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In Part I of this series, all topologically possible 1-periodic infinite graphs (chain

graphs) representing chains of tetrahedra with up to 6–8 vertices (tetrahedra)

per repeat unit were generated. This paper examines possible restraints on

embedding these chain graphs into Euclidean space such that they are compa-

tible with the metrics of chains of tetrahedra in observed crystal structures.

Chain-silicate minerals with T = Si4+ (plus P5+, V5+, As5+, Al3+, Fe3+, B3+, Be2+,

Zn2+ and Mg2+) have a grand nearest-neighbour hT–Ti distance of 3.06�0.15 Å

and a minimum T� � �T separation of 3.71 Å between non-nearest-neighbour

tetrahedra, and in order for embedded chain graphs (called unit-distance

graphs) to be possible atomic arrangements in crystals, they must conform to

these metrics, a process termed equalization. It is shown that equalization of all

acyclic chain graphs is possible in 2D and 3D, and that equalization of most

cyclic chain graphs is possible in 3D but not necessarily in 2D. All unique ways in

which non-isomorphic vertices may be moved are designated modes of

geometric modification. If a mode (m) is applied to an equalized unit-distance

graph such that a new geometrically distinct unit-distance graph is produced

without changing the lengths of any edges, the mode is designated as valid (mv);

if a new geometrically distinct unit-distance graph cannot be produced, the

mode is invalid (mi). The parameters mv and mi are used to define ranges of

rigidity of the unit-distance graphs, and are related to the edge-to-vertex ratio,

e/n, of the parent chain graph. The program GraphT–T was developed to embed

any chain graph into Euclidean space subject to the metric restraints on T–T and

T� � �T. Embedding a selection of chain graphs with differing e/n ratios shows that

the principal reason why many topologically possible chains cannot occur in

crystal structures is due to violation of the requirement that T� � �T > 3.71 Å.

Such a restraint becomes increasingly restrictive as e/n increases and indicates

why chains with stoichiometry TO<2.5 do not occur in crystal structures.

1. Introduction

The intent of our work is to provide a framework for under-

standing the atomic-scale factors controlling composition,

structural variability and occurrence of silicate minerals sensu

lato in the crust and mantle of the Earth. We have developed a

structure hierarchy (Hawthorne, 2014) for chain-silicate

minerals (Day & Hawthorne, 2020) in which (TO4)n� groups

(T = Si4+ + P5+, V5+, As5+, Al3+, Fe3+, B3+, Be2+, Zn2+ and

Mg2+) polymerize infinitely in 1D, and have described their

connectivities with translationally symmetric 1-periodic

graphs (termed chain graphs).

Day & Hawthorne (2022) derived all possible 1D infinite

chain graphs (with up to 6–8 tetrahedra per unit cell) including

those that correspond to chains of tetrahedra observed in

chain-silicate minerals and related synthetic compounds and
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those that do not. The number of symmetrically independent

vertices (i.e. tetrahedra) in the topological unit cell was

restricted to 6–8 by Day & Hawthorne (2022) for two reasons:

(i) derivation of all possible non-isomorphic graphs with >6–8

vertices (regardless of vertex connectivity) required unrealis-

tically long computation times (weeks to months), and (ii)

chain arrangements with >8 tetrahedra in the topological unit

cell are observed in 12 structure types representing 14

minerals, those with <8 tetrahedra in the topological unit cell

are observed in 100 structure types representing 406 minerals.

Here, our principal intent is to examine the factors that

affect the embedding of these chain graphs generated by Day

& Hawthorne (2022) into 2D and 3D Euclidean space to

produce geometric chain graphs (i.e. unit-distance graphs)

with geometrical characteristics that are compatible with the

metrics of crystal structures (realistic interatomic distances).

We also wish to understand the topological characteristics of

chain graphs and the geometrical characteristics of unit-

distance graphs that give rise to different classes of mineral

structures: (i) common minerals of high abundance; (ii)

common minerals of low abundance; (iii) rare minerals of high

abundance; (iv) rare minerals of low abundance; (v) no

mineral structures at all. In addition to the connectivity and

geometry of chains of tetrahedra, issues (i)–(v) (above) are

controlled by other aspects of the structure and details of the

environment in which the mineral forms. Here we focus

exclusively on the effects of the connectivity and geometry of

chains of tetrahedra, and future work will focus on other

aspects of structure and the details of the environment of

formation.

2. Terminology

Following Day & Hawthorne (2020, 2022), we define the

following terms:

Chain: an arrangement of (TO4)n� tetrahedra that (i) links

together infinitely in a single direction, (ii) has periodic

(translational) symmetry, and (iii) can be broken into two

parts by eliminating a single linkage between adjacent

tetrahedra.

Ribbon: an arrangement of (TO4)n� tetrahedra that (i) links

together infinitely in a single direction, (ii) has periodic

(translational) symmetry, and (iii) cannot be broken into two

parts by eliminating a single linkage between adjacent

tetrahedra.

Tube: an arrangement of (TO4)n� tetrahedra that (i) links

together infinitely in a single direction, (ii) also links ortho-

gonal to the direction of polymerization to form a hollow

cylinder, (iii) has periodic (translational) symmetry and (iv)

cannot be broken into two parts by eliminating a single

linkage between adjacent tetrahedra.

Cluster: a 0-dimensional structural unit of linked (TO4)n�

tetrahedra that do not extend infinitely in any direction. The

graph of a cluster may be planar or non-planar.

Structural unit: the strongly bonded part of a structure,

consisting of oxyanions and low-coordination-number cations

(Hawthorne, 1983a, 2015).

Backbone chain: the part of a chain of tetrahedra in which

all tetrahedra are connected to form infinite paths (see

the definition of path below) in the direction of infinite

polymerization.

Repeat unit: that part of a chain, ribbon or tube of (TO4)n�

tetrahedra that can be repeated by translational symmetry to

produce the complete chain, ribbon or tube. To specify the

number of 1-, 2-, 3- and 4-connected tetrahedra that comprise

the repeat unit of a chain, we denote a tetrahedron by T, its

connectivity by the superscript c (c = 1–4) and the number of

tetrahedra with connectivity c by the subscript r. The

expression cTr = 1Tr
2Tr

3Tr
4Tr represents all possible connec-

tivities of tetrahedra in the repeat unit of a chain, ribbon or

tube.

We refer to ‘chains, ribbons and tubes’ of (TO4)n� tetra-

hedra as ‘chains’ except where it is necessary to distinguish

between chains, ribbons and tubes as defined above. Where we

refer to a silicate chain, it must contain Si4+ but may also

contain other tetrahedrally coordinated cations: e.g. T = P5+,

V5+, As5+, Si4+, Al3+, Fe3+ and B3+.

As described in the Introduction, Day & Hawthorne (2022)

generated all possible 1-periodic non-isomorphic graphs that

contain up to 6–8 symmetrically independent vertices in the

topological unit cell. Here, we describe such graphs using the

axioms of graph theory as follows:

Graph: a graph, G = (V, E), consists of a set of vertices (V)

and a set of unordered pairs of vertices called edges (E).

Chain graph: a 1-periodic graphical representation of a

chain of (TO4)n� tetrahedra in which tetrahedra are repre-

sented as vertices and linkages between tetrahedra are

represented as edges. A chain graph contains only the topo-

logical information of the corresponding chain of (TO4)n�

tetrahedra and does not contain any geometrical information.

Topological repeat unit: a subgraph of a chain graph that

contains the minimum number (nt) of non-isomorphic vertices

such that it can be repeated by translation along the infinite

path of the chain graph to reproduce the chain graph.

Analogous to the cTr expression (described above), we specify

the connectivity and number of vertices in the topological

repeat unit using the cVr expression, i.e. cVr = 1Vr
2Vr

3Vr
4Vr

represents all possible connectivities of vertices in the topo-

logical repeat unit of a chain graph. As any unit-distance graph

(see definition below) or chain of tetrahedra can be repre-

sented topologically as a chain graph, one can also describe

the analogous repeat unit of a unit-distance graph or chain of

tetrahedra.

Translational symmetry of graphs: a 1-periodic chain graph

consists of a series of (identical) topological repeat units that

extend along an infinite 1-periodic path of the graph. We refer

to the topological repeat units as being translationally

equivalent not because of identical geometric characteristics

(as they do not have any geometrical characteristics) but

because the topological repeat units along the chain repeat by

translation from one repeat unit to another along the infinite

path of the chain.

Cycle (polygon): a series of vertices and edges that may be

traversed such that no vertices or edges are crossed more than
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once and the traverse ends at the same vertex on which it

began. For easy visual recognition, we will refer to a cycle as a

polygon in which the dimension of the polygon corresponds to

the number of edges (and vertices) in the cycle.

Cyclic (polygon) graph: a graph that contains one or more

cycles (polygons).

Acyclic (non-polygon) graph: a graph that does not contain

cycles (polygons).

Walk: a finite or infinite sequence of edges that join a

sequence of vertices.

Path: a walk in which all vertices (and hence all edges) are

distinct.

Backbone: the subgraph of a chain graph in which all

vertices of that subgraph are linked to form infinite paths in

the direction of infinite polymerization.

Branch: vertices with linkages that are not part of the

backbone. Unlike the backbone, branches contain vertices

linked by edges that do not exit the topological repeat unit of

the chain graph. Linear branches contain vertices that form a

finite path and polygonal branches contain vertices that form a

cycle.

We refer to 1-periodic graphs representative of (isomorphic

with) ‘chains, ribbons and tubes’ as chain graphs except where

it is necessary to distinguish between chains, ribbons and

tubes.

As described in the Introduction, the chain graphs gener-

ated by Day & Hawthorne (2022) are embedded into 2D and

3D Euclidean space to examine the compatibility of the

resultant geometric graphs (i.e. unit-distance graphs) with the

metrics of crystal structures. Geometric graphs contain spatial

information (e.g. edge lengths) and thus are described using

the axioms of geometric graph theory (Pach, 2004) as follows:

Geometric graph: in the most general sense, a geometric

graph is a graph that is defined at least partly by geometric

means. A common definition describes a geometric graph as a

graph with straight edges occurring in the Euclidean plane.

However, for our purposes, we will define a geometric graph

as a graph with straight edges occurring in Euclidean space.

Unit-distance graph: a geometric graph with all edges of unit

length; here, we will generalize this definition slightly: all edges

will be of equal length. Once a chain graph (or other graph)

has been embedded in Euclidean space, it is transformed into

a geometric graph; if any graph is embedded with the

constraint of equal edges it is a unit-distance graph. It follows

that a geometric graph or a unit-distance graph is an embed-

ding of a graph or chain graph.

Strictly speaking, a unit-distance graph is a ‘unit-distance

embedding’. However, the expression ‘geometric graph

theory’ is now well established in the literature [e.g. see the

volume by Pach (2004)] and the terms ‘unit-distance graph’,

‘rigid graph’ etc. are common terms in geometric graph theory.

We prefer to use the term unit-distance graph rather than unit-

distance embedding as it is more intuitive to the crystal-

lographic community.

Geometrical repeat unit: that part of a unit-distance graph

(or chain of tetrahedra) with the minimum number (ng) of

vertices (or tetrahedra) such that it can be repeated by

translational symmetry to produce the complete geometric

graph (or chain of tetrahedra). The connectivity of vertices (or

tetrahedra) in the geometric repeat unit can be described

using the cTr expression (see the definition above).

Rigid geometric graph: a geometric graph that cannot

produce a different geometric graph by changing the relative

positions of its vertices without changing the relative lengths

of its edges.

Flexible geometric graph: a geometric graph that can

produce a different geometric graph by changing the relative

positions of its vertices without changing the relative lengths

of its edges.

Most geometric graphs dealt with here are unit-distance

graphs (as defined above) and when describing the rigidity (or

flexibility) of such unit-distance graphs, we refer to them as

rigid unit-distance graphs and flexible unit-distance graphs. Of

course, unit-distance graphs may have varying degrees of

rigidity (or flexibility) and a method by which this can be

quantified is described in Section 6.

3. Chain graphs and chains of (TO4)
n� tetrahedra in

minerals

Most topologically distinct chain graphs generated by Day &

Hawthorne (2022) do not correspond to chains of tetrahedra

that occur in minerals (or synthetic compounds), although

some proportion of the as-yet unrealized chain graphs may

correspond to chains of (TO4)n� tetrahedra that occur in

minerals that have not yet been discovered (�150 new

minerals are discovered each year). Day & Hawthorne (2020)

showed that there are �50 topologically non-isomorphic

chains of tetrahedra in the �450 currently approved chain-

silicate minerals, four of which occur in �375 chain silicates

and �46 of which occur in �75 chain silicates. Furthermore,

they showed that there are particular chain stoichiometries

(represented by O:T, the ratio of oxygen to tetrahedrally

coordinated cations) that correspond to minerals (O:T = 3.0–

2.5), and chain stoichiometries that are not observed in

minerals (O:T = 2.5–2.0) but correspond to topologically

possible chain graphs: e.g. O:T = 2.0 (4V3–6 tubes), O:T = 2.2 (a
3V2

4V3 ribbon) and O:T = 2.4 (a 3V4
4V1 ribbon) are possible,

although not yet realized in crystal structures (Day &

Hawthorne, 2020).

Although many chains contain T cations other than Si4+

(e.g. Al3+, B3+, Be2+ etc.), they all behave similarly with regard

to connectivity: all (TO4)n� tetrahedra are 1- to 4-connected

and share only corners with other tetrahedra except for a very

small number of [Be2O6] dimers in which tetrahedra share an

edge (Hawthorne & Huminicki, 2002).

4. Strategy for embedding chain graphs into Euclidean

space

As noted in the Introduction, our principal intent is to examine

the factors that affect the embedding of chain graphs into 2D

and 3D Euclidean space such that the geometrical character-

istics of the resultant embedding (unit-distance graph) are
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compatible with the metrics of crystal structures, metrics

involving realistic T–O bond lengths and T–O–T bond angles.

Gagné & Hawthorne (2016, 2018a,b, 2020) list ranges of T–O

and hT–Oi bond lengths for the ions of interest here in

�10 000 well refined, well ordered crystal structures. For mean

bond lengths, the dispersion in values is fairly restricted: e.g.

1.590–1.658 Å for h[4]Si4+–O2� i distances with a grand mean

value of 1.625 Å. All other cations have mean T–O bond

lengths within �17% of the grand h[4]Si4+–O2� i value, and the

silicate structures sensu lato will show a much more restricted

range as silicates do not consist entirely of, for example,

(B3+O4)5� (h[4]B3+–O2� i = 1.475 Å) or (Mg2+O4)6� (h[4]Mg2+–

O2� i = 1.939 Å) tetrahedra.

However, the 1-periodic infinite graphs derived by Day &

Hawthorne (2022) do not involve T–O linkages (as to do this

would drive the derivation beyond computational feasibility),

they involve T–T linkages. However, in crystal structures, T–T

distances involved in T–O–T linkages are strongly restrained

by the T–O distances and T–O–T angles, and hence T–T

distances must have a fairly restricted variation in crystal

structures. It is important to note that we are not embedding

atoms (entities with metric character, i.e. an atomic radius) in

Euclidean space but rather chain graphs which contain

vertices (entities with no metric character, i.e. an infinitely

small point) that represent atoms and edges (lines with a set

length and no thickness). Therefore, embeddings (unit-

distance graphs) can be 1D, 2D or 3D whereas all embeddings

of atoms are 3D. We embed chain graphs in only 2D and 3D as

only one chain graph (of vertex connectivity 2V1) can be

embedded in 1D without violating T–T and/or T� � �T

constraints.

4.1. T–T and T� � �T distances in chain-silicate minerals

When embedding 1-periodic chain graphs into Euclidean

space, it is not the exact T–T distance that is important. For

example, if dealing with a borate structure, the T–T distance

should correspond to that in borate structures, whereas

dealing with phosphate structures, the T–T distance should

correspond to that in phosphate structures. In each of these

types of structures, the T–T distances are very similar within

each type of structure, i.e. the T–T distances are approximately

the same. Thus, when embedding chain graphs into 2D and 3D

Euclidean space, we will use the restraint that T–T distances

must be the same. Of course, real structures can relax from this

restraint, but they do not relax very much, i.e. the range of T–T

distances will be small in a specific structure and thus the

restraint of equal T–T distances (with a small allowable

deviation) seems reasonable.

Equalization of edges (T–T distances) of a chain graph will

also change the distances between pairs of vertices that do not

correspond to edges: we will designate such distances as T� � �T

separations. In crystal structures, T� � �T separations will be

significantly longer than T–T distances as there are no T–O

bonds restraining the T–T distance, and such T� � �T separa-

tions cannot become too short without the tetrahedra occu-

pying part of the same volume (in extreme cases) or causing

instability of the atomic arrangement by having ions of the

same charge too close.

4.1.1. Observed T–T distances. Here, we use the data of

Day & Hawthorne (2020) to examine the range of T–T

distances in chain-silicate minerals. The scatter and histogram

plots in Figs. 1(a) and 1(b) show the distribution of all T–T

distances in the geometrical repeat (ng) unit of all chain-sili-

cate minerals and related synthetic compounds. The T–T

distances are in the range 2.616–3.450 Å with an average of

3.060�0.15 Å. Approximately 94% of the T–T distances are

2.910–3.210 Å (Fig. 1), and values outside this range tend to

involve other tetrahedrally coordinated cations. Thus, when

embedding chain graphs, we restrain T–T distances to

3.060�0.15 Å.

4.1.2. Observed T� � �T separations. The scatter and histo-

gram plots in Figs. 2(a) and 2(b) show the distribution of all

T� � �T separations (up to 6.5 Å) in the geometrical repeat unit

(ng) of all chain-silicate minerals and related synthetic

compounds. As expected, there is no correlation between the
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Figure 1
(a) A scatter plot and (b) a histogram of observed T–T distances in all
chain-silicate minerals and selected synthetic compounds. All symme-
trically unique T–T distances in the geometrical repeat unit of each
mineral (or synthetic) were incorporated. Red lines represent the set
maximum (3.210 Å) and minimum (2.910 Å) T–T distances allowed
during embedding. In (a), black points represent Si4+–Si4+ distances and
the blue, purple, green, red, pink and yellow points represent T–T
distances that involve the T cations Al3+, V5+, Be2+, B3+, Fe3+ and Li+,
respectively.

Figure 2
(a) A scatter plot and (b) a histogram of observed T� � �T separations in all
chain-silicate minerals and selected synthetic compounds. All symme-
trically unique T� � �T separations up to 6.5 Å in the geometrical repeat
unit of each mineral (or synthetic) were incorporated. Red lines represent
the set minimum (3.713 Å) T� � �T separations permitted during embed-
ding. In (a), black points represent Si� � �Si separations and the blue,
purple, green, red, pink and yellow points represent T� � �T separations
that involve the T cations Al, V, Be, B, Fe and Li, respectively.



type of T cation and T� � �T separation as unlinked vertices are

not restrained by T–O bonds. The minimum T� � �T distance is

3.54 Å [Si–Si in marsturite (Kolitsch, 2008)] but there are no

data between 3.540 and 3.713 Å and only �20 data points

between 3.713 and 3.904 Å. Hence, when embedding chain

graphs, we set the minimum T� � �T separation to 3.713 Å. For a

particular embedding, the minimum difference allowed

between T–T and T� � �T is 3.713 � 3.210 = 0.503 Å (Fig. 3,

shown in pink). Any chain graph that requires T–T distances

smaller or larger than 3.060�0.15 Å and/or T� � �T separations

smaller than 3.713 Å, once embedded in Euclidean space, is

unlikely to occur in minerals. A software program has been

developed to apply T–T and T� � �T restraints to the chain

graphs generated by Day & Hawthorne (2022); this is

discussed in detail below.

4.2. Applying the restraint of equal T–T distances

How do we proceed with applying the restraint of equal

T–T distances when considering the embedding of chain

graphs? There is no established way in which this may be done,

although there is some software available which can do this for

finite graphs in 2D (Rostami et al., 2014a,b). We wish to

understand the properties of graphs that allow or prevent such

edge equalization, and hence we will use a combination of

visual examination and software minimization of the differ-

ences between edge lengths in an embedded graph. Initially,

we will proceed by examining a cross section of the chain

graphs derived by Day & Hawthorne (2022).

4.2.1. Acyclic graphs. Let us first consider acyclic chain

graphs which consist of a single backbone that may or may not

be decorated with n-membered linear branches (Day &

Hawthorne, 2022). Acyclic chain graphs are strictly chains as

opposed to ribbons and tubes as they may be broken by

eliminating a single linkage between adjacent tetrahedra (Day

& Hawthorne, 2020).

We are dealing with graphs that have translational

symmetry (e.g. Fig. 4) and thus graphs with edges that link

translationally equivalent vertices along the infinite 1-periodic

path through the chain graph. We need to be able to distin-

guish between translationally equivalent vertices when

describing these graphs, and hence we need a form of labelling

that conveys the information that the vertices are transla-

tionally equivalent in the +c direction and also occur in

different unit cells (topological repeat units). We will label

such vertices by their integer label in the original unit cell and

indicate their translational character by addition of one or

more prime symbols, the number of primes indicating the

number of translations that relate the original vertex to its

translationally equivalent vertices. Translation in the � c

direction will be indicated by a negative (� ) sign before the

prime. This notation is shown in Fig. 4.

A simple chain graph with vertex connectivity 1V1
2V1

3V1 is

shown in Fig. 4(a) in which there are three different T–T

distances (edge lengths). The T–T distances may be equalized

by changing the relative position of vertices to produce the

unit-distance graph in Fig. 4(b). A more complicated chain

graph with vertex connectivity 1V3
2V1

3V1
4V1 is shown in Fig.

4(c); here, it is necessary to untangle the graph first, and then it

becomes apparent that the T–T distances may be equalized as

shown in the unit-distance graph in Fig. 4(d). We need a way to

test whether an acyclic graph can be equalized. Consider a

walk in the graph 1V3
2V1

3V1
4V1 in Fig. 4(c) in which we colour

each edge dashed green as it is traversed in the direction of the

arrow, set its length to T–T, and colour each vertex yellow

when it has only incident green edges [Fig. 5(a)]. We start on

vertex 1 and move to vertex 2, colouring the edge 1–2 dashed

green; as vertex 2 is not a component of any other green edges,

we may move vertex 2 to set the 1–2 edge length to T–T, and

this action does not affect any other green edges. Next, we

move to vertex 3, colouring edge 2–3 dashed green and vertex

2 yellow, and then we move to vertex 5, colouring edge 3–5

green and vertex 5 yellow [Fig. 5(a)]. As there is no red vertex
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Figure 3
A histogram of observed T–T distances and T� � �T separations in all
chain-silicate minerals and selected synthetic compounds. The areas in
pink from 2.616 to 2.910 Å represent the range in which T–T distances are
not allowed during embedding. The area in pink from 3.210 to 3.713 Å is
the range in which T–T distances and T� � �T separations are not allowed
during embedding.

Figure 4
(a) An acyclic chain graph; (b) the corresponding unit-distance graph
now equalized (i.e. with edges of equal length); (c) an acyclic chain graph;
(d) the corresponding unit-distance graph after embedding, untangling
and with edges of equal length. Vertices are labelled as described in
Section 4.2.1 and dashed black lines show the repeat units of each chain.



to traverse from vertex 5, we change the dashed green edges to

solid green edges and return to the lowest numbered vertex

that is still red [vertex 1, Fig. 5(a)]. We traverse edge 1–6,

colouring it dashed green and vertex 6 yellow; we return to

vertex 1 and traverse edge 1–30, colouring it dashed green, and

colour the translationally symmetric edge 100–3 dashed green

and vertex 1 yellow. As vertices 1 and 2 are yellow [Fig. 5(b)],

we move to vertex 3 and traverse the edge 3–4, colouring it

green and the vertices 3 and 4 yellow [Fig. 5(c)]. In this

sequence, there is no restraint on setting the lengths of all

edges of the graph to T–T, as all traversed edges that are

equalized are initially incident at a red vertex which can be

moved without affecting the length of any green (fixed) T–T

edge. This heuristic can apply to any number of vertices in any

acyclic graph: hence all acyclic graphs are equalizable.

4.2.2. Cyclic graphs. Let us consider the cyclic chain graph

with vertex connectivity 2V1
3V2 in Fig. 6(a) with two distinct

T–T distances [edges 1–2 and 1–3 (or 2–3)]. Using the above

heuristic, we begin the walk at vertex 1: 1! 20 ! 30 ! 10 !

20 which results in 1(red), 20(red), 30(yellow), 10(red),

20(yellow). Starting again at 10 ! 200 ! 300 ! 100 ! 200 results

in 10(yellow), 200(red), 300(yellow), 100(red), 200(yellow). Thus,

all edges of any unit cell can be equalized as shown in Fig. 6(a)

and this chain graph is equalizable as shown in Fig. 6(b). Fig.

6(c) shows a more complicated cyclic graph, also with vertex

connectivity 2V1
3V2. Using the above heuristic, we begin the

walk at vertex 1: 1! 20 ! 200 ! 10 ! 1 which leaves all the

vertices red. Starting again at 10 ! 200 ! 2000 ! 100 ! 10

results in 10(yellow), 200(yellow), 2000(red), 100(red). Continuing

these walks changes all vertices to yellow and all edges to

green, and hence the graph is equalizable. Untangling this

graph shows the equalized graph to be a chain of edge-sharing

pentagons [Fig. 6(d)]. However, note that the number of

vertices in the repeat unit of the geometric chain graph in Fig.

6(d) is 6, double the number of vertices (3) in the topological

repeat unit of the corresponding chain graph in Fig. 6(c).

The examples given here suggest that all cyclic graphs are

equalizable, an important conclusion as it means that we must

look elsewhere for the reason why graphs with TO<2.5 do not

form crystal structures (Day & Hawthorne, 2020). In this

regard, it is instructive to examine the cyclic graph 4V2 [Fig.

7(a)] with two distinct T–T distances [edges 1–1 (or 2–2) and

1–2]. Using our heuristic approach, we begin the walk at

vertex 1: 1 ! 10 ! 200 ! 20 ! 1 which results in 1(red),

10(red), 200(red), 20(red) and 1(red). Moving to 10, we begin the

next walk: 10 ! 100 ! 2000 ! 200 ! 10 which results in

10(yellow), 100(red), 2000(yellow), 200(yellow), 10(yellow). Thus,

the heuristic indicates that the graph is equalizable.

However, if we attempt equalization in a plane, a problem

arises. Let us denote the angle 10–1–20 as �, whence 1–10 = 1 �

20cos �. If we progressively decrease � [Figs. 7(b), 7(c), 7(d)] to

reduce the difference in the T–T distances 1–1 and 1–2, the

T� � �T 1–2 separation [Fig. 7(b)] becomes smaller than the T–T

distances. If 1–10 = 1–20 = T–T, � = 0� and vertices 1 and 2 must

overlap, resulting in a T� � �T separation of 0 [Fig. 7(d)]. In

Section 4.1.2, we allow T–T distances to differ by �5% and

T� � �T separations must be at least �16% larger than T–T

distances. We conclude that the chain graph in Fig. 7(a) cannot

form a viable infinite chain of (TO4)n� tetrahedra as T–T

distances cannot be made equal (or close to equal) without
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Figure 5
A series of acyclic chain graphs illustrating the heuristic for determining if
the edges of an acyclic chain graph can be equalized. Colouring and
labelling are explained in Section 4.2.1.

Figure 6
A series of cyclic chain graphs illustrating the equalization and untangling
of edges of a cyclic chain graph. Colouring and labelling are explained in
Section 4.2.1.

Figure 7
(a) A 4V2 unit-distance graph in which the 1–2 and 1–1 (2–2) edges are of
different length; (b), (c) the unit-distance graph in (a) in which vertices 1
and 2 are moved towards each other to reduce the difference in edge
lengths; (d) the unit-distance graph in (a) in which vertices 1 and 2 are
moved to the same position to make the edge lengths the same. Note how
the 1–2 and 1–1 (2–2) edges cannot be equal until � = 0� and vertices 1 and
2 occupy the same position, and thus this unit-distance graph is non-
equalizable in 2D. Colouring and labelling are explained in Section 4.2.1.



forcing T� � �T separations that are 0 (or close to 0). Note that

this example is a limiting case; the T–T distances of most chain

graphs may be equalized without reducing T� � �T separations

to 0 (or even close to 0).

4.3. Planar and non-planar geometric graphs: the restraint of

minimum T� � �T separations

Any chain graph may be embedded in Euclidean space

while applying the restraints of equal T–T distances and

minimum T� � �T separations to determine if it is compatible

with the metrics of chains of TO4 tetrahedra. Such embeddings

result in the following types of unit-distance graphs:

(i) Unit-distance graphs with equal (or almost equal) T–T

distances and T� � �T separations at least �16% larger than all

T–T distances.

(ii) Unit-distance graphs with equal (or almost equal) T–T

distances and T� � �T separations that are not �16% larger

than T–T distances [e.g. Figs. 7(b), 7(c), 7(d)].

(iii) Unit-distance graphs with unequal T–T distances and

T� � �T separations at least �16% larger than all T–T distances

[e.g. Fig. 6(c)].

Unit-distance graphs of types (ii) and (iii) are unlikely to

occur in minerals, whereas unit-distance graphs of type (i) may

occur in minerals. Although embedded chain graphs that

result in (i) may occur in minerals, they may occur only with

specific geometries as the set of all possible geometries that a

chain graph may adopt once embedded is restrained by

minimum T� � �T separations.

4.3.1. Acyclic graphs. Consider the finite acyclic geometric

graph in Fig. 8(a). We may equalize the edge lengths to

produce the finite unit-distance graph in Fig. 8(b) in which all

T–T distances are equal. The vertices and edges of the unit-

distance graph in Fig. 8(b) lie in the plane of the page and no

edges cross; thus, it is planar. However, we may also produce a

non-planar equalized unit-distance graph in which vertices 2

and 5 do not lie in the plane of the page and edges 1–2 and 4–5

extend out of the plane of the page [Fig. 8(c)]. There are an

infinite number of geometries that this unit-distance graph

may adopt, and we conclude that equalization of the edge

lengths of this acyclic geometric graph [Fig. 8(a)] does not

restrain the geometry of the resultant unit-distance graph.

This is the case for all acyclic graphs. One may equalize the

geometric graph in Fig. 8(a) to produce the planar geometric

graph in Fig. 8(d). However, in this geometric graph, the T� � �T

separation 2–5 is shorter than the T–T distance and thus this

geometry is not physically possible in a chain of tetrahedra

embedded in a crystal structure, an example of how minimum

T� � �T separations may restrain the geometry of acyclic

geometric graphs.

4.3.2. Cyclic graphs. Consider the cyclic geometric graphs

in Figs. 9(a) and 9(b). These geometric graphs are planar but

have unequal T–T distances: the red edges are either shorter

[Fig. 9(a)] or longer [Fig. 9(b)] than the black edges. There is

no way to equalize the T–T distances in Figs. 9(a) and 9(b)

without (i) crossing edges and/or overlapping vertices (which

reduces the T� � �T separation 5–2 or 5–3 to zero), or (ii)

moving vertices out of the plane of the page. Thus, equalizing

the T–T distances of both geometric graphs must result in a

non-planar unit-distance graph [Fig. 9(c)]. We conclude that

equalizing the edge lengths of the geometric graphs in Figs.

9(a) and 9(b) while maintaining planarity is not possible [Fig.

9(c)] and we refer to such geometric graphs as planar non-

equalizable. These geometric graphs may be linked to form 1-

periodic unit-distance graphs [Fig. 9(d)] that are also forced

into a non-planar arrangement when the T–T distances are

equalized [Fig. 9(e)]. Throughout this paper, planar equalized

unit-distance graphs are drawn with edges of equal length;

non-planar equalized unit-distance graphs may not appear to

have equal edges due to depth perspective.
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Figure 8
(a) A planar finite unit-distance graph with edges of unequal length; (b)
the unit-distance graph in (a) now equalized; (c) the unit-distance graph
in (b) in which vertex 2 is moved out of the plane of the page and vertex 5
is moved into the plane of the page to produce a non-planar unit-distance
graph; (d) the unit-distance graph in (b) in which vertices 2 and 5 are
moved such that the T� � �T separation 2–5 (denoted by the red ellipse) is
shorter than the T–T distance and is not allowed.

Figure 9
A planar finite unit-distance graph in which the 1–5 and 4–5 edges (shown
in red) are (a) shorter and (b) longer than the other edges; (c) the unit-
distance graph in (a) and (b) now equalized; this unit-distance graph is
forced into a non-planar arrangement by equalizing the 1–5 and 4–5
edges; (d) a planar unit-distance graph in which the 1–3 and 2–3 edges are
shorter than the 1–1, 1–2 and 2–2 edges; (e) the unit-distance graph in (d)
now equalized; it is forced into a non-planar arrangement by equalizing
the 1–3 and 2–3 edges. Vertices are labelled as described in Section 4.2.1
and dashed black lines show the repeat units of each chain.



It is important to differentiate topological planarity and

geometrical planarity. Topological planarity is defined by

Fáry’s theorem (Fáry, 1948) which states that any planar graph

can be drawn without edge crossings so that its edges are

straight-line segments (Chartrand et al., 2010). Note that there

is no requirement for vertices to lie in a Euclidean plane as this

theorem applies to graphs which have no geometrical prop-

erties. According to Fáry’s theorem, all chain and ribbon

graphs are planar, and all tube graphs are non-planar as they

cannot be drawn without at least two edges crossing (Day &

Hawthorne, 2020). Geometric planarity describes the

planarity of geometric graphs (and unit-distance graphs),

which have geometric properties (e.g. specified T–T

distances). Here, the relative position of vertices is of concern

and the vertices of geometrically planar graphs must lie in the

same Euclidean plane, otherwise they are geometrically non-

planar (Barthélemy, 2011). For example, according to Fáry’s

theorem, the graph in Fig. 9(e) is topologically planar as it can

be drawn without edge crossings [e.g. Fig. 9(d)], but is

geometrically non-planar as all vertices do not lie in the same

Euclidean plane. When we use the terms planar and non-

planar (as done above), we are referring to geometric

planarity unless otherwise stated.

5. Drawing chain graphs: colouring and labelling of

vertices and edges

Chain graphs with a topological repeat unit (nt) that contains

more than 6 vertices are often visually complex and difficult to

comprehend. It is important that they be drawn in a way that

allows accurate identification of different aspects of the chain

(e.g. backbones, branches, polygons). To this end, we develop a

colour scheme for both vertices and edges that allows easy

visual identification of the different constituents of chain

graphs irrespective of their degree of entanglement.

Consider the acyclic chain graph in Fig. 10(a) with vertex

connectivity 1V2
2V3

3V2. The path 1–0 ! 2–0 ! 3–0 ! 1! 2!

3! 10 ! 20 ! 30 . . . etc. is an infinite path in the direction of

chain polymerization and thus vertices 1–3 and the edges

linking such vertices comprise the backbone and are coloured

red and black, respectively. The path 5! 4! 6! 7 is a finite

path (not a cycle) which does not include any edges that exit

the repeat unit and thus vertices 4–7 and the edges linking

those vertices comprise a linear branch and are coloured green

and black, respectively. Notice that the 3–4 edge is not

included in either path as this edge links the linear branch to

the backbone and is coloured blue. In Fig. 10(b), the path 1–0

! 2–0 ! 1! 2! 10 ! 20 . . . etc. defines the backbone and

the cycle 3! 4! 6! 5 does not include any edges that exit

the topological repeat unit and thus vertices 3–6 and the edges

linking those vertices comprise a 4-membered polygonal

branch and are coloured green and black, respectively.

The vertices of chain graphs may be labelled as described in

Section 4.2.1. This labelling scheme allows identification of

infinite paths (backbones) as above and/or polygons (cycles)

that span more than one topological repeat unit. Consider the

cyclic chain graph in Fig. 10(c) with vertex connectivity 2V1
3V2.

This graph contains triangles defined by the cycles 1–2–3–1

and 1–2–4–1 (shown with green arrows) and a square defined

by the cycle 1–3–2–4–1. These polygons are cycles as no vertex

or edge is crossed more than once. In Fig. 10(d), a cyclic chain

graph with vertex connectivity 3V2 is shown and a square is

defined by the cycle 1–2–20–10–1. However, this cycle involves

crossing translationally equivalent vertices (2) and edges (1–2)

more than once, but such vertices and edges belong to

different (adjacent) repeat units and are different (vertices

labelled 2 and 20 and edges labelled 1–2 and 10–20). Thus 1–2–

20–10–1 is a valid cycle, reinforcing the need for such a labelling

scheme.

6. Rigid and flexible geometric graphs

In Figs. 7, 8 and 9, we show how the geometry (planarity) of

some unit-distance graphs is affected by equalizing the edge

lengths of their parent cyclic chain graphs. Following the

axioms of topological restraint theory, commonly known as

rigidity theory (Asimow & Roth, 1978; Crapo, 1979; Thorpe,

1983; Sen & Mason, 2019), we may show how the geometry (in

both 2D and 3D) of cyclic unit-distance graphs is restrained by

a property called rigidity, or conversely, flexibility. Here we are

concerned only with geometric restraints due to equal T–T

distances; geometric restraints due to T� � �T separations will

be discussed later.

Consider the square unit-distance graph in Fig. 11(a).

Vertices 1 and 2 may be moved within the plane of the page to

form a rhombus (indicated by the dashed lines) while retaining

the length of the 1–2, 1–3 and 2–4 edges, and thus this graph is

flexible in 2D. In Fig. 11(b), the same unit-distance graph is

shown where vertex 2 is moved into the third dimension while

retaining the 1–2 and 2–4 edge lengths; thus this unit-distance
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Figure 10
A series of examples showing the colouring and labelling schemes used
for drawing chain graphs and the method by which polygons are identi-
fied. (a) An acyclic chain graph in which vertices that comprise the
backbone chain and linear branches are shown in red and green,
respectively, edges linking the backbone chain to a branch are shown in
blue. (b) A cyclic chain graph with polygonal branches drawn as
described in (a). (c) A cyclic chain graph in which the cycles 1–2–3–1 and
1–2–4–1 (shown with green arrows) define triangles and the cycle 1–3–2–
4–1 defines a square. (d) A cyclic chain graph in which the cycle 1–2–20–
10–1 defines a square. In (d), note that the vertex-labelling scheme allows
identification of polygons that span multiple repeat units. Vertices are
labelled as described in Section 4.2.1 and dashed black lines show the
repeat units of each chain graph.



graph is flexible in 3D. Consider the unit-distance graph in Fig.

11(c); there is no way to move any of the vertices to produce a

geometrically distinct triangle (i.e. a non-equilateral triangle)

without making at least one of the edges shorter (or longer)

than the others; thus, this unit-distance graph is rigid. Mini-

mally rigid unit-distance graphs in 2D are commonly referred

to as Laman graphs and must have 2n � 3 edges, where n is the

number of vertices (Laman, 1970). One may convert any

minimally rigid unit-distance graph into a flexible graph by

removing one edge. In rigidity theory, it is not required that all

rigid geometric graphs have equal edges, only that the lengths

of their edges do not change, and thus all edges are equalized

before testing for rigidity. The triangle unit-distance graph

[Fig. 11(c)] is one of the simplest examples of a Laman graph

and may be combined with other triangles or squares to

produce the other Laman graphs. For example, if two equi-

lateral triangles share an edge [Fig. 11(d)], the unit-distance

graph is rigid within the plane of the page (Laman, 1970; Haas

et al., 2005).

If one replaces each vertex with a hinge and edges with rigid

rods of equal length, it is not possible to move the hinge in the

plane of the page (in 2D) without moving the entire unit-

distance graph. One may move a hinge into or out of the plane

of the page (i.e. in 3D) but this would not result in a geome-

trically distinct unit-distance graph. The unit-distance graph in

Fig. 11(d) consists of two edge-sharing triangles and is rigid in

2D but not in 3D as vertex 2 may be moved into the third

dimension while retaining equal edge lengths [Fig. 11(e)].

Rigid geometric graphs in 3D are an open problem in distance

geometry and geometric graph theory, but it has been shown

that most (but not all) rigid geometric graphs have 3n � 6

edges (Grasegger et al., 2018) in 3D. If an edge is added to the

unit-distance graph in Fig. 11(d) that links vertices 2 and 3, a

tetrahedron unit-distance graph is produced [Fig. 11(f)] which

is rigid in 2D and 3D.

6.1. Modes of geometric modification

If any number of vertices of a geometric graph G are moved

to produce a geometric graph G0 that is geometrically distinct

from G, then G has been geometrically modified. The set of

vertices moved to produce G0 is a mode of geometric modifi-

cation or, more simply, a mode, and different modes are

generated by moving different combinations of vertices. For

most geometric graphs, an infinite number of geometrically

distinct (but topologically identical) graphs may be generated

by a finite number of modes. Consider a geometric graph with

n vertices, all of which are equivalent. Moving one vertex is

equivalent to moving any other vertex, and hence there is only

one mode that involves moving one vertex. Similarly, all pairs

of vertices (doublets) are equivalent and there is only one

mode involving moving a pair (doublet) of vertices, and

similarly for any tuplet of vertices. For n vertices, there are n

tuplets and hence n possible modes for a geometric graph with

n equivalent vertices. Consider a geometric graph with n

vertices, none of which are equivalent. Moving one vertex is

distinct from moving any other vertex, moving any doublet of

vertices is distinct from moving any other doublet of vertices,

and similarly for any tuplet of vertices. In this case, the number

of distinct modes is given by the partition of n: p(n). Thus,

symmetry relations among the vertices decrease the number of

modes according to the details of the symmetry operations

involved.

All possible modes for a given finite geometric graph may

be generated using the vertex subsets (see Day & Hawthorne,

2022) of the underlying graph and are considered valid if they

produce geometrically distinct geometric graphs (with respect

to the original geometric graph) without changing the length

of any edge (i.e. equal edge lengths are retained for unit-

distance graphs). A mode is considered invalid if it requires

that edge lengths be unequal or if it does not produce a

geometrically distinct geometric graph (with respect to the

original geometric graph).

6.2. 2D and 3D modes

Modes may be 2D or 3D and involve moving vertices in the

plane or out of the plane of the geometric graph (or the page),

respectively. However, some geometric graphs are non-planar

and do not define a Euclidean plane; such geometric graphs

have only 3D modes. A 3D mode of a non-planar geometric

graph will always produce a non-planar geometric graph. It

follows that only planar geometric graphs have 2D modes, and

that a valid 2D mode will always produce a planar geometric

graph. However, a 3D mode of a planar geometric graph may

produce a planar or non-planar geometric graph. An invalid

2D or 3D mode of a planar geometric graph may produce a

graph that is geometrically identical to the original geometric

graph but is rotated in 2D or 3D space with respect to the

original geometric graph. Such modes are referred to as
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Figure 11
(a) A planar square unit-distance graph that is flexible in 2D as vertices 1
and 2 can be moved in the plane of the square to produce a unit-distance
graph that is geometrically distinct from the original unit-distance graph
(a rhombus rather than a square) while retaining equal edge lengths. (b)
The square unit-distance graph in (a) viewed in the plane of the page.
This unit-distance graph is also flexible in 3D as vertex 2 can be moved
out of the plane of the square to produce a geometrically distinct unit-
distance graph while retaining equal edge lengths. (c) A triangular unit-
distance graph that is rigid in 2D and 3D as no vertex (or combination of
vertices) can be moved to produce a geometrically distinct unit-distance
graph without forcing edges to be of unequal length. (d) A unit-distance
graph that is rigid in 2D but (e) flexible in 3D. (f) A tetrahedron unit-
distance graph that is rigid in 2D and 3D. Dashed black lines and arrows
show the movement of vertices 1 and 2 in (a) and vertex 2 in (b) and (e).



rotational modes. There are three possibilities for rotational

modes:

(i) A valid 2D mode that produces a geometric graph that is

geometrically identical to the original but rotated in the plane

of the original geometric graph.

(ii) A valid 3D mode of a planar geometric graph that

produces a geometric graph that is geometrically identical to

the original but rotated such that vertices lie on a different

plane than those of the original geometric graph.

(iii) A valid 3D mode of a non-planar geometric graph that

produces a geometric graph that is geometrically identical to

the original but rotated into an orientation different from that

of the original geometric graph.

It follows that there are two types of invalid modes: (i) those

that force unequal edge lengths, and (ii) those that are rota-

tional modes.

Consider the geometric graph in Fig. 12(a); here all edges

are of equal length and we can specify this geometric graph as

a unit-distance graph. The vertex subsets are used to derive all

possible 2D and 3D modes: vertices 1 and 4 are isomorphic

and vertices 2 and 3 are isomorphic, reducing the number of

different modes. For example, mode (9) involves vertex 2;

there is no mode listed that involves vertex 3 as vertices 2 and

3 are isomorphic. Similarly, mode (15) involves moving

vertices 3, 1 and 2 and there is no mode listed that involves

moving vertices 3, 4 and 2, as vertices 1 and 4 are isomorphic.

In Fig. 12(b), mode (1) is applied and any movement of vertex

2 (or 3) in 2D results in edges of unequal length (red dashed

edges) and thus this mode is invalid (and shown in red). In Fig.

12(c), mode (9) is applied and vertex 2 is moved out of the

plane of the page to produce a geometrically distinct unit-

distance graph while retaining equal edge lengths and thus this

mode is valid and shown in green. In Fig. 12(d), mode (11) is

applied and vertices 1 and 2 are moved out of the plane of the

page (in 3D) to produce a unit-distance graph that is

geometrically identical to the original graph but is rotated

180�; thus (11) is a rotational mode (and is shown in purple).

Although the unit-distance graph produced by mode (11) is

planar [Fig. 12(d)], it cannot be produced by the invalid mode

(3) as moving vertices 1 and 2 to the positions of vertices 10

and 20 in the plane of the page (in 2D) would involve short-

ening edges at intermediate positions. It follows that any valid

mode must retain equal edge lengths for any position of the

vertices associated with that mode. In Fig. 12(e), mode (13) is

applied and vertices 2 and 3 are moved out of the plane of the

page to produce a unit-distance graph that is geometrically

distinct from the original unit-distance graph while retaining

equal edge lengths; thus (13) is a valid mode. Each valid mode

corresponds to an infinite number of geometrically distinct

unit-distance graphs as vertices may be moved to different

positions while retaining equal edge lengths. For example,

consider the unit-distance graph in Fig. 12(f); vertex 2 may be

moved out of the plane of the page through an infinite number

of non-equivalent positions, each with different 20–4–3 angles,

starting at 180� and becoming progressively smaller through

positions ‘a’–‘d’ [Fig. 12(f)].

6.3. Rigid and flexible unit-distance graphs

By comparing the number of valid and invalid modes for a

set of unit-distance graphs, we can gauge the relative degree of

rigidity for a unit-distance graph with m modes, mv valid

modes and mi invalid modes. We define four rigidity groups: (i)

if mi = m, it is rigid; (ii) if mv = m, it is flexible; (iii) if mi�
1
2
m, it

is semi-rigid; (iv) if mi < 1
2
m, it is semi-flexible.

We may further differentiate the degree of rigidity of a set

of unit-distance graphs by appending mi/m to the rigidity

group; thus in Fig. 12(a), the unit-distance graph is 14/16-semi-

rigid and is more rigid than a 12/16-semi-rigid unit-distance

graph. One may also describe the degree of rigidity with

respect to planarity; for example, the unit-distance graph in

Fig. 12(a) is 8/8-rigid in 2D (all 2D modes are invalid) and 6/8-

semi-rigid in 3D. It follows that a 0/6-flexible unit-distance

graph (mv = m = 6) has a higher degree of flexibility than a 0/4-

flexible unit-distance graph as the first unit-distance graph may

be geometrically modified by six unique modes compared with

four unique modes for the second unit-distance graph, and the

corresponding structure in a mineral will have more geome-

trical freedom to deform in response to stress (temperature,

pressure, chemical substitution etc.).
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Figure 12
(a) A planar unit-distance graph, the corresponding vertex and edge
subsets, and the 2D and 3D modes of geometric modification. Mode (1)
involves moving vertex 2 in 2D (in the plane of the unit-distance graph) as
shown in (b) and requires that the 1–2 and 2–4 edges are of unequal
length (red dashed lines), and thus mode (1) is invalid. Mode (9) involves
moving vertex 2 in 3D (out of the plane of the unit-distance graph) as
shown in (c) and results in a geometrically distinct unit-distance graph
while retaining equal edge lengths, and thus mode (9) is valid. Mode (11)
involves moving vertices 1 and 2 in 3D as shown in (d). Here, equal edge
lengths are retained but a geometrically distinct unit-distance graph is not
produced; instead, the unit-distance graph is rotated in 3D, and thus mode
(11) is a rotational mode. Mode (13) involves moving vertices 2 and 3 in
3D as shown in (e), and results in a geometrically distinct unit-distance
graph while retaining equal edge lengths, and thus mode (13) is valid. (f)
Four geometrically distinct graphs that correspond to mode (9) and the
movement of vertex 2 to positions ‘a’, ‘b’, ‘c’ and ‘d’. Each valid mode
corresponds to an infinite number of geometrically distinct unit-distance
graphs. Dashed black lines and arrows show the movement of a vertex
labelled n to the position n0. Valid, invalid and rotational modes are
shown in green, red and purple, respectively.



6.4. Degree of rigidity and flexibility of unit-distance graphs

This approach can now be applied to infinite chain graphs

and the vertex subsets for the corresponding directed proto-

graph [see Day & Hawthorne (2022) for the definition of

directed proto-graph] may be used to determine the modes of

geometric modification. However, as chain graphs and the

unit-distance graphs they correspond to are infinite, we must

also consider different types of medium-range modification

(e.g. modulation) that may occur in chains. With respect to the

original unit distance G, a geometrical modification that

produces a unit-distance G0 may be classified as:

(i) A short-range modification: for a given mode, a vertex

(or vertices) is moved in every repeat unit to symmetrically

equivalent positions such that nt = ng, or

(ii) A medium-range modification: for a given mode, a

vertex (or vertices) is not moved in every repeat unit or not

moved to equivalent positions in every repeat unit such that

nt 6¼ ng, and ng is a multiple of nt (giving rise to chain kinking,

modulation, spiralling etc.).

Consider the unit-distance graph of edge-sharing squares

and the corresponding directed proto-graph in Fig. 13(a).

There are four valid modes: mode (1) involves moving vertex 2

in 2D, converts each square into a rhombus and results in the

geometrically distinct unit-distance graph in Fig. 13(b). This

unit-distance graph shows short-range modification as vertex 2

is moved to the same symmetrically equivalent position in

every topological repeat unit such that nt = ng = 2. As

explained for Fig. 12(f), any valid mode corresponds to an

infinite number of unit-distance graphs, and we may move

vertex 2 in 2D such that the 1–1–2 (or 1–2–2) angle [Fig. 13(b)]

is any value other than 180�, and thus mode (1) corresponds to

an infinite number of short-range modifications. Mode (2)

involves moving vertices 1 and 2 in 2D and produces the short-

range modified unit-distance graph in Fig. 13(c). This unit-

distance graph is geometrically identical to the unit-distance

graph in Fig. 13(b) but rotated in the plane of the unit-distance

graph. However, mode (2) is not a rotational mode as it may

be applied to the unit-distance graph in Fig. 13(a) at different

intervals (repeat units) to produce additional geometrically

distinct unit-distance graphs that show medium-range modi-

fication. For example, if mode (2) is applied to every second

repeat unit of the unit-distance graph in Fig. 13(a), the

geometrically distinct unit-distance graph in Fig. 13(d) is

produced with a geometrical repeat unit that contains 4

vertices (ng = 4) rather than 2 (nt = 2). If mode (2) is applied to

every third repeat unit of the unit-distance graph in Fig. 13(a),

the geometrically distinct unit-distance graph in Fig. 13(e) is

produced with a geometrical repeat unit with ng = 6. By

applying mode (2) to every fourth, fifth, sixth etc. repeat unit,

unit-distance graphs with ng = 8, 10, 12 etc. are produced.

Additional geometrically distinct unit-distance graphs are

produced by applying mode (2) to different combinations of

repeat units and/or by moving vertices 1 and 2 to symme-

trically non-equivalent positions in 2D with respect to the

other repeat units, i.e. forming a chain of edge-sharing squares

and rhombuses [Fig. 13(f)]. The unit-distance graphs in Figs.

13(d), 13(e) and 13(f) show medium-range modification.

Mode (3) involves moving vertex 2 of the unit-distance

graph in Fig. 14(a) in 3D and results in the unit-distance graph

in Fig. 14(b) that is geometrically identical to that in Fig. 14(a)

and the unit-distance graph in Fig. 14(c) that is geometrically

distinct from the unit-distance graph in Fig. 14(a) but identical

to unit-distance graphs in Figs. 13(b) and 13(c). As is the case
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Figure 13
(a) A unit-distance graph, the corresponding directed proto-graph, vertex subsets and the 2D modes. Mode (1) involves moving vertex 2 in 2D as shown
in (b) to produce a planar unit-distance graph that is geometrically distinct from the original unit-distance graph in (a). Mode (2) involves moving
vertices 1 and 2 in 2D as shown in (c) to produce a planar unit-distance graph that is geometrically identical to that shown in (b). Mode (2) may be
applied to every second or third repeat unit as shown in (d) and (e), respectively, to produce two planar unit-distance graphs that are both geometrically
distinct from the original unit-distance graph in (a). Mode (2) may also be applied by moving vertices 1 and 2 to symmetrically non-equivalent positions
in each repeat unit as shown in (f) to produce an additional geometrically distinct planar unit-distance graph. Both 2D modes result in planar unit-
distance graphs that are geometrically distinct from the original unit-distance graph in (a) and are therefore valid. Legend as in Figs. 10 and 12.



for mode (1), mode (3) must involve moving vertex 2 of every

repeat unit to symmetrically equivalent positions; if this is not

done, the edge lengths of the unit-distance graph become

unequal, and mode (3) does not correspond to any unit-

distance graphs that show medium-range modification. Mode

(4) involves moving vertices 1 and 2 in 3D; if vertices 1 and 2 of

every repeat unit are moved to symmetrically equivalent

positions, the resulting unit-distance graph [Fig. 14(d)] is

geometrically identical to the unit-distance graph in Fig. 14(a)

but is rotated into the plane of the page. However, like mode

(2), mode (4) is not a rotational mode as vertices 1 and 2 may

be moved to symmetrically non-equivalent positions at

different intervals (repeat units) to produce additional

geometrically distinct unit-distance graphs that show medium-

range modification. For example, if mode (4) is applied to

every second repeat unit of the unit-distance graph in Fig.

14(a), the geometrically distinct unit-distance graph in Fig.

14(e) is produced for which ng = 4. The geometric unit-

distance graph in Fig. 14(f) also shows medium-range modi-

fication and is produced by moving vertices 1 and 2 to non-

equivalent positions in groups of three adjacent repeat units

separated by groups of two repeat units in which vertices 1 and

2 are not moved. We conclude that the unit-distance graph in

Fig. 13(a) is 0/4-flexible as all 2D and 3D modes are valid.

Consider the unit-distance graph consisting of edge-sharing

triangles and its corresponding directed proto-graph in Fig.

15(a). Here, modes (1), (2) and (3) are invalid and mode (4) is

valid. Mode (4) involves moving vertices 1 and 2 in 3D; if

vertices 1 and 2 of every repeat unit are moved to symme-

trically equivalent positions, the unit-distance graph in Fig.

15(b) is produced which is geometrically identical to the unit-

distance graph in Fig. 15(a) but is rotated in the plane of the

page. If mode (4) is applied to every second repeat unit of the
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Figure 14
(a) A unit-distance graph [isomorphic with the unit-distance graph in Fig. 13(a)], the corresponding directed proto-graph, vertex subsets and the 3D
modes. Mode (3) involves moving vertex 2 in 3D and may result in a geometrically identical (b) or distinct (c) planar unit-distance graph with respect to
the original unit-distance graph in (a). Mode (4) involves moving vertices 1 and 2 in 3D as shown in (d) to produce a planar unit-distance graph that is
geometrically identical to that shown in (a) and (b). Mode (4) may be applied to every second repeat unit as shown in (e) to produce a non-planar unit-
distance graph that is geometrically distinct from the original unit-distance graph in (a). Mode (4) may also be applied by moving vertices 1 and 2 to
symmetrically non-equivalent positions in each repeat unit as shown in (f) to produce an additional geometrically distinct non-planar unit-distance
graph. Both 3D modes result in planar and non-planar unit-distance graphs that are geometrically distinct from the original unit-distance graph in (a) and
are therefore valid. Blue 3D sheets show the geometry and orientation of each unit-distance graph. Legend as in Figs. 10 and 12.

Figure 15
(a) A unit-distance graph, the corresponding directed proto-graph, vertex
subsets and the 2D and 3D modes. Modes (1), (2) and (3) cannot be
applied to produce unit-distance graphs that are geometrically distinct
from the original unit-distance graph in (a) without forcing unequal edge
lengths and are therefore invalid. Mode (4) involves moving vertices 1
and 2 in 3D as shown in (b) to produce a planar unit-distance graph that is
geometrically identical to the original unit-distance graph in (a). Mode
(4) may be applied to every second repeat unit as shown in (c) to produce
a non-planar unit-distance graph that is geometrically distinct from the
original unit-distance graph in (a). Mode (4) may also be applied by
moving vertices 1 and 2 to symmetrically non-equivalent positions in each
repeat unit as shown in (d) to produce an additional geometrically distinct
non-planar unit-distance graph, and therefore mode (4) is valid. Blue 3D
sheets show the geometry and orientation of each unit-distance graph.
Legend as in Figs. 10 and 12.



unit-distance graph in Fig. 15(a) and vertices 1 and 2 are

moved to symmetrically non-equivalent positions, the

geometrically distinct unit-distance graph in Fig. 15(c) is

produced in which ng = 4. If mode (4) is applied to every third

repeat unit of the unit-distance graph in Fig. 15(a) and vertices

1 and 2 are moved to symmetrically non-equivalent positions,

the geometrically distinct unit-distance graph in Fig. 15(d) is

produced for which ng = 6. We conclude that the unit-distance

graph in Fig. 15(a) is 3/4-semi-rigid.

6.5. Degree of unit-distance graph rigidity and the e/n ratio

The mathematical conditions for rigidity of infinite

geometric graphs are not known. However, as the ratio of the

number of edges to the number of vertices (e/n) increases, the

degree of rigidity of a geometric graph commonly increases

(and flexibility decreases). For example, consider the unit-

distance graph in Fig. 11(a) which is semi-rigid in 2D and 3D

with e/n = 1.0. If a 1–4 edge is added to this unit-distance

graph, e/n = 1.25 and the unit-distance graph in Fig. 11(d) is

produced which is rigid in 2D and semi-rigid in 3D. If a

2–3 edge is added to the unit-distance graph in Fig. 11(d),

e/n = 1.5 and the unit-distance graph in Fig. 11(f) is produced

which is rigid in both 2D and 3D. Thus, for the examples in

Figs. 11(a), 11(d) and 11(f), the degree of rigidity increases

with e/n.

Chain graphs cannot have e/n < 1 as each vertex must have

at least one incident edge and a repeat unit must be connected

to two adjacent repeat units by at least one edge along +c and

� c directions. Consider the simplest possible chain graph and

the corresponding unit-distance graph in Fig. 16(a) with vertex

connectivity 2V1 and e/n = 1.0. One may attempt to decrease

e/n by adding a vertex to the topological repeat unit, but this

requires that at least one edge is also added to connect that

vertex to the chain and thus e/n remains unchanged at 1.0.

Chain graphs cannot have e/n > 2 as the maximum degree of

any vertex is four. Consider the chain graph and the corre-

sponding unit-distance graph in Fig. 16(b) with vertex

connectivity 4V2 and e/n = 2.0; one may attempt to increase e/n

by adding an edge, but this is not possible as it produces

vertices of degree five. One may also attempt to remove a

vertex, but this would also remove all edges connected to that

vertex. and thus e/n cannot exceed 2.0.

As shown in Section 4.2.1, all acyclic chain graphs are

equalizable and have an equal number of edges and vertices in

the repeat unit (e/n = 1). All acyclic unit-distance graphs have

mv = m and hence are flexible (mv = m), from which we can

conclude that chain graphs with e/n = 1 are flexible. In cyclic

chain graphs, the number of edges must be greater than the

number of vertices (e/n > 1) in the repeat unit. It follows that

any acyclic chain graph (e/n = 1.0) may be converted to a cyclic

chain graph by adding one or more edges and in turn,

increasing e/n.

7. Compatibility of chain graphs with the metrics of

observed chain structures

Thus far, we have shown how embedding a chain graph and

equalizing the T–T distances (edge lengths) of any acyclic

chain graph does not restrain the geometry of the corre-

sponding unit-distance graph. We have also shown how

equalizing the T–T distances of a cyclic chain graph may

restrain the geometry of the corresponding unit-distance

graph, and the degree to which the geometry is restrained is a

function of the rigidity of the unit-distance graph (Section 6).

However, to fully evaluate the compatibility of any chain

graph with the average observed metrics of chains of (TO4)n�

tetrahedra in crystals, chains must be embedded in Euclidean

space while restraining not only T–T distances but also T� � �T

separations.

7.1. Restraining T� � �T separations during embedding

Consider the chain graph in Fig. 17(a); equalizing the T–T

distances in 2D produces the unit-distance graph in Fig. 17(b)

but also produces a T� � �T separation between vertices 2 and 20

(and 2 and 2–0) that is approximately equal to the T–T

distance. As described in Section 4.3, T� � �T separations must

be at least 1.16 times larger than any T–T distance; if this is not

the case, O2� ions of each tetrahedra will be too close toge-

ther, forming an unstable arrangement. It follows that a unit-

distance graph with the geometry shown in Fig. 17(b) will not

occur as a chain of tetrahedra. However, this unit-distance

graph is semi-flexible in 3D, and we may attempt to lengthen

the 2–20 separation by moving the green vertices out of the

plane of the page and the yellow vertices into the plane of the

page to produce the unit-distance graph in Fig. 17(c). This will

lengthen the 2� � �20 separation but it is not clear if the 2� � �20

separation can be increased to 1.16 times the T–T distance

without forcing T–T distances to vary by more than the
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Figure 16
(a) A 2V1 chain graph with e/n = 1.0. One may attempt to decrease e/n by
adding the green vertex to the chain graph in (a), but this requires that an
edge (red dashed line) also be added, showing that for any chain
graph, e/n cannot be less than 1.0. (b) A 4V2 chain graph with
e/n = 2.0. One may attempt to increase e/n by adding an edge (red dashed
line) linking vertices 1 and 2. However, this results in 5-connected vertices
(shown with red ellipses) which are not allowed, and thus for any chain
graph, e/n cannot exceed 2.0. Legend as in Fig. 10.



allowed limit (�5%, see Section 4.1.1). How to determine

if a chain graph may be embedded in Euclidean space such

that it corresponds to a unit-distance graph in which T–T and

T� � �T restraints are satisfied is described in the following

section.

7.2. The embedding process

To embed chain graphs in Euclidean space while restraining

T–T distances and T� � �T separations (as described in Section

4), one must restrain T–T distances and T� � �T separations to

values observed experimentally in chains of tetrahedra

(Section 4.1.1) as follows:

(i) T–T distances: the distances between linked vertices are

restrained by treating edges as notional springs that behave

according to Hooke’s law,

Fs ¼ � kx;

where Fs is the spring force, k is the spring constant (stiffness)

and x is the spring displacement. Here, the equilibrium spring

length represents the ideal T–T distance observed in chains of

tetrahedra (3.06�0.15 Å, Fig. 3).

(ii) T� � �T separations: the distances between unlinked

vertices are restrained by a notional repulsive force between

them described by Coulomb’s law,

Fc ¼ K½ðq1q2Þ=r2�;

where Fc is the Coulomb force, K is Coulomb’s constant, q1

and q2 are the charges associated with each vertex T, and r is

the distance between charges. Coulomb’s constant, K, may be

adjusted to increase or decrease Fc.

7.3. Embedding software: GraphT–T

A detailed description of GraphT–T (V1.0Beta) and the 3D

spring-force-directed algorithms used to embed graphs is

provided by Day et al. (2024) and only a brief description of

the program is given here.

GraphT–T (V1.0Beta) was written to implement the

embedding procedure described in Section 7.2. This program

uses a 3D spring-force algorithm in which the equilibrium

spring length (ideal T–T distance) can be set to any value (e.g.

hT–Ti = 3.06�0.15 Å). For Fs and Fc calculations, k and K are

adjustable to allow for deviation of T–T distances from the set

spring length and T� � �T separations less than the threshold

value of � (less than 1.16 times the T–T distance).

The net forces acting on vertices of a particular input graph

are calculated iteratively according to Newton’s laws of

motion using a Barnes–Hut (N-body) simulation (Barnes &

Hut, 1986). To avoid computation issues related to the N-body

problem, the Barnes–Hut simulation groups adjacent vertices

as bodies and calculates the position of the centre of charge of

each body. The net repulsive and attractive forces exerted on

all other bodies from the centre of charge of each body are

calculated and used to calculate a new position for each vertex

after each iteration.

Adjustable embedding parameters in GraphT–T include

spring coefficient (k), Coulomb’s constant (K), spring length,

drag coefficient, theta, time step and cooldown time, all of

which are described in detail by Day et al. (2024). The

embedding parameters used in Tables 1–4 are referred to as

recommended embedding parameters by Day et al. (2024).

These parameters were determined by embedding a series of

chain graphs and iteratively refining each embedding para-

meter based on agreement of the T–T distances with the set
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Figure 17
(a) A planar geometric graph with unequal edge lengths; (b) the unit-
distance graph from (a) now equalized. In (b), the T� � �T separation 2–20

is the same length as the T–T distance and thus this chain geometry is not
allowed. (c) The unit-distance graph in (b) where green vertices are
moved out of the plane of the page and yellow vertices are moved in the
plane of the page such that the T� � �T separation 2–20 is greater than the
T–T distance. Legend as in Fig. 10.

Table 1
Compatibility parameters for chain graphs with e/n = 1.00.

Initial T–T distance (spring length) set to 50 Å, drag coefficient = 0.02, k = 0.0035–0.0052, K = � 0.003, time step = 20 ms, cooldown time = 5 � 106 ms. Theta (qc)
for Barnes–Hut simulation was varied depending on complexity of the input graph. Values calculated after cooldown time has elapsed or until T� � �T separations

have converged. Allowed variation in T–T = 47.55–52.45 Å, minimum allowable T� � �T = � = 58.00 Å. Acy/cy-poly = acyclic/cyclic polygon; c/r/t = chain, ribbon,
tube; p = planar; np = non-planar.

Chain graph (cVr) hT–Ti (Å) RhT–Ti (Å) RhT� � �Timin (Å) T� � �T < � Planarity Acy/cy-poly c/r/t Observed

(1) 2V1 50.001 50.001–50.001 99.834–100.046 – p acy c Pyroxenes

(2) 1V1
2V1

3V1 50.001 50.001–50.001 82.232–83.560 – p acy c Terskite
(3) 1V1

3V1 50.002 50.001–50.003 79.222–79.960 – p acy c Astrophyllite
(4) 1V2

4V1 50.003 50.002–50.009 69.403–70.006 – np acy c No
(5) 1V2

3V2 50.004 50.001–50.005 67.584–68.184 – np acy c No
(6) 1V3

2V1
3V1

4V1 50.008 49.156–50.654 64.531–65.641 – np acy c No
(7) 1V6

4V3 50.010 48.336–51.424 49.181–50.121 4 np acy c No



spring length and increase in the T� � �T separations. A parti-

cular chain graph may be embedded using different sets of

embedding parameters to produce geometrically different

unit-distance graphs that satisfy the T–T and T� � �T restraints;

we report only those produced using the variables listed in

Tables 1–4. To ensure that the geometry of unit-distance

graphs produced with GraphT–T is easily understood and

visually comprehensible, the spring length (and thus the T–T

and T� � �T restraints) are scaled by a factor of 16.34 (e.g. 3.06

� 16.34 = 50.00 Å) and � = 50 � 1.16 = 58 Å. After a chain

graph has been embedded, they may be re-scaled (e.g. 50/16.34

= 3.06 Å and 58/16.34 = 3.55 Å) such that they can be

compared with T–T distances and T� � �T separations observed

in crystal structures.

While embedding some chain graphs (particularly chain

graphs with a high average vertex connectivity), vertices may

become trapped at non-ideal positions (a false minimum) with

respect to the T–T distances and T� � �T separations associated

with those vertices. Any unit-distance graph that contains one

or more vertices that occupy a false minimum are referred to

as metastable. Vertices occupying false-minimum positions are

referred to as trapped, as a temporary increase in the corre-

sponding T–T distances and T� � �T separations (Fs and Fc)

towards less ideal values is required for that vertex to move to

a more ideal position with respect to the ideal T–T distances

and T� � �T separations [e.g. Fig. 2 from Day et al. (2024)]. To

minimize the probability of generating metastable unit-

distance graphs, a two-step embedding procedure is used

where for the first 15 s of the embedding process, a set of

default embedding parameters [defined by Day et al. (2024)] is

used with k set to a relatively small value such that Fc is

sufficiently strong to counteract Fs and move vertices away

from false-minimum positions. For most unit-distance graphs,

the positions of the vertices are close to ideal after the first

phase of embedding is complete and are then refined once the

user-specified embedding parameters are applied in the

second phase of embedding. A more detailed description of

metastable unit-distance graphs and the two-step embedding

process is given by Day et al. (2024).

7.3.1. Unit-distance graph convergence. During the first 1–

2 s of the embedding process, all vertices occupy approxi-

mately the same position and the T–T distances and T� � �T

separations are close to zero. As embedding starts, vertices

will begin to move apart from one another and as embedding

progresses, T–T distances will approach the set spring length

and T� � �T separations will increase due to mutual repulsion.

The T� � �T separations will increase until T–T distances are

required to deviate (beyond the allowed limit) from the set

spring length. At this point, the unit-distance graph has

converged. GraphT–T calculates and reports the minimum,

maximum and average T–T distances and T� � �T separations

after each iteration such that the user can determine if the

unit-distance graph has converged. Once convergence has

occurred, vertices will continue to respond to Fs and Fc and, in

response, will oscillate around a central point in response to

these forces. Therefore, average T–T distances and minimum

T� � �T separations are reported as ranges (RhT–Ti and

RhT� � �Timin in Tables 1–4) and are referred to as the
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Table 2
Compatibility parameters for all non-isomorphic 2V2

3V2 chain graphs (e/n = 1.25).

Initial T–T distance (spring length) set to 50 Å, drag coefficient = 0.02, k = 0.0035–0.0052, K = � 0.003, time step = 20 ms, cooldown time = 5 � 106 ms. Theta (qc)
for Barnes–Hut simulation was varied depending on complexity of the input graph. Values calculated after cooldown time has elapsed or until T� � �T separations

have converged. Allowed variation in T–T = 47.55–52.45 Å, minimum allowable T� � �T = � = 58.00 Å. Unconnected chain graphs are omitted. Chain graphs
labelled using matrix-element combination as shown by Day & Hawthorne (2022, Appendix G). Other abbreviations as given in Table 1. r (s) indicates a ribbon
that forms a spiral or helix upon embedding.

Chain graph hT–Ti (Å) RhT–Ti (Å) RhT� � �Timin (Å) T� � �T < � Planarity Acy/cy (poly) nt:ng c/r/t Observed

(10�1) k 50.009 48.384–51.782 81.759–82.864 – np cy-10 1:8 t No
(10�1) d 50.002 50.001–50.003 81.493–82.863 – p cy-6 1:1 r Amphiboles
(10�1) m 50.008 48.228–51.897 81.149–82.316 – np cy-10 1:8 t No
(10�1) h 50.014 48.044–51.340 80.335–81.734 – np cy-10 1:4 t No
(10�1) i 50.015 48.304–51.704 80.246–81.662 – np cy-10 1:4 t No
(6�1, 2�21) c 50.002 50.001–50.003 79.831–81.349 – np cy-10 1:3 t No

(6�1, 2�21) b 50.002 50.001–50.003 79.047–80.540 – p cy-6 1:2 r No
(4�1, 1�2, 2�22) b 50.006 48.284–51.802 79.439–80.429 – np cy-8 1:2 r No
(10�1) n 50.006 48.255–51.824 79.225–80.134 – np cy-10 1:7 t No
(8�1, 1�2) d 50.005 48.474–51.852 78.224–79.694 – np cy-8 1:3 r No
(8�1, 1�2) a 50.019 48.312–51.756 76.305–78.448 – p cy-3 1:1 c No
(6�1, 2�21) d 50.009 48.273–51.948 77.079–77.907 – np cy-10 1:3 t No
(8�1, 1�2) c 50.003 49.117–51.710 73.273–75.099 – np cy-7 1:2 r No

(10�1) f 50.008 48.867–51.137 71.369–73.842 – np cy-10 1:3 t No
(10�1) c 50.002 50.001–50.003 70.897–72.396 – np cy-7 1:2 r No
(6�1, 2�2) 50.002 50.001–50.004 69.896–71.974 – np cy-8 1:2 r No
(10�1) a 50.001 49.991–50.021 70.296–71.508 – p cy-4 1:1 c Vlasovite
(6�1, 2�21) a 50.001 50.001–50.002 69.736–70.305 – p cy-4 1:1 c No
(10�1) b 50.001 50.001–50.001 68.573–69.447 – p cy-3 1:1 c No

(6�1, 2�22) a 50.002 50.001–50.004 66.462–69.381 – np cy-8 1:2 r No
(2�1, 2�21, 2�22) 50.007 48.036–51.725 68.061–69.001 – np cy-8 1:2 r No
(4�1, 1�2, 2�21) b 50.007 48.146–51.956 61.870–63.607 – np cy-7 1:20 r (s) No
(8�1, 1�2) b 50.007 48.204–51.837 61.187–62.058 – np cy-6 1:12 r (s) No
(6�1, 2�22) c 50.010 48.326–51.716 60.232–61.831 – np cy-10 1:8 t No



compatibility parameters of the unit-distance graph to which

they correspond.

Once a given chain graph has been embedded with

GraphT–T and has converged, it can be described as:

(i) Compatible: if a unit-distance graph converges such that

the T–T and T� � �T restraints are satisfied, the corresponding

chain graph may correspond to a chain of tetrahedra and is

considered as potentially compatible with a crystal structure.

(ii) Incompatible: if a unit-distance graph converges such

that the T–T and/or T� � �T restraints are not satisfied, the

corresponding chain graph cannot correspond to a chain of

tetrahedra and is considered incompatible with a crystal

structure.

8. Discussion: testing the compatibility of chain graphs

Day & Hawthorne (2020) noted several trends regarding the

topological properties of chain graphs and the relative abun-

dances of the minerals in which they occur. They made the

following observations:

(i) Of the 450 chain-silicate minerals, 375 correspond to 4

non-isomorphic graphs, whereas the other 75 minerals corre-

spond to 46 graphs. Why?

(ii) Why is the abundance of chain-silicate minerals rela-

tively high when O:T = 3.00–2.75?

(iii) Why are no chains observed with O:T = 2.5–2.0 despite

being topologically possible?

(iv) Are there specific topological and/or geometrical

properties of a chain that influence the abundance of minerals

with that chain topology?

(v) To what extent do the composition and structure of the

rest of a mineral influence the geometry and topology of the

chains to which they link?

To begin to address these questions, we use GraphT–T to

gauge the degree to which selected chain graphs are compa-

tible with the observed T–T distances and T� � �T separations in

chains of tetrahedra.

8.1. Geometric compatibility as a function of vertex

connectivity and e/n

First, we will examine how the geometric compatibility of

chain graphs varies as a function of vertex connectivity, e/n

ratio and rigidity by using GraphT–T to embed a series of

chain graphs [from Appendix G in Day & Hawthorne (2022)]

with increasing e/n (and rigidity) and comparing the hT–Ti

distances and minimum hT� � �Ti separations of the corre-

sponding unit-distance graphs with the ideal values. The

number of T� � �T separations less than � (if any), the planarity,

cyclicity, polygon type and degree of medium-range modifi-

cation (nt:ng) will be determined. Many chain graphs may be

embedded to produce both planar and non-planar unit-

distance graphs that are compatible. Thus, in the planarity

column of Tables 1–4, a chain graph is indicated as planar (p) if

an embedding exists that produces a planar unit-distance

graph even if GraphT–T produces a non-planar unit-distance

graph. It follows that any chain graph indicated as non-planar

(np) cannot be embedded (in any way) to produce a compa-

tible planar unit-distance graph.

For vertex connectivities 2V2
3V2 and 3V2

4V1, all possible

non-isomorphic chain graphs are embedded to evaluate how

geometrical compatibility varies amongst chains with identical

connectivity and e/n ratios. The 2V2
3V2 and 3V2

4V1 chain

graphs are listed in Tables 2 and 3 using their matrix-element

combinations as shown in Appendix G in Day & Hawthorne

(2022).

8.1.1. Chain graphs with e/n = 1.0. We begin by embedding

a series of acyclic chain graphs with e/n = 1.0; the resultant

compatibility parameters are given in Table 1. All chain graphs

with e/n = 1.0 are strictly chains (rather than ribbons or tubes),

must be acyclic and flexible (mv = m), and the backbone chain

may or may not link to n-membered branches. The chain

graphs (1)–(6) in Table 1 are compatible and converge to unit-

distance graphs with hT–Ti 50.001–50.008 Å and RhT� � �Timin

that is larger than � = 1.16 � 50 = 58 Å. In Table 1, chain
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Table 3
Compatibility parameters for all non-isomorphic 3V2

4V1 chain graphs (e/n = 1.67).

Initial T–T distance (spring length) set to 50 Å, drag coefficient = 0.02, k = 0.0035–0.0052, K = � 0.003, time step = 20 ms, cooldown time = 5 � 106 ms. Theta (qc)
for Barnes–Hut simulation was varied depending on complexity of the input graph. Values calculated after cooldown time has elapsed or until T� � �T separations

have converged. Allowed variation in T–T = 47.55–52.45 Å, minimum allowable T� � �T = � = 58.00 Å. Unconnected chain graphs are omitted. Chain graphs
labelled using matrix-element combination as shown by Day & Hawthorne (2022, Appendix G). Other abbreviations as given in Table 1.

Chain graph hT–Ti (Å) RhT–Ti (Å) RhT� � �Timin (Å) T� � �T < � Planarity Acy/cy-poly nt:ng c/r/t Observed

(2�1, 4�21) a 50.001 50.001–50.002 85.802–86.182 – p cy-3 1:2 r No

(2�1, 2�21, 2�22) a 50.002 50.001–50.003 68.859–71.883 – np cy-3,5 1:2 r No
(4�1, 3�2) 50.002 50.001–50.003 68.770–70.704 – p cy-4 1:1 r No
(2�1, 4�21) b 50.001 48.503–51.722 68.687–69.751 – p cy-3,4 1:2 r No
(4�1, 1�2, 2�21) a 50.004 50.001–50.016 62.530–65.713 – np cy-3,4 (s) 1:7 r No
(4�1, 1�2, 2�22) b 50.002 48.432–51.148 57.126–62.114 2 np cy-3,5 1:2 r No
(2�1, 4�22) b 50.004 50.000–50.006 57.509–61.350 8 np cy-4,6 1:5 t No

(2�1, 4�21) c 50.009 48.507–51.661 57.178–61.322 2 np cy-4.5 1:9 t No
(4�1, 1�2, 2�21) c 50.004 49.958–50.316 53.187–58.132 2 np cy-5 1:4 t No
(4�1, 1�2, 2�22) c 50.003 49.787–50.229 53.129–57.504 2 np cy-4,6 1:3 t No
(2�1, 2�2, 2�21) 50.017 48.261–51.757 53.321–55.874 2 np cy-3,5 1:2 r No
(2�1, 2�2, 2�22) 50.003 49.626–51.153 54.530–55.726 2 np cy-4,6 1:2 t No
(2�1, 2�21, 2�22) b 50.002 48.440–52.065 52.261–55.040 1 np cy-3,7 1:7 t No
(4�1, 1�2, 2�21) b 50.003 49.347–50.340 51.228–52.070 1 np cy-5 1:6 t No



graphs (1)–(3) converge to unit-distance graphs that show the

largest hT–Ti and RhT� � �Timin in accord with the set spring

length (50). Chain graphs (1)–(3) occur in pyroxenes (Mori-

moto, 1989), terskite (Grice et al., 2015) and astrophyllite-

group minerals (Sokolova et al., 2017), respectively. Unlike

chain graphs (4)–(6), chain graphs (1)–(3) may be embedded

to produce planar unit-distance graphs. However, GraphT–T

does not require chain graphs (1)–(3) to converge as planar

unit-distance graphs to satisfy the T–T and T� � �T restraints.

The planarity of embedded chain graphs will be discussed in

more detail in Section 8.2.

The chain graph 2V1 [Fig. 18(a)] converges to a straight

(planar) unit-distance graph with RhT� � �Timin = 99.834–

100.046 Å. The chain graph 1V1
3V1 in astrophyllite [Fig. 18(b)]

is kinked (ng > nt) to maximize the T� � �T separation between

the 1V1 branches and vertices of the backbone chain. If this

chain were straight, the minimum T� � �T separation would be

significantly shorter (�70.7 Å) as shown in Fig. 18(c). In chain

graphs (4), (5) and (6) (Table 1), branches involve 2, 3 and 5

vertices, respectively, as distinct from 1 vertex in chains

(1)–(3). Consequently, there is less space around the backbone

chain for the vertices of each branch, and RhT� � �Timin is

shorter in the unit-distance graphs that correspond to chain

graphs (4)–(6). In the unit-distance graph that corresponds to

chain graph (4) [Fig. 18(d)], the two 1V1 vertices that comprise

each branch are forced into closer proximity (shown with red

dashed lines) but the T� � �T separation between vertices of

adjacent branches (shown with the red arrow) does not fall

below �. Note that this T� � �T separation between vertices of

adjacent branches is also increased by kinking of the backbone

chain. The branches in chain graph (6) [Fig. 18(e)] contain 5

vertices and RhT� � �Timin is shorter than in the unit-distance

graphs that correspond to chain graphs (1)–(5). The branches

in the unit-distance graph that correspond to chain graph (7)

[Fig. 18(f)] contain 8 vertices and RhT� � �Timin is less than

�; this unit-distance graph is incompatible and cannot

correspond to a chain of tetrahedra as there are four distinct

T� � �T separations in every repeat unit that are less than �

(Table 1).

We note that for most acyclic chains with e/n = 1.0,

RhT� � �Timin decreases as the number of vertices in the repeat

unit (the number of vertices comprising each branch)

increases. Despite their flexibility, acyclic chain graphs for

which nt is relatively large may not be compatible. However,

there are a handful of exceptions, such as acyclic chain graphs

with 1V1
2Vr branches where r = 1 � 1.
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Table 4
Compatibility parameters for chain graphs with e/n = 2.00.

Initial T–T distance (spring length) set to 50 Å, drag coefficient = 0.02, k = 0.0035–0.0052, K = � 0.003, time step = 20 ms, cooldown time = 5 � 106 ms. Theta (qc)
for Barnes–Hut simulation was varied depending on complexity of the input graph. Values calculated after cooldown time has elapsed or until T� � �T separations

have converged. Allowed variation in T–T = 47.55–52.45 Å, minimum allowable T� � �T = � = 58.00 Å. Chain graphs labelled using matrix-element combination as
shown by Day & Hawthorne (2022, Appendix G). Other abbreviations as given in Table 1.

Chain graph (cVr) hT–Ti (Å) RhT–Ti (Å) RhT� � �Timin (Å) T� � �T < � Planarity Acy/cy-poly nt:ng c/r/t Observed

(1) 4V2 (2�2, 2�21) 50.012 50.004–50.022 86.124–86.616 – p cy-3 1:1 r No

(2) 4V3 (6�1, 3�2) a 50.006 50.003–50.010 70.654–70.718 – np cy-3,4 1:1 t No
(3) 4V5 50.008 49.999–50.027 53.956–55.331 3 np cy-3,4 – r No
(4) 4V3 (2�2, 4�21) 50.011 50.001–50.027 50.291–54.315 2 np cy-3,4 1:2 r No
(5) 4V8 51.309 49.028–53.894 43.774–45.703 8 np cy-3,4 1:2 t No
(6) 4V2 50.003 50.001–50.003 42.263–42.789 2 np cy-4 1:2 t No
(7) 4V3 (2�2, 4�22) 50.005 50.002–50.010 27.870–30.030 4 np cy-4 1:2 t No

Figure 18
(a) The unit-distance graph produced by embedding the 2V1 chain graph; (b) a 1V1

3V1 chain graph, the corresponding unit-distance graph; (c) a planar
representation of the unit-distance graph in (b) with a straight backbone chain and T� � �Tmin = 70.7 Å defined by the square shown with red dashed lines;
(d) a 1V2

4V1 chain graph and the corresponding unit-distance graph; (e) a 1V3
2V1

3V1
4V1 chain graph and the corresponding unit-distance graph; and (f) a

1V6
4V3 chain graph and the corresponding unit-distance graph. Each unit-distance graph is shown orthogonal to and along the axis of chain elongation.

Red arrows show the T� � �Tmin separations and dashed black lines show the repeat unit of each chain graph.



8.1.2. Chain graphs with vertex connectivity 2V2
3V2, e/n =

1.25. Here, we embed all non-isomorphic chain graphs with

vertex connectivity 2V2
3V2 and e/n = 1.25. All 2V2

3V2 chain

graphs are compatible and the compatibility parameters are

given in Table 2. As e/n > 1.0, all chain graphs are cyclic, and

the degree of rigidity is variable. Most 2V2
3V2 chains show

some degree of medium-range modification (Section 6.4)

where ng > nt and embedding forces a non-planar arrange-

ment. There are only five chain graphs (Table 2) with nt:ng =

1:1 which can be embedded to produce planar unit-distance

graphs. Most chain graphs with nt:ng = 1:1 are relatively rigid

as they contain 3- and 4-membered polygons (Sections 6.2 and

6.3); the exception is chain graph (10�1) d [Fig. 19(a)] which

corresponds to the chain in amphibole-supergroup minerals

(Hawthorne et al., 2012). Chain graphs are labelled using the

matrix-element combinations [i.e. (10�1) d] as described by

Day & Hawthorne (2022, Appendix G). The corresponding

unit-distance graph has a relatively large RhT� � �Timin (=

81.493–82.863 Å), is 6/18-semi-flexible, and converges to form

a planar arrangement. Chain graph (6�1, 2�21) b [Fig. 19(b)]

results in a unit-distance graph that is geometrically similar as

it also converges to form a planar arrangement but one in

which nt:ng = 1:2. Chain graph (6�1, 2�21) b results in a unit-

distance graph that is less flexible and has a slightly shorter

RhT� � �Timin (= 79.047–80.540 Å). In general, as e/n and the

rigidity of chain graphs increase, hT� � �Timin of the corre-

sponding unit-distance graph decreases.

Consider the chain graph (8�1, 1�2) b [Fig. 20(a), Table 2).

Embedding this chain in 2D forces the corresponding unit-

distance graph to curve in on itself and form a ring, a planar

arrangement that is incompatible as it forces unrealistic T� � �T

separations [shown with a red ellipse in Fig. 20(b)]. However,

embedding this chain in 3D using GraphT–T results in a unit-

distance graph that is forced into a helical arrangement that is

compatible [Fig. 20(c)]. Consider the chain graph (4�1, 1�2,

2�21) b [Fig. 20(d), Table 2]. When embedded in 2D, the

corresponding unit-distance graph is also forced to form a

planar ring that is incompatible [Fig. 20(e)]; when embedded

in 3D, the unit-distance graph forms a helix. Both chain graphs

(8�1, 1�2) b and (4�1, 1�2, 2�21) b [Figs. 20(c), 20(f)] result

in unit-distance graphs that show a relatively large degree of

medium-range modification with nt:ng = 1:12 and 1:20,

respectively (Table 2).

8.1.3. Chain graphs with vertex connectivity 3V2
4V1, e/n =

1.67. Here, we embed all non-isomorphic chain graphs with

vertex connectivity 3V2
4V1 and with e/n = 1.67. Of the 14 non-

isomorphic 3V2
4V1 chain graphs, nine are incompatible as the

corresponding unit-distance graphs have RhT� � �Timin less
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Figure 20
(a) The 2V2

3V2 (8�1, 1�2) b chain graph; (b) a unit-distance graph
produced by embedding the chain graph in (a) in 2D, which forces a
T� � �T separation less than � (red ellipse); (c) a unit-distance graph
produced by embedding the chain graph in (a) in 3D; (d) the 2V2

3V2,
(4�1, 1�2, 2�21) b chain graph; (e) a unit-distance graph produced by
embedding the chain graph in (d) in 2D, which forces a T� � �T separation
less than � (red ellipse); (f) a unit-distance graph produced by embedding
the chain graph in (d) in 3D. Legend as in Fig. 18.

Figure 21
(a) The 3V2

4V1 (2�1, 4�21) a chain graph and the corresponding unit-
distance graph in which nt:ng = 1:2; (b) the 3V2

4V1 (4�1, 3�2) chain graph
and the corresponding unit-distance graph in which nt:ng = 1:1. Green
dashed lines show the repeat unit of each unit-distance graph. Legend as
in Fig. 18.

Figure 19
(a) The 2V2

3V2 (10�1) d chain graph and the corresponding unit-distance
graph in which nt:ng = 1:1; (b) a 2V2

3V2, (6�1, 2�21) b chain graph and the
corresponding unit-distance graph in which nt:ng = 1:2. Green dashed
lines show the repeat unit of each unit-distance graph. Legend as in Fig.
18.



than �; the compatibility parameters for all chains are given in

Table 3. All 3V2
4V1 chain graphs are cyclic and result in unit-

distance graphs that show a relatively high degree of rigidity

compared with chains with e/n = 1.0 (Table 1) and 1.25 (Table

2). As the degree of rigidity increases, hT� � �Ti decreases, as is

seen by comparing RhT� � �Timin in Tables 2 and 3. However,

this is not always the case. For example, chain graph (2�1,

4�21) a consists of edge- and vertex-sharing triangles and

results in a unit-distance graph that is 6/10-semi-rigid and has

the largest RhT� � �Timin (= 85.802–86.182 Å) of all 3V2
4V1

chain graphs [Fig. 21(a)]. Chain graph (4�1, 3�2) consists of

edge-sharing squares and results in a unit-distance graph that

is 5/10-semi-rigid (more flexible) but has a shorter RhT� � �Timin

(= 68.770–70.704 Å) than chain graph (2�1, 4�21) a as

hT� � �Timin in the corresponding unit-distance graph is

restrained across the diagonal of each square (hT� � �Timin = 50

�
ffiffiffi
2
p

= 70.7) [Fig. 21(b)]. In this case, it is the type of polygon

that controls hT� � �Timin rather than the rigidity of the unit-

distance graph.

Consider the incompatible chain graph (2�1, 4�22) b in

Fig. 22(a). This chain is tubular and consists of edge-sharing

squares and hexagons, and corresponds to a unit-distance

graph that shows medium-range modification (nt:ng = 1:5) and

ng contains eight T� � �T separations less than �. However, this

unit-distance graph may or may not be compatible as near-

convergence results in RhT� � �Timin = 57.509–61.350 Å that

fluctuates above and below �. However, RhT–Ti = 50.000–

50.006 Å and it is likely that T–T distances may slightly

lengthen to increase RhT� � �Timin beyond �. Consider chain

graph (2�1, 2�2, 2�21) [Fig. 22(b)], a ribbon of edge-sharing

triangles and pentagons; in the corresponding unit-distance

graph, ng contains two T� � �T separations less than �

(RhT� � �Timin = 53.321–55.874 Å), and this chain graph is

incompatible. In Fig. 22(b), note how alternating 3V1 vertices

are forced into and out of the plane of the page (indicated by
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Figure 22
(a) The 3V2

4V1 (2�1, 4�22) b chain graph and the corresponding unit-
distance graph; (b) the 3V2

4V1 (2�1, 2�2, 2�21) chain graph and the
corresponding unit-distance graph in which vertices are forced into and
out of the plane of the unit-distance graph (indicated by a red ‘u’ or ‘d’).
Both unit-distance graphs are incompatible and T� � �Tmin separations less
than � are shown with red dashed lines. Legend as in Fig. 18.

Figure 23
(a) A 4V2 chain graph and the corresponding unit-distance graph in which
nt:ng = 1:1; (b) a 4V3 chain graph and the corresponding unit-distance
graph in which nt:ng = 1:1. The T� � �Tmin separations are shown with red
dashed lines. Legend as in Fig. 18.

Figure 24
(a) A 4V2 chain graph and the corresponding unit-distance graph in which
nt:ng = 1:2; (b) a 4V5 chain graph and the corresponding unit-distance
graph. Both unit-distance graphs are incompatible and the T� � �Tmin

separations less than � are shown with red dashed lines. (c) The unit-
distance graph in (b) with a red arrow showing how medium-range
modification will force T� � �T separations to approach zero as the length
of the chain increases. (d) The unit-distance graph in (b) in which the
length of the chain has been increased to show how a modulated
geometry (shown with red arrows) is required to prevent T� � �T separa-
tions from approaching zero as shown in (c). Legend as in Fig. 18.



‘u’ and ‘d’ vertex labels) to increase the T� � �T separation

between these vertices (shown with red dashed lines); this

results in medium-range modification (nt:ng = 1:2).

8.1.4. Chain graphs with e/n = 2.0. Here, we embed a series

of chain graphs with e/n = 2.0, and the resultant compatibility

parameters are given in Table 4. All chain graphs with e/n = 2.0

must be cyclic, must contain only 4Vr vertices, and must be

ribbons and tubes rather than chains. In Table 4, incompatible

chain graphs result in unit-distance graphs with shorter

RhT� � �Timin values than 3V2
4V1 chain graphs (Table 3) and are

semi-rigid to rigid, containing 3- and 4-membered polygons.

Relative to chain graphs with e/n = 1.0, hT� � �Timin decreases

for embedded chain graphs with e/n = 2.0 as the number of

vertices in nt increases, and most compatible chain graphs with

e/n = 2.0 have a small number of vertices in nt (2–4). Consider

chain graph (1) (Table 4) in Fig. 23(a) [isomorphic with the

chain in Fig. 15(a)]. This chain graph consists of edge-sharing

triangles and the corresponding unit-distance graph is 3/4-

semi-rigid. Here, RhT� � �Timin = 86.124–86.616 Å, which is

relatively large as both vertices in nt are connected to each

other and thus T� � �Tmin (shown with red dashed lines) extends

outside ng. As shown in Fig. 15, this chain graph may also

converge to produce non-planar chains, but this would force a

decrease in RhT� � �Timin and cannot be produced using

GraphT–T. Chain graph (2) [Fig. 23(b), Table 4] is non-planar

(tubular), consists of edge-sharing triangles and squares, and

the corresponding unit-distance graph is 1/3-semi-flexible but

has a shorter RhT� � �Timin (= 70.654–70.718 Å) than the chain

graph in Fig. 23(a). Like the 3V2
4V1 chain graph in Fig. 21(b),

hT� � �Timin is restrained across the diagonal of each square

[shown by red dashed lines in Fig. 23(b)]. The chain graphs in

Figs. 21(b) and 23(b) are both examples of how RhT� � �Timin is

controlled not only by the rigidity of the corresponding unit-

distance graph but also by the type of polygon comprising the

chain graph.

In Section 4.2.2, we show that the 4V2 chain graph in Fig. 7

cannot be equalized to produce a unit-distance graph without

forcing the 1–2 separation to become zero. However,

embedding this chain graph [graph (6), Table 4] using

GraphT–T results in a unit-distance graph [Fig. 24(a)] in which

every second repeat unit is rotated 90� such that nt:ng = 1:2 and

RhT� � �Timin = 42.263–42.789 Å. Although this chain graph is

incompatible, it provides an example of the degree to which

medium-range modification (ng > nt) can increase hT� � �Timin.

Chain graph (3) [Fig. 24(b)] is incompatible and provides an

extreme example of medium-range modification in which the

corresponding unit-distance graph is forced to curve along

both the long and short axes of the chain. Increasing the length

of this unit-distance graph will force the ends of the chain to

close in on each other, resulting in T� � �T separations that

approach zero [Fig. 24(c)]. To prevent this, the direction of

curvature must alternate along the length of the chain to

produce a modulated unit-distance graph [Fig. 24(d)].

8.2. Isomorphic observed and embedded chain geometries

By comparing the geometries of unit-distance graphs

(embedded using GraphT–T) with isomorphic chains of

tetrahedra observed in minerals (or synthetics), we may

determine what geometrical properties of chains are due to

linkage with the interstitial structure. We may also better

understand the modes by which a particular chain (unit-

distance graph) will distort (allow deviation of T–T distances

and T� � �T separations from their ideal values) to accom-

modate linkage with the interstitial structure (e.g. a sheet or

ribbon of M octahedra).

Consider the 2V1 chain graph in Fig. 18(a) which converges

to produce a unit-distance graph where nt:ng = 1:1. This 2V1

chain graph occurs in pyroxene-supergroup minerals as a 2T2

chain [Fig. 25(a)] in which kinking of the chain is required to
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Figure 25
(a) A ball-and-stick representation of the 2T2 chain in pyroxenes. The
structure of diopside projected (b) along the c axis and (c) into the c axis
where Mg octahedra are shown in yellow and Ca polyhedra are shown in
blue. Dashed black lines show the geometrical repeat unit of the chain.

Figure 26
(a) A ball-and-stick representation of the 1T2

3T2 chain in astrophyllite-
supergroup minerals and the structure of astrophyllite showing (b) the H
sheet (and I-block cations); (c) the HOH block, I block and O sheet. The
A and B cations are shown as grey and green circles, respectively. The D
cations are shown as purple Ti octahedra and the Fe octahedra of the O
sheet are shown in pink. H atoms are shown as red circles. Dashed black
lines show the geometrical repeat unit of the chain.



facilitate linkage of each Si tetahedron with Mg octahedra

[Fig. 25(b)]. The chain graph in Fig. 18(a) converges to a

straight (planar) unit-distance graph and thus one cannot

assume that the planarity of the 2T2 chain in diopside is due

only to linkage with sheets of [7]Ca polyhedra and Mg octa-

hedra [Fig. 25(c)]. The relation between the geometry of 2Tr

chains (ng) and the size of cations comprising the interstitial

structure of pyroxenes and pyroxenoids has been described in

detail (Belov, 1961; Takéuchi et al., 1976; Nagashima &

Armbruster, 2010; Thompson et al., 2016). However, for

specific chain graphs, kinking is also produced by embedding

while restraining T–T distances and T� � �T separations.

Consider the 1V1
3V1 chain graph in Fig. 18(b) which converges

to produce a non-planar unit-distance graph. Here, 1V1

branches extend in 3D and the backbone chain is kinked to

maximize hT� � �Timin. This 1V1
3V1 chain graph occurs in

astrophyllite-supergroup minerals as a planar 1T2
3T2 chain

[Fig. 26(a)] and we may assume that linkage of this chain to M

octahedra of the planar O sheet in astrophyllite [Fig. 26(c)]

requires the chain to be planar, a geometry significantly

different from that in Fig. 18(b). In astrophyllite, the backbone

of the 1T2
3T2 chain is kinked to accommodate linkage to

polyhedra of the O sheet and I block [Fig. 26(b)]. However,

such kinking is also observed in Fig. 18(b) and thus one cannot

assume such kinking is due solely to linkage with the inter-

stitial structure in astrophyllite. Consider the 2V2
3V2 chain

graph in Fig. 19(a) which converges to produce a planar unit-

distance graph with nt:ng = 1:1. This 2V2
3V2 chain graph occurs

in amphibole-supergroup minerals as a 2T2
3T2 ribbon of edge-

sharing hexagons [Fig. 27(a)] that also may be viewed as two

planar 2T2 pyroxene-type backbone chains that are kinked to

accommodate linkage to a planar ribbon of Mg2+ octahedra

[Figs. 27(b), 27(c)]. Note that the geometry (e.g. planarity and

kinking) of the converged 2V2
3V2 unit-distance graph [Fig.

19(a)] and the geometry of the 2T2
3T2 ribbon [Fig. 27(a)] in

amphiboles are identical. It follows that the geometry of the

ribbon of tetrahedra in amphiboles may be solely due to the

intrinsic topological and geometrical properties of the ribbon

rather than due to linkage with the ribbons of octahedra.

As shown by Day & Hawthorne (2020), the most abundant

chain-silicate structures are layered and consist of planar

chains or ribbons of tetrahedra linked to planar sheets or

ribbons of larger lower-valence cations of higher coordination

(usually octahedral). However, most chain graphs converge as

non-planar arrangements [e.g. Figs. 18(b), 21(a), 22(b), 24(a)

and 24(b)] and thus must distort to accommodate linkage to a

planar module of the interstitial structure. Notable exceptions

are the 2V1 and 2V2
3V2 chain graphs in amphiboles and

pyroxenes, which converge to produce planar unit-distance

graphs. The degree to which a given chain graph may distort to

accommodate linkage to a planar structure is a function of its

rigidity and e/n ratio.

8.2.1. Observed trends in compatibility parameters.

Examination of Tables 2–4 shows that chain graphs embedded

to produce unit-distance graphs that show no (or minimal)

medium-range distortion (nt:ng = 1:1 or 1:2) are typically

planar. As the degree of medium-range distortion increases,

chain graphs converge to non-planar unit-distance graphs. All
2V2

3V2 chain graphs with e/n = 1.25 (Table 2) are compatible

whereas only five 3V2
4V1 chain graphs with e/n = 1.67 (Table 3)

are compatible. Thus, there is likely a point between e/n = 1.25

and 1.67 where the rigidity of unit-distance graphs reaches a

point beyond which no degree of medium-range modification

can lengthen hT� � �Ti separations such that they are greater

than �.

In chain-silicate minerals, the maximum e/n = 1.5. Day &

Hawthorne (2020) describe 39 minerals that contain 3Vr

ribbons and tubes with e/n = 1.5, including epididymite-, liti-

dionite-, tuhualite- and canasite-group minerals (Pozas et al.,
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Figure 27
(a) A ball-and-stick representation of the 2T2

3T2 chain in amphibole-
supergroup minerals. The structure of richterite projected (b) in the a*
direction, and (c) along the c axis where the M1–M3 cations are shown as
yellow Mg octahedra and the M4 and A2/A(m) cations are shown as
green and grey circles, respectively. Dashed black lines show the
geometrical repeat unit of the chain.

Figure 28
The e/n ratio of chain graphs with e/n = 1.0–2.0 as a function of rigidity
(mi/m). Each green box represents a unique chain topology observed in
minerals. The area shaded in pale green represents the range in e/n ratio
for chains in minerals and the area shaded in pink represents the range in
e/n ratio for chains that are not observed in minerals. Note the sharp
increase in rigidity at e/n = 1.5.



1975; Chiragov & Shirinova, 2004; Gatta et al., 2008;

Khomyakov et al., 2009; Schmidmair et al., 2018; Merlino &

Biagioni, 2018). There are no minerals or synthetic

compounds that contain chains of tetrahedra with e/n > 1.5,

and e/n = 1.5 may be the threshold at which the compatibility

of chain graphs decreases drastically. In Fig. 28, the rigidity

(mi/m, shown as a red line) of observed chain arrangements is

shown as a function of their e/n (in nt), and the number of non-

isomorphic chain arrangements for a given e/n is indicated

using green rectangles. The number of non-isomorphic chains

for a given e/n (or e/n range) increases from e/n = 1.0 to 1.5,

and TOn decreases from TO3 where e/n = 1.0 to TO2.50 where

e/n = 1.5. At e/n = 1.5, all chain arrangements have vertex

connectivity 3Vn and are ribbons or tubes (Day & Hawthorne,

2020). Beyond e/n = 1.5, there is a sharp increase in rigidity

and no chain arrangements in the range 1.5 < e/n < 2.0 occur in

minerals or synthetic compounds. This area (shaded in pink)

contains TO2.5–TO2.0 chains with 3- and 4-connected tetra-

hedra. As shown in Sections 8.1.3 and 8.1.4, most chain graphs

with e/n > 1.5 correspond to relatively rigid unit-distance

graphs that show T� � �T separations less than � and are thus

incompatible. The introduction of 4-connected vertices at e/n

> 1.5 results in a significant increase in rigidity and, most likely,

a decrease in the compatibility of the corresponding chain

arrangements, which may explain the absence of such chains in

minerals. Note that in Fig. 28, the red line is only a general

approximation of the trend in rigidity as a function of e/n as

the rigidities for all �1500 non-isomorphic chain graphs

generated by Day & Hawthorne (2022) were not calculated.

As shown in Section 8.1, rigidity varies also as a function of

variables other than e/n, such as polygon type, and in some

cases, a chain with a slightly higher e/n may be less rigid than a

chain with a slightly lower e/n.

One might expect that, as the rigidity of chain graphs

increases, the stability and/or abundance of the corresponding

minerals decreases. However, this is not always the case, as

shown in Fig. 29, in which the number of non-isomorphic chain

graphs (black lines) and the number of different minerals in

which those chains occur (red lines) are plotted for TO3.0–

TO2.5. The six non-isomorphic TO3 chain graphs are flexible

and correspond to approximately �150 different minerals

including pyroxenes, pyroxenoids, astrophyllite-supergroup

minerals etc. The TO2.9–TO2.8 chain graphs correspond to 24

different minerals. The TO2.75 chains, despite being relatively

more rigid, correspond to �170 different minerals, the

majority of which are amphibole-supergroup minerals; thus

other properties of chain graphs must affect the stability and

abundance of the minerals in which they occur. As discussed

in Section 8.1.2, the (10�1) d chain graph (Table 2) in

amphiboles is one of the few 2V2
3V2 chains that converges to a

planar ribbon which may facilitate efficient linkage to the

planar ribbons of M octahedra in the amphibole structure

(Hawthorne, 1983b; Hawthorne & Oberti, 2007).

9. Results and conclusions

This series of papers (Day & Hawthorne, 2020, 2022) deals

with chains of (TO4) tetrahedra (T = Si4+ plus P5+, V5+, As5+,

Al3+, Fe3+, B3+, Be2+, Zn2+ and Mg2+) primarily in minerals

and attempts to understand the factors affecting the bond

topology and geometry of such chains. To understand how the

properties of chain graphs influence the incorporation of

corresponding chains of tetrahedra into crystal structures, we

have examined the possible restraints on embedding chain

graphs into Euclidean space. In order to occur in a crystal

structure, the metrics of the embedded chain (unit-distance

graph) must be congruent with what is observed in crystal

structures, specifically T–T distances approximately equal to

the grand hT–Ti distance (3.06�0.15 Å) in chain-silicate

minerals, and T� � �T approaches that are not shorter than the

minimum observed value (3.71 Å) in chain-silicate minerals. If

a chain graph can be embedded to produce a unit-distance

graph with T–T distances that are approximately equal, that

chain graph is designated as equalizable, otherwise it is non-

equalizable.

We show that equalization of all acyclic chain graphs is

possible in 2D and 3D, and that equalization of most cyclic

graphs is possible in 3D but not necessarily in 2D. Non-

equalizable chain graphs cannot form chains of tetrahedra that

are compatible with crystal structures. To examine why certain

cyclic graphs are non-equalizable, we develop a method for

calculating the rigidity of chain graphs once embedded in

Euclidean space to produce a unit-distance graph. Using the

vertex subsets of a chain graph, all unique ways in which non-

isomorphic vertices may be moved (ways in which the corre-

sponding unit-distance graph may be distorted) are derived

and are designated modes of geometric modification. If a mode

(m) is applied to a unit-distance graph such that a new

geometrically distinct unit-distance graph is produced without

changing the lengths of any edges, the mode is designated as

valid (mv); if a new geometrically distinct unit-distance graph

cannot be produced, the mode is invalid (mi). Rigid unit-

distance graphs have mi = m, flexible unit-distance graphs

have mv = m (mi = 0), and the rigidity of unit-distance graphs is
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Figure 29
The stoichiometry (TOn) of chains in minerals as a function of the
number of non-isomorphic chain graphs and the number of distinct
mineral species that correspond to each (TOn), where n = 3.0–2.5.



a function of mi/m. In general, as the average connectivity of

vertices (edge-to-vertex ratio, e/n) in a chain graph increases,

the rigidity (mi/m) of the corresponding unit-distance graph

increases.

In some cases, equalization forces unlinked vertices (T� � �T

separations) to be too close, and this is the principal restraint

on embedded chain graphs being able to form chains of

tetrahedra in crystal structures. During the embedding

process, we restrain the minimum T� � �T separation to 3.71 Å,

the minimum T� � �T separation observed in all chains of

tetrahedra in minerals and selected inorganic crystals. A

software package, GraphT–T, was developed to embed graphs

in Euclidean space while restraining the T–T distances and

T� � �T separations to realistic values. If the resultant unit-

distance graphs have geometries that satisfy these restraints,

they are compatible with the metrics of crystal structures and

may occur in crystal structures; if not, they are incompatible

with the metrics of crystal structures and will not occur.

Chain graphs with e/n = 1.0, 1.25, 1.67 and 2.0 [taken from

Day & Hawthorne (2022)] were embedded using the software

GraphT–T (Day et al., 2024). As the average vertex-connec-

tivity increases, the e/n ratio increases. All chains with e/n < 1.5

(that were tested) are compatible and many chains with e/n >

1.5 are incompatible. This compatibility change at e/n = 1.5

coincides with a marked increase in rigidity and many chains

with e/n � 1.5 require significant distortion (e.g. development

of non-planar modulated and helical unit-distance graphs) to

satisfy the T–T and T� � �T restraints. Such chain arrangements

may not link efficiently to the typical planar layered interstitial

structure that is common in chain-silicate minerals. In addi-

tion, e/n = 1.5 corresponds to the stoichiometry TO2.5, possibly

accounting for why chains of composition TO<2.5 do not occur

in crystals or related synthetic compounds. Chain arrange-

ments with particular connectivities (e/n < 1.5) correspond to

unit-distance graphs that are relatively flexible, and these unit-

distance graphs correspond to chains of tetrahedra observed

in the most abundant chain-silicate minerals (e.g. pyroxenes

and amphiboles). In general, as the e/n ratio increases, the

rigidity of the chain increases and the rarity of the mineral in

which such arrangements are observed increases. It is abun-

dantly clear that chain arrangements with particular topolo-

gical and geometrical properties are more favoured during

crystallization compared with others, and that such properties

affect the abundance of chain-silicate minerals. Future work

will focus on other factors that control the relative abundance

of silicate minerals such as the topological (connectivity of

cations) and geometrical (rigidity and flexibility) properties of

the interstitial complex and the geochemical constraints

associated with the environment of crystallization that cause

particular chemical compositions to be common and others to

be rare.
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