

0

1

1

0
@

1
A: ð56Þ

5.5. The case of domain pairs of the type ‘R-semi-planar’

The corresponding transformation matrices ½�Sþ�; ½�S��

are then marked explicitly as ½�SRSP
ð100Þ� and ½�SRSP

ð01f Þ�. According

to (24) �3 ¼ �2��
ffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ 1

p
. Substituting (25) into (48) and

using (50):

�SRSP
ð100Þ

� �
¼ �SRSP

ð01f Þ

� �T
¼ �2��

0 0 0

1 0 0

f 0 0

0
@

1
A: ð57Þ

The separation of Bragg peaks diffracted from the corre-

spondingly connected domain pairs is

�BRSP
ð100Þ

� �
¼ 2��ðK þ fLÞ

1

0

0

0
@

1
A ð58Þ

and

�BRSP
ð01f Þ

� �
¼ 2��H

0

1

f

0
@

1
A: ð59Þ

5.6. The case of domain pairs of the type ‘R-semi-crossed’

The corresponding transformation matrices ½�Sþ�; ½�S��

are marked explicitly as ½�SRSC
ð2p �ppÞ� and ½�SRSC

ð011Þ�. According to

(31) �3 ¼ �ð��þ��Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ p2

p
. Substituting (32) into (48)

and using (50):

�SRSC
ð2p �ppÞ

� �
¼ �SRSC

ð011Þ

� �T
¼ �

�� þ��

2

0 0 0

2 p �pp
2 p �pp

0
@

1
A: ð60Þ

The separation of the Bragg peaks diffracted from the

domains, meeting along the DW normal to ½RSCð1Þ� is

�BRSC
ð2p �ppÞ

� �
¼ ð�� þ��ÞðK þ LÞ

2

p

�pp

0
@

1
A; ð61Þ

and for the case of ½RSCð2Þ�
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Figure 7
The orientation of the DW is normal for all the PDWs which connect domain pairs of the R-sibling, R-planar, R-semi-planar and R-semi-crossed types,
with 45 different orientations in total. These orientations are distributed among five different orientation families. The normals are shown using the poles
on the stereographic projection viewed along the direction [001] with the poles corresponding to the W-walls framed by a solid line. The lattice
parameters are chosen arbitrarily. The supporting information includes animated versions of the same figure for different values of the monoclinic lattice
parameters.
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Table 7
Summary of 24 PDWs connecting domain pairs of the R-sibling type.

The first column contains the PDW number, while the second and third columns contain the domain identifiers based on Fig. 1 and Table 1. The fourth column
displays the Miller indices of the PDW. The fifth column contains the transformation matrix between the basis vectors of the domain m1n1 and the basis vectors of
the domain m2n2. The last column contains the separation between the Bragg peaks with the indices H, K, L diffracted from these domains.

N Mm1n1
Mm2n2

ðhklÞ ½�S� ½ð�� �Þ=2� ½�B� ½ð�� �Þ=2�

1 M11 M12 (110)
r �rr 0

r �rr 0

2 �22 0

0
@

1
A ðrH þ rK þ 2LÞ

�11
1

0

0
@

1
A

2 M11 M12 ðrr2Þ
r r 2

�rr �rr �22
0 0 0

0
@

1
A ðK þ �HHÞ

r

r

2

0
@

1
A

3 M11 M13 (101)
r 0 �rr
2 0 �22
r 0 �rr

0
@

1
A ðrH þ 2K þ rLÞ

�11
0

1

0
@

1
A

4 M11 M13 ðr2rÞ
r 2 r

0 0 0

�rr �22 �rr

0
@

1
A ðLþ �HHÞ

r

2

r

0
@

1
A

5 M12 M13 (011)
0 2 �22
0 r �rr
0 r �rr

0
@

1
A ð2H þ rK þ rLÞ

0
�11
1

0
@

1
A

6 M12 M13 ð2rrÞ
0 0 0

2 r r
�22 �rr �rr

0
@

1
A ðLþ �KKÞ

2

r

r

0
@

1
A

7 M21 M22 (110)
r r 0

�rr �rr 0
�22 �22 0

0
@

1
A ðr �HH þ rK þ 2LÞ

1

1

0

0
@

1
A

8 M21 M22 ð�rrr2Þ
r �rr �22
r �rr �22
0 0 0

0
@

1
A ðH þKÞ

�rr
r

2

0
@

1
A

9 M21 M23 (101)
r 0 r
�22 0 �22
�rr 0 �rr

0
@

1
A ðr �HH þ 2K þ rLÞ

1

0

1

0
@

1
A

10 M21 M23 ð�rr2rÞ
r �22 �rr
0 0 0

r �22 �rr

0
@

1
A ðH þ LÞ

�rr
2

r

0
@

1
A

11 M22 M23 ð0�111Þ
0 �22 2

0 r �rr
0 r �rr

0
@

1
A ð2 �HH þ rK þ rLÞ

0
�11
1

0
@

1
A

12 M22 M23 ð�22rrÞ
0 0 0
�22 r r

2 �rr �rr

0
@

1
A ðLþ �KKÞ

�22
r

r

0
@

1
A

Table 7 (continued)

N Mm1n1
Mm2n2

ðhklÞ ½�S� ½ð�� �Þ=2� ½�B� ½ð�� �Þ=2�

13 M31 M32 (110)
r r 0

�rr �rr 0

2 2 0

0
@

1
A ðr �HH þ rK þ 2 �LLÞ

1

1

0

0
@

1
A

14 M31 M32 ðr�rr2Þ
r �rr 2

r �rr 2

0 0 0

0
@

1
A ð �HH þ �LLÞ

r

�rr
2

0
@

1
A

15 M31 M33 ð10�11Þ
r 0 �rr
�22 0 2

r 0 �rr

0
@

1
A ðr �HH þ 2K þ r �LLÞ

1

0
�11

0
@

1
A

16 M31 M33 ðr�22rÞ
r �22 r

0 0 0

�rr 2 �rr

0
@

1
A ð �HH þ LÞ

r
�22
r

0
@

1
A

17 M32 M33 (011)
0 �22 �22
0 r r

0 �rr �rr

0
@

1
A ð2H þ r �KK þ rLÞ

0

1

1

0
@

1
A

18 M32 M33 ð2�rrrÞ
0 0 0
�22 r �rr
�22 r �rr

0
@

1
A ðK þ LÞ

2

�rr
r

0
@

1
A

19 M41 M42 ð�1110Þ
r �rr 0

r �rr 0
�22 2 0

0
@

1
A ðrH þ rK þ 2 �LLÞ

�11
1

0

0
@

1
A

20 M41 M42 ð�rr�rr2Þ
r r �22
�rr �rr 2

0 0 0

0
@

1
A ðH þ �KKÞ

�rr
�rr
2

0
@

1
A

21 M41 M43 (101)
r 0 r

2 0 2

�rr 0 �rr

0
@

1
A ðr �HH þ 2 �KK þ rLÞ

1

0

1

0
@

1
A

22 M41 M43 ð�rr�22rÞ
r 2 �rr
0 0 0

r 2 �rr

0
@

1
A ðH þ LÞ

�rr
�22
r

0
@

1
A

23 M42 M43 (011)
0 2 2

0 r r

0 �rr �rr

0
@

1
A ð2 �HH þ r �KK þ rLÞ

0

1

1

0
@

1
A

24 M42 M43 ð�22�rrrÞ
0 0 0

2 r �rr
2 r �rr

0
@

1
A ðK þ LÞ

�22
�rr
r

0
@

1
A



�BRSC
ð011Þ

� �
¼ ð�� þ��Þð2H þ pK � pLÞ

0

1

1

0
@

1
A: ð62Þ

5.7. Summarizing tables

The previous paragraphs demonstrated how to derive key

quantities such as Miller indices, the orientation relationship

between the lattice basis vectors, and the separation of Bragg

peaks for representative domain pairs only. Similar equations

can be derived for all the other domain pairs. The tables and

figures below list the corresponding quantities for all 84

existing PDWs. The full list includes:

(i) 24 PDWs connecting domain pairs of the type ‘R-sibling’,

including 12 W- and 12 S-walls.

(ii) 12 PDWs connecting domain pairs of the type ‘R-

planar’. All of them are W-walls.

(iii) 24 PDWs connecting domain pairs of the type ‘R-semi-

planar’, including 12 W-walls and 12 S-walls.

(iv) 24 PDWs connecting domain pairs of the type ‘R-semi-

crossed’, including 12 W-walls and 12 S-walls.

The list of 84 PDWs contains 36 S-walls and 48 W-walls as

listed in Tables 7, 8, 9, 10. Each row of these tables contains

domain pair number, the Miller indices of the PDW, the matrix

of transformation ½�S� between the corresponding basis

vectors and the separation of Bragg peaks H, K, L diffracted

from this pair of domains.

Tables 7, 8, 9, 10 reveal that certain W-walls have the same

orientations. For instance, all domain pairs of the type ‘R-

planar’ M11M21;M31M41 and all domain pairs of the type ‘R-

semi-planar’, M12;M22, M13;M23 have (100)-oriented PDWs.

Table 11 presents all the distinct PDW orientations and their

relevant details. It reveals that all the PDWs belong to five

orientation families {100}, {110}, {2rr}, {10f}, {2pp}, so that

PDWs of 45 distinct orientations are present. Furthermore, the

table demonstrates the distribution of PDWs based on the pair

type and the angle between the polarization directions. It

indicates that 84 PDWs are classified into 12 DWs, 30 DWs, 30

DWs, 12 DWs with the angles between SPDs close to 0, 71, 109

and 180�, respectively.

Fig. 7 displays the orientation of all the PDWs for different

choices of lattice parameters. The normal vectors to these

walls are shown using the poles on the stereographic projec-

tion. The W-walls are marked by the poles with a solid line

edge and the color of the pole reflects the angle between the

SPDs being close to 0, 71, 109 and 180� (as specified in the last

column of Table 5). Each stereographic projection, from left to

right, shows DWs between the domain pairs of the types ‘R-

sibling’, ‘R-planar’, ‘R-semi-planar’ and ‘R-semi-crossed’. The

supporting information includes the animated version of this

figure showing how the orientation of these DWs changes with

the lattice parameters.

6. Conclusion

We have applied the theory of PDWs to create a list of 84

PDWs connecting ferroelastic domains of monoclinic (Cm/Cc)
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Table 8
The same as Table 7 but for the case of PDWs connecting domain pairs of
the type ‘R-planar’.

N Mm1n1
Mm2n2

ðhklÞ ½�S� (2��) ½�B� (2��)

25 M11 M21 (100)
0 0 0
�11 0 0
�11 0 0

0
@

1
A ðK þ LÞ

1

0

0

0
@

1
A

26 M11 M21 (011)
0 �11 �11
0 0 0

0 0 0

0
@

1
A H

0

1

1

0
@

1
A

27 M12 M32 (010)
0 �11 0

0 0 0

0 �11 0

0
@

1
A ðH þ LÞ

0

1

0

0
@

1
A

28 M12 M32 (101)
0 0 0
�11 0 �11
0 0 0

0
@

1
A K

1

0

1

0
@

1
A

29 M13 M43 (001)
0 0 �11
0 0 �11
0 0 0

0
@

1
A ðH þKÞ

0

0

1

0
@

1
A

30 M13 M43 (110)
0 0 0

0 0 0
�11 �11 0

0
@

1
A L

1

1

0

0
@

1
A

31 M23 M33 (001)
0 0 1

0 0 �11
0 0 0

0
@

1
A ð �HH þKÞ

0

0

1

0
@

1
A

32 M23 M33 ð�1110Þ
0 0 0

0 0 0

1 �11 0

0
@

1
A L

�11
1

0

0
@

1
A

33 M22 M42 (010)
0 1 0

0 0 0

0 �11 0

0
@

1
A ð �HH þ LÞ

0

1

0

0
@

1
A

34 M22 M42 ð�1101Þ
0 0 0

1 0 �11
0 0 0

0
@

1
A K

�11
0

1

0
@

1
A

35 M31 M41 (100)
0 0 0

1 0 0
�11 0 0

0
@

1
A ð �KK þ LÞ

1

0

0

0
@

1
A

36 M31 M41 ð0�111Þ
0 1 �11
0 0 0

0 0 0

0
@

1
A H

0
�11
1

0
@

1
A
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Table 9
The same as Table 7 but for the case of PDWs connecting domain pairs of the type ‘R-semi-planar’.

N Mm1n1
Mm2n2

ðhklÞ ½�S� (2��) [�B] (2��)

37 M12 M22 (100)
0 0 0
�11 0 0
�ff 0 0

0
@

1
A ðK þ fLÞ

1

0

0

0
@

1
A

38 M12 M22 ð01f Þ
0 �11 �ff
0 0 0

0 0 0

0
@

1
A H

0

1

f

0
@

1
A

39 M13 M23 (100)
0 0 0
�ff 0 0
�11 0 0

0
@

1
A ðfK þ LÞ

1

0

0

0
@

1
A

40 M13 M23 ð0f 1Þ
0 �ff �11
0 0 0

0 0 0

0
@

1
A H

0

f

1

0
@

1
A

41 M11 M31 (010)
0 �11 0

0 0 0

0 �ff 0

0
@

1
A ðH þ fLÞ

0

1

0

0
@

1
A

42 M11 M31 ð10f Þ
0 0 0
�11 0 �ff
0 0 0

0
@

1
A K

1

0

f

0
@

1
A

43 M13 M33 (010)
0 �ff 0

0 0 0

0 �11 0

0
@

1
A ðfH þ LÞ

0

1

0

0
@

1
A

44 M13 M33 ðf 01Þ
0 0 0
�ff 0 �11
0 0 0

0
@

1
A K

f

0

1

0
@

1
A

45 M11 M41 (001)
0 0 �11
0 0 �ff
0 0 0

0
@

1
A ðH þ fKÞ

0

0

1

0
@

1
A

46 M11 M41 ð1f 0Þ
0 0 0

0 0 0
�11 �ff 0

0
@

1
A L

1

f

0

0
@

1
A

47 M12 M42 (001)
0 0 �ff
0 0 �11
0 0 0

0
@

1
A ðfH þ KÞ

0

0

1

0
@

1
A

48 M12 M42 ðf 10Þ
0 0 0

0 0 0
�ff �11 0

0
@

1
A L

f

1

0

0
@

1
A

Table 9 (continued)

N Mm1n1
Mm2n2

ðhklÞ ½�S� (2��) [�B] (2��)

49 M21 M31 (001)
0 0 1

0 0 �ff
0 0 0

0
@

1
A ð �HH þ fKÞ

0

0

1

0
@

1
A

50 M21 M31 ð�11f 0Þ
0 0 0

0 0 0

1 �ff 0

0
@

1
A L

�11
f

0

0
@

1
A

51 M22 M32 (001)
0 0 f

0 0 �11
0 0 0

0
@

1
A ðf �HH þKÞ

0

0

1

0
@

1
A

52 M22 M32 ðf �110Þ
0 0 0

0 0 0

f �11 0

0
@

1
A �LL

f
�11
0

0
@

1
A

53 M21 M41 (010)
0 1 0

0 0 0

0 �ff 0

0
@

1
A ð �HH þ fLÞ

0

1

0

0
@

1
A

54 M21 M41 ð�110f Þ
0 0 0

1 0 �ff
0 0 0

0
@

1
A K

�11
0

f

0
@

1
A

55 M23 M43 (010)
0 f 0

0 0 0

0 �11 0

0
@

1
A ðf �HH þ LÞ

0

1

0

0
@

1
A

56 M23 M43 ðf 0�11Þ
0 0 0

f 0 �11
0 0 0

0
@

1
A �KK

f

0
�11

0
@

1
A

57 M32 M42 (100)
0 0 0

1 0 0
�ff 0 0

0
@

1
A ð �KK þ fLÞ

1

0

0

0
@

1
A

58 M32 M42 ð0�11f Þ
0 1 �ff
0 0 0

0 0 0

0
@

1
A H

0
�11
f

0
@

1
A

59 M33 M43 (100)
0 0 0

f 0 0
�11 0 0

0
@

1
A ðf �KK þ LÞ

1

0

0

0
@

1
A

60 M33 M43 ð0f �11Þ
0 f �11
0 0 0

0 0 0

0
@

1
A �HH

0

f
�11

0
@

1
A



research papers

Acta Cryst. (2024). A80, 112–128 Biran and Gorfman � Permissible domain walls in ferroelectric phases 125

Table 10
The same as Table 7 but for the case of PDWs connecting domain pairs of the type ‘R-semi-crossed’.

N Mm1n1
Mm2n2

ðhklÞ ½�S� ½ð��þ��Þ=2� ½�B� ½ð��þ��Þ=2�

61 M12 M23 (011)
0 �22 �22
0 �pp �pp
0 p p

0
@

1
A ð2H þ pK þ p �LLÞ

0

1

1

0
@

1
A

62 M12 M23 ð2p �ppÞ
0 0 0
�22 �pp p
�22 �pp p

0
@

1
A ðK þ LÞ

2

p

�pp

0
@

1
A

63 M13 M22 (011)
0 �22 �22
0 p p

0 �pp �pp

0
@

1
A ð2H þ p �KK þ pLÞ

0

1

1

0
@

1
A

64 M13 M22 ð2 �pppÞ
0 0 0
�22 p �pp
�22 p �pp

0
@

1
A ðK þ LÞ

2

�pp
p

0
@

1
A

65 M11 M33 (101)
�pp 0 �pp
�22 0 �22
p 0 p

0
@

1
A ðpH þ 2K þ p �LLÞ

1

0

1

0
@

1
A

66 M11 M33 ðp2 �ppÞ
�pp �22 p

0 0 0

�pp �22 p

0
@

1
A ðH þ LÞ

p

2

�pp

0
@

1
A

67 M13 M31 (101)
p 0 p
�22 0 �22
�pp 0 �pp

0
@

1
A ðp �HH þ 2K þ pLÞ

1

0

1

0
@

1
A

68 M13 M31 ð �pp2pÞ
p �22 �pp
0 0 0

p �22 �pp

0
@

1
A ðH þ LÞ

�pp
2

p

0
@

1
A

69 M11 M42 (110)
�pp �pp 0

p p 0
�22 �22 0

0
@

1
A ðpH þ p �KK þ 2LÞ

1

1

0

0
@

1
A

70 M11 M42 ðp �pp2Þ
�pp p �22
�pp p �22
0 0 0

0
@

1
A ðH þKÞ

p

�pp
2

0
@

1
A

71 M12 M41 (110)
p p 0

�pp �pp 0
�22 �22 0

0
@

1
A ðp �HH þ pK þ 2LÞ

1

1

0

0
@

1
A

72 M12 M41 ð �ppp2Þ
p �pp �22
p �pp �22
0 0 0

0
@

1
A ðH þKÞ

�pp
p

2

0
@

1
A

Table 10 (continued)

N Mm1n1
Mm2n2

ðhklÞ ½�S� ½ð��þ��Þ=2� ½�B� ½ð��þ��Þ=2�

73 M21 M32 ð�1110Þ
�pp p 0

�pp p 0

2 �22 0

0
@

1
A ðp �HH þ p �KK þ 2LÞ

�11
1

0

0
@

1
A

74 M21 M32 ð �pp �pp2Þ
�pp �pp 2

p p �22
0 0 0

0
@

1
A ð �HH þ KÞ

�pp
�pp
2

0
@

1
A

75 M22 M31 ð�1110Þ
p �pp 0

p �pp 0

2 �22 0

0
@

1
A ðpH þ pK þ 2LÞ

�11
1

0

0
@

1
A

76 M22 M31 ðpp2Þ
p p 2

�pp �pp �22
0 0 0

0
@

1
A ð �HH þ KÞ

p

p

2

0
@

1
A

77 M21 M43 ð�1101Þ
�pp 0 p

2 0 �22
�pp 0 p

0
@

1
A ðp �HH þ 2K þ p �LLÞ

�11
0

1

0
@

1
A

78 M21 M43 ð �pp2 �ppÞ
�pp 2 �pp
0 0 0

p �22 p

0
@

1
A ð �HH þ LÞ

�pp
2

�pp

0
@

1
A

79 M23 M41 ð�1101Þ
p 0 �pp
2 0 �22
p 0 �pp

0
@

1
A ðpH þ 2K þ pLÞ

�11
0

1

0
@

1
A

80 M23 M41 ðp2pÞ
p 2 p

0 0 0

�pp �22 �pp

0
@

1
A ð �HH þ LÞ

p

2

p

0
@

1
A

81 M32 M43 ð0�111Þ
0 2 �22
0 �pp p

0 �pp p

0
@

1
A ð2H þ p �KK þ p �LLÞ

0
�11
1

0
@

1
A

82 M32 M43 ð2 �pp �ppÞ
0 0 0

2 �pp �pp
�22 p p

0
@

1
A ðLþ �KKÞ

2

�pp
�pp

0
@

1
A

83 M33 M42 ð0�111Þ
0 2 �22
0 p �pp
0 p �pp

0
@

1
A ð2H þK þ LÞ

0
�11
1

0
@

1
A

84 M33 M42 ð2ppÞ
0 0 0

2 p p
�22 �pp �pp

0
@

1
A ðLþ �KKÞ

2

p

p

0
@

1
A



symmetry. Our list includes analytical expressions for the

Miller indices of the PDWs, matrices of transformation

between the corresponding pseudocubic basis vectors and

expressions for the reciprocal-space separation between the

corresponding Bragg peak pairs. The 84 PDWs can have 45

different orientations and are grouped into five orientational

families.

Our derivation of this list assumed that the two-step tran-

sition from the cubic (Pm�33mÞ phase to the monoclinic (Cm/

Cc) phase results in the formation of 12 ferroelastic mono-

clinic domains. The first step of this transition (from the cubic

to the rhombohedral R3m=R3c phase) results in the formation

of four ferroelastic domains, while the second step (from the

rhombohedral to the monoclinic phase) splits each of them

into groups of three monoclinic domains. We identified five

different types of domain pairs (referred to here as ‘R-sibling’,

‘R-planar’, ‘R-semi-planar’, ‘R-semi-crossed’ and ‘R-

crossed’), each with its own expression for the PDW orienta-

tion. As shown in previous works (Fousek & Janovec, 1969;

Sapriel, 1975), we found that the crystallographic orientation/

Miller indices of PDWs can be fixed (for the so-called W-walls)

or depend on the values of the monoclinic lattice

parameters (for the so-called S-walls). We found that the

orientation of such walls can be controlled by the three simple

parameters r ¼ ½2=ð�����Þ�½ðc=aÞ � 1�, f ¼ ð��=��Þ and

p ¼ ½2=ð��þ��Þ�½ðc=aÞ � 1�.

We have demonstrated that the rotatable domain walls can

be described by the Miller indices {2rr}, {10f}, {2pp}. Even a

small change in the monoclinic distortion (such as

c=a;��;��) can cause a significant rotation of the PDW. This

process is often referred to as ‘thermal switching’. Further-

more, we have predicted the angles between polarization

directions for the cases when DWs are not charged.

The results of this work can be useful in several different

ways. First, the availability of simple analytical expressions

(Tables 7–10) for the orientation of DWs can help in

describing the domain switching through DW rotation or DW

motion. Such a process can be induced by the change of the

temperature or external electric field, for example. Second, the

expressions for the separation between Bragg peaks (Tables

7–10) can help investigate monoclinic domain patterns, using

‘single-crystal’ X-ray diffraction. Third, the expressions may

be useful for the precise calculation of the angles between

SPDs of various domains. Such angles can be easily evaluated

using the corresponding matrices of transformation between

the domain basis vectors in Tables 7–10.

The results have significant importance in the analysis of

domains within crystals and epitaxial thin films. Indeed, the

observation of monoclinic domains in epitaxial thin films is

common (see e.g. Schmidbauer et al., 2017; Gaal et al., 2023)

where one or another type of monoclinic distortion is stabi-

lized by the substrate–film lattice mismatch. Modulating this

mismatch can influence the monoclinic lattice parameters and,

consequently, the orientation of PDWs between them. It is

worth highlighting that certain distinctions may arise due to

variations in the number of monoclinic domains present. In

the case of ‘free-standing’ single crystals, the phase transition

sequence from cubic to rhombohedral to monoclinic ideally

results in the presence of 12 equivalent domains. However,

introducing bias at any of these transitional stages can alter

this configuration. For instance, the application of an electric

field along the pseudocubic [111] direction during the cubic-

to-rhombohedral phase transition may lead to the formation

of just one rhombohedral domain instead of the expected four.

Subsequently, the rhombohedral-to-monoclinic transition

further divides this domain into three monoclinic domains.

Consequently, in such scenarios, only ‘R-sibling’ domain pairs,

connected by six PDWs, must be considered. The presence of

the substrate can bias or suppress the formation of specific

domains, such as favoring the presence of domain pairs of the

R-sibling type exclusively, and this, in turn, can impact the

number of PDWs. A detailed characterization of PDWs in

relation to the origin of these domains can prove useful for

cataloging the potential PDWs existing between thin film

domains or in other cases when formation of domains is biased

or engineered.

Finally, this article describes the PDWs between monoclinic

domains of MA/MB type. A similar formalism for the mono-

clinic MC symmetry case will be presented in a follow-up

publication.

APPENDIX A
The list of notations and most important
crystallographic relationships

This paper uses the notations from Gorfman et al. (2022). For

the convenience of the reader, the most important of them are

also summarized here.
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Table 11
The orientation families of PDWs and their distribution between DWs of different types.

The first column contains the identifier of the family where {} indicate the list of m3m-equivalent orientations, e.g. {110} means the list of (011), (101), (110), (011),
(101) and (011). The second column contains the number of different orientations. The third column contains the number of PDWs of the specific orientation
family. The remaining columns show the distribution of these PDWs according to the pair type and the ‘zero-charge’ angle between polarization directions.

fhklg M N walls N0 NRP 71 NRSP 71 NRSC 71 NRP 109 NRSP 109 NRSC 109 N180

f100g 3 18 – – – – 6 12 – –
f110g 6 30 – 6 – 12 – – – 12
f2rrg 12 12 12 – – – – – – –
ff 01g 12 12 – – 12 – – – – –
f2ppg 12 12 – – – – – – 12 –
All walls 45 84 12 30 30 12



Basis vectors: aim ði ¼ 1 . . . 3Þ are the basis vectors of a

crystal lattice. The second index refers to the ferroelastic

domain variant m. m ¼ 0 corresponds to the crystal lattice of

the higher-symmetry (e.g. cubic) ‘parent’ phase (Fig. 1). The

parallelepiped based on the vectors aim forms a unit cell.

Unit-cell settings: many unit-cell settings exist for the same

lattice (Gorfman, 2020). Here, we prefer the cell settings aim

(m> 0Þ obtained by the smallest possible distortion/rotation

of the parent-phase basis vectors ai0.

Metric tensor/matrix of dot products: Gij ¼ aiaj is the metric

tensor (Giacovazzo, 1992; Hahn, 2005). The corresponding

3 
 3 matrix ½G�m is the matrix of dot products for the domain

variant m. Their determinants are jGj ¼ V2
A (VA is the unit-

cell volume).

The transformation matrix: the transformation e.g. from the

basis vectors aim to the basis vectors ain is defined by the 3 
 3

transformation matrix [S]. The columns of the matrix [S] are

the coordinates of ain with respect to aim:

ð a1n a2n a3n Þ ¼ ð a1m a2m a3m Þ

S11 S12 S13

S21 S22 S23

S31 S32 S33

0
@

1
A:
ð63Þ

Transformation of the metric tensor: the transformation of

the basis vectors (63) leads to the following transformation of

the corresponding metric tensors:

½G�n ¼ ½S�
T
½G�m½S�: ð64Þ

This relationship can be extended to any cases of transfor-

mation between coordinate systems.

The difference transformation matrix is defined as the

difference between [S] and the unitary matrix [I]:

½�S� ¼ ½S� � ½I�: ð65Þ

Twinning matrix: [T] represents a symmetry operation of

the parent-phase lattice (i.e. the one built using the basis

vectors ai0) that is no longer the symmetry operation of a

ferroelastic phase lattice. We define [T] as a 3 
 3 matrix,

which describes the transformation to the coordinate system

ai0 from its symmetry equivalent a0i0 using the following formal

matrix equation:

a10 a20 a30

� �
¼ a010 a020 a030

� � T11 T12 T13

T21 T22 T23

T31 T32 T33

0
@

1
A: ð66Þ

The number of symmetry-equivalent coordinate systems is

equal to the order of the holohedry point symmetry group (e.g.

48 for a cubic lattice). The transition from a paraelastic to a

ferroelastic phase is associated with the distortion of the basis

vectors ai0 ! aim. Such a distortion, however, can commence

from any of the symmetry-equivalent a0i0. Let us assume that

ai0 and a0i0 serve as the starting points for domain variants m

and n, correspondingly. The following relationship between

½Gn� and ½Gm� exists:

½G�n ¼ ½T�
T
½G�m½T�: ð67Þ

Reciprocal basis vectors: the superscript * refers to the

reciprocal bases, e.g. a�i are such that aia
�
j ¼ �ij. The reciprocal

metric tensor is G�ij ¼ a�i a�j . The relationship ½G�� ¼ ½G��1

holds.

Transformation between the reciprocal basis vectors: if the

direct basis vectors (e.g. aim and ain) are related by the matrix

[S] [according to equation (63)], then the corresponding

reciprocal-lattice vectors (a�im and a�in) are related by the

matrix ½S��. The following relationship between [S] and ½S��

holds:

½S��T ¼ ½S��1: ð68Þ

The difference transformation matrix between the reci-

procal basis vectors is defined according to the equation

½�S�� ¼ ½S�� � ½I�: ð69Þ
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