
research papers

282 https://doi.org/10.1107/S2053273324002523 Acta Cryst. (2024). A80, 282–292

ISSN 2053-2733

Received 15 November 2023

Accepted 17 March 2024

Edited by M. I. Aroyo, Universidad del Paı́s

Vasco, Spain

Keywords: bond topology; chains of tetrahedra;

(SiO4)
4� tetrahedra; graph embedding program;

3D Euclidean space; 3D spring-force algorithm;

GraphT–T.

Supporting information: this article has

supporting information at journals.iucr.org/a

Published under a CC BY 4.0 licence

GraphT–T (V1.0Beta), a program for embedding
and visualizing periodic graphs in 3D Euclidean
space

Maxwell Christopher Day,a* Ali Rostamib and Frank Christopher Hawthornea

aDepartment of Earth Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada, and bComputer Science

Department, Friedrich Schiller University Jena, Jena, 07743, Germany. *Correspondence e-mail:

umday23@myumanitoba.ca

Following the work of Day & Hawthorne [Acta Cryst. (2022), A78, 212–233] and

Day et al. [Acta Cryst. (2024), A80, 258–281], the program GraphT–T has been

developed to embed graphical representations of observed and hypothetical

chains of (SiO4)4� tetrahedra into 2D and 3D Euclidean space. During

embedding, the distance between linked vertices (T–T distances) and the

distance between unlinked vertices (T� � �T separations) in the resultant unit-

distance graph are restrained to the average observed distance between linked

Si tetrahedra (3.06�0.15 Å) and the minimum separation between unlinked

vertices is restrained to be equal to or greater than the minimum distance

between unlinked Si tetrahedra (3.713 Å) in silicate minerals. The notional

interactions between vertices are described by a 3D spring-force algorithm in

which the attractive forces between linked vertices behave according to Hooke’s

law and the repulsive forces between unlinked vertices behave according to

Coulomb’s law. Embedding parameters (i.e. spring coefficient, k, and Coulomb’s

constant, K) are iteratively refined during embedding to determine if it is

possible to embed a given graph to produce a unit-distance graph with T–T

distances and T� � �T separations that are compatible with the observed T–T

distances and T� � �T separations in crystal structures. The resultant unit-distance

graphs are denoted as compatible and may form crystal structures if and only if

all distances between linked vertices (T–T distances) agree with the average

observed distance between linked Si tetrahedra (3.06�0.15 Å) and the

minimum separation between unlinked vertices is equal to or greater than the

minimum distance between unlinked Si tetrahedra (3.713 Å) in silicate minerals.

If the unit-distance graph does not satisfy these conditions, it is considered

incompatible and the corresponding chain of tetrahedra is unlikely to form

crystal structures. Using GraphT–T, Day et al. [Acta Cryst. (2024), A80, 258–281]

have shown that several topological properties of chain graphs influence the

flexibility (and rigidity) of the corresponding chains of Si tetrahedra and may

explain why particular compatible chain arrangements (and the minerals in

which they occur) are more common than others and/or why incompatible chain

arrangements do not occur in crystals despite being topologically possible.

1. Introduction

GraphT–T (V1.0Beta) is a user-friendly program for embed-

ding finite and/or periodic graphs in 3D Euclidean space to

produce unit-distance graphs while restraining several metric

properties. These metric properties (e.g. edge lengths) are

calculated in real time during the embedding process to allow

a better understanding of how the topological properties of

the input graph affect the geometrical properties of the

corresponding unit-distance graph. Day et al. (2024) used

GraphT–T extensively to understand what topological prop-

erties of 1-periodic arrangements of (TO4) tetrahedra control

https://doi.org/10.1107/S2053273324002523
https://journals.iucr.org/a
https://scripts.iucr.org/cgi-bin/full_search?words=bond%20topology&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=chains%20of%20tetrahedra&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=(SiO4)4−%20tetrahedra&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=graph%20embedding%20program&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=3D%20Euclidean%20space&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=3D%20spring-force%20algorithm&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=GraphT-T&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:umday23@myumanitoba.ca
http://crossmark.crossref.org/dialog/?doi=10.1107/S2053273324002523&domain=pdf&date_stamp=2024-04-29

the compatibility of such arrangements with the metrics of

chain arrangements observed in chain-silicate minerals and

related synthetic compounds.

There has been much work developing software and

programming languages for generating and manipulating

graphs and for calculating their graph-theoretic properties:

e.g. Wolfram Language (graphs and matrices); MATLAB

(Menke & Menke, 2022); Sage (Joyner, 2007); Java (JGraphT)

(Michail et al., 2019); C++ (Boost Graph Library) (Siek et al.,

2002); Python (NetworkX) (Hagberg et al., 2008). However,

such software and programming languages have limited

options with regards to embedding graphs while simulta-

neously restraining their metric properties. Instead, they focus

on manipulation of graphs via their corresponding adjacency

matrices and calculation of various properties of the graphs.

Software programs such as Systre (Delgado-Friedrichs &

O’Keeffe, 2003) and ToposPro (Blatov et al., 2014) have been

designed specifically for the topological and geometrical

analysis of periodic nets observed in crystal structures. These

programs are linked to databases of 3-, 2- and 1-periodic nets

[e.g. the Reticular Chemistry Structure Resource (RCSR) and

the Topological Types Database (TTD)]. However, such

databases contain a limited number of 1-periodic graphs, for

example the RCSR database contains only 11 1-periodic

graphs compared with the �1500 non-isomorphic 1-periodic

graphs generated by Day & Hawthorne (2022). The Systre

program can also be used to embed periodic nets represented

as labelled quotient graphs. Methods related to the use of

quotient graphs (e.g. Treacy et al., 1997, 2004) have been used

to generate 0- to 3-periodic structures related to zeolitic sili-

cates including 1-periodic rods and tubes (Treacy et al., 2023).

Other types of 1-periodic structures, unrelated to silicate

structures, have also been generated and described using

analogous methods (O’Keeffe & Treacy, 2021, 2022).

However, testing of the quotient-graph methods for

describing and generating periodic nets (e.g. Chung et al.,

1984; Eon, 1998, 1999; Klee, 2004) compared with the methods

used by Day & Hawthorne (2022) revealed several problems.

For some vertex connectivities (i.e. cVr), quotient-graph

methods do not generate all possible non-isomorphic nets. For

example, for vertex connectivity 2V1
3V2, the quotient-graph

method for generating periodic nets [described by Chung et al.

(1984)] produced three non-isomorphic 1-periodic nets (chain

graphs) compared with the six non-isomorphic 2V1
3V2 chain

graphs generated by Day & Hawthorne (2022). Day et al.

(2024) used GraphT–T to examine why some embeddings can

occur and others cannot occur, i.e. what controls possible

topologies for chain structures. To do this, graphs must be

generated independently of Euclidean space (and without

symmetry constraints). This is a notable difference from the

vector method for quotient-graph description and generation

of periodic nets (Chung et al., 1984) and the geometric analysis

of nets generated from isomorphic quotient graphs (Eon,

1998, 1999), where nets are generated and described using

geometric aspects of the graphs (i.e. vertices described using

metric indices). For the reasons described above, Day &

Hawthorne (2022) developed a new method for the generation

of 1-periodic graphs and here we introduce the program

GraphT–T for embedding such graphs in Euclidean space.

The software program GraphTea (Rostami et al., 2014a,b)

was written as an educational tool for introductory graph

theory, and has a visualization routine to aid students in

understanding graphs (e.g. vertex degree, looped and/or

directed edges etc.). Using GraphTea, the user may draw and

manipulate graphs in 2D by changing the relative positions of

vertices and the lengths of edges. However, the GraphTea

visualization interface was designed to facilitate visual

comprehension of graphs whereas we are interested in

embedding graphs in Euclidean space. Using GraphTea, one

cannot embed graphs in 2D or 3D Euclidean space while

restraining their metric properties. GraphT–T was developed

from GraphTea to incorporate these capabilities and was used

extensively by Day et al. (2024) as described above.

1.1. Terminology

Following Day et al. (2024) we define the following terms:

Chain: an arrangement of (TO4)n� tetrahedra that (1) links

together infinitely in a single direction, (2) has periodic

(translational) symmetry, and (3) can be broken into two parts

by eliminating a single linkage between adjacent tetrahedra.

Ribbon: an arrangement of (TO4)n� tetrahedra that (1)

links together infinitely in a single direction, (2) has periodic

(translational) symmetry, and (3) cannot be broken into two

parts by eliminating a single linkage between adjacent

tetrahedra.

Graph: a graph, G = (V, E), consists of a set of vertices (V)

and a set of unordered pairs of vertices called edges (E).

Chain graph: a 1-periodic graphical representation of a

chain of (TO4)n� tetrahedra in which tetrahedra and the

linkages between them are represented as vertices and edges,

respectively. A chain graph contains only the topological

information of the corresponding chain of (TO4)n� tetrahedra

and does not contain any geometrical information.

Geometric graph: a geometric graph is a graph that is

defined at least partly by geometric means. A common defi-

nition describes a geometric graph as a graph with straight

edges occurring in the Euclidean plane. However, for our

purposes, we will define a geometric graph as a graph with

straight edges occurring in Euclidean space.

Unit-distance graph: a geometric graph with all edges of unit

length; here, we will generalize this definition slightly: all edges

will be of equal length. Once a chain graph has been

embedded in Euclidean space, it is transformed into a

geometric graph; if any graph is embedded with the constraint

of equal edges, it is a unit-distance graph. It follows that a

geometric graph or a unit-distance graph is an embedding of a

graph or chain graph.

2. Rationale for embedding graphs in 3D Euclidean

space

Day & Hawthorne (2022) and Day et al. (2024) examined

topological properties of crystal structures that affect the

research papers

Acta Cryst. (2024). A80, 282–292 Maxwell Christopher Day et al. � GraphT–T (V1.0Beta) 283

stability and abundance of the mineral in which they occur.

Day & Hawthorne (2020) described chains of (TO4)n� tetra-

hedra observed in chain-silicate minerals (inosilicates) where

T = Si4+ plus P5+, V5+, As5+, Al3+, Fe3+, B3+, Fe2+/3+, Be2+, Zn2+

and Mg2+, and compared the topology of chains of (TO4)n�

tetrahedra using graphs (chain graphs) in which tetrahedra are

represented by vertices and linkages between tetrahedra are

represented by edges, shown in Fig. 1 for the chain of tetra-

hedra in the astrophyllite-supergroup minerals (Sokolova et

al., 2017). They classified and compared observed chain

arrangements using the expressions cTr and cVr, where T

denotes tetrahedra, V denotes vertices and r is the number of

tetrahedra (or vertices) with connectivity c (from 1 to 4) in the

repeat unit (unit cell) of the chain of tetrahedra or chain graph.

The repeat unit is the part of a chain that can be repeated by

translational symmetry operators to produce the complete

(quasi-) infinite chain. In Fig. 1, dashed lines outline the repeat

unit of the chain of tetrahedra and the corresponding chain

graph. Following Day & Hawthorne (2020, 2022) and Day et

al. (2024), the connectivity of the chain of tetrahedra in Fig.

1(a) is 1T2
3T2 and the connectivity of the corresponding chain

graph is 1V1
3V1 [Fig. 1(b)]. The tetrahedra in the repeat unit of

the chain are labelled [Fig. 1(a)]. Vertices in the repeat unit of

the chain graph are also labelled [(Fig. 1(b)] and the

isomorphism relations may be derived using the characteristic

polynomial equations of the graph and its subgraphs as

described by Day & Hawthorne (2022).

Day & Hawthorne (2020) described topological properties

common in silicate minerals that are relatively abundant and

others that are rare (e.g. 4-connected tetrahedra). Day &

Hawthorne (2020, 2022) showed why some chain arrange-

ments with particular vertex connectivities are not topologi-

cally possible and that chain arrangements with stoichiometry

TO2.5–TO2.0 are not observed in minerals or related synthetic

compounds despite being topologically possible. To better

understand these observations, they generated all possible

non-isomorphic chain graphs for vertex connectivities of 1 to

4. Day et al. (2024) developed a method for testing the

compatibility of these chain graphs with the average metrics of

chains of tetrahedra occurring in silicates. To implement this, it

was necessary to develop software in which each chain graph

could be embedded in 3D Euclidean space while restraining

metric properties, specifically the distance between linked

vertices (T–T distances) and unlinked vertices (T� � �T

separations).

2.1. Restraining metric properties of unit-distance graphs

during embedding

To embed chain graphs in Euclidean space while restraining

T–T distances and T� � �T separations, one must impose net

attractive and repulsive forces on the vertices to act as these

restraints. One is tempted to think of these restraints as real

forces between atoms in the structure (similar to a molecular-

mechanics calculation), but this is not the case. The forces in

the embedding process are not interatomic forces and we are

not self-consistently minimizing some energy function. The

‘forces’ involved in the restraint process are designed to move

the vertices of a unit-distance graph towards an ‘optimum’

geometrical arrangement rather than minimize the energy of

the overall arrangement (although the process may do this in a

crude mean-field type of way). This is done by restraining T–T

distances and T� � �T separations to values observed in chains

of tetrahedra in minerals (Fig. 1).

Day et al. (2024) calculated the average T–T distance and

T� � �T separations for all chain-silicate minerals; T–T distances

range from 2.616 to 3.450 Å with an average value of

3.060�0.15 Å. Approximately 94% of the T–T distances are in

the range 2.910–3.210 Å, and values outside this range tend to

involve other tetrahedrally coordinated cations. Thus, when

embedding chain graphs, we restrain T–T distances to

3.060�0.15 Å (i.e. with an allowed T–T variance of 5%). The

minimum T� � �T distance is 3.54 Å [Si–Si in marsturite

(Kolitsch, 2008)]; there are no data between 3.540 and 3.713 Å

and only �20 data points between 3.713 and 3.904 Å. Hence,

when embedding chain graphs, we set the minimum T� � �T

separation � = 3.713 Å. For a particular embedding, the

minimum difference allowed between T–T and T� � �T is

3.713 � 3.210 = 0.503 Å. Any chain graph that requires T–T

distances smaller or larger than 3.060�0.15 Å and/or T� � �T

separations smaller than 3.713 Å, once embedded in Eucli-

dean space, is unlikely to occur in crystal structures.

2.1.1. Chain arrangements with T cations other than Si4+.

The T–T distance and T� � �T restraints (as described in Section

2.1) are based on the average observed T–O–T distances and

T� � �T separations, where T = Si4+. Although most chain types

contain only (SiO4)4� tetrahedra, many groups of chains

contain T cations other than Si4+, such as the sapphirine-

supergroup minerals which contain chains of tetrahedra where

T = Si4+, Al3+, Fe3+, B3+ and Be2+. Consider the sapphirine-

supergroup (Grew et al., 2008) (rhönite-group) aluminate

minerals warkite, Ca2Sc6O2(Al6O18) (Ma et al., 2015), and

addibischoffite, Ca2Al6O2(Al6O18) (Ma et al., 2017), which

contain (Al6O18)18� chains (Day & Hawthorne, 2020). Here

research papers

284 Maxwell Christopher Day et al. � GraphT–T (V1.0Beta) Acta Cryst. (2024). A80, 282–292

Figure 1
(a) The chain of (SiO4)4� tetrahedra in astrophyllite-supergroup
minerals, and (b) the graphical representation of this chain (chain graph)
in which tetrahedra are represented as vertices and the linkages between
tetrahedra are represented as edges. Red arrows show T–T separations
which are constrained to be at least 3.713 Å during embedding. Black
arrows indicate T–T distances which are constrained to be 3.06�0.15 Å
during embedding.

the average T–T (Al–Al) distance is 3.128 Å as h[4]Al3+–O2–i =

1.746 Å and h[4]Si4+–O2–i = 1.625 Å (Gagné & Hawthorne,

2018a). Thus, if one wishes to embed (observed or theoretical)

chain graphs where vertices represent (AlO4)5� tetrahedra

rather than (SiO4)4� tetrahedra, the metric properties of such

chain graphs must be restrained to values in accord with the

average Al–O–Al distances and Al–Al separations observed

in minerals and related synthetic compounds. This can be done

for most of the commonly observed T cations using the T–O

and hT–Oi bond lengths given by Gagné & Hawthorne (2016,

2018a,b, 2020) which in some cases show significant differ-

ences between different cations, e.g. h[4]B3+–O2� i = 1.475 Å

and h[4]Mg2+–O2� i = 1.939 Å.

3. GraphT–T embedding algorithms

3.1. The embedding process

The following is a description of how the T–T and T� � �T

restraints are integrated into the 3D embedding algorithm.

(i) T–T distances: the distances between linked vertices are

restrained by treating edges as notional springs that behave

according to Hooke’s law:

Fs ¼ � kx;

where Fs is the spring force, k is the spring coefficient (stiff-

ness) and x is the amount of spring displacement from the

equilibrium spring length. Here, the equilibrium spring length

represents the ideal T–T distance in chains of tetrahedra

(3.06�0.15 Å). Increasing spring displacement requires

increasing Fs due to repulsion between unlinked vertices.

(ii) T� � �T separations: the distances between unlinked

vertices are restrained by a mutual repulsive interaction

between them described by Coulomb’s law,

Fc ¼ K
q1q2

r2
;

where Fc is the Coulomb force, K is Coulomb’s constant, q1

and q2 are the charges associated with each vertex T, and r is

the distance between vertices (charges). As all vertices

represent [SiO4]4� tetrahedra, all charges are identical and are

simply set to 1. Coulomb’s constant, K, is adjusted to increase

or decrease Fc.

The net notional forces acting on all vertices and the

resultant coordinates (x, y and z) of each vertex may be

calculated. In this calculation, Fs may be scaled differently

than Fc to allow embedding of any chain graph even if T–T

and T� � �T restraints cannot be satisfied exactly. For such cases,

T� � �T separations are forced to be unrealistic (less than 1.16

times the T–T distance) such that one can identify specific

chain topologies that are not compatible with the observed

metrics of chains of tetrahedra.

The cost function of the optimization of the embedding

process involves (1) minimizing the difference between the

nominal T–T distance and the calculated separation of linked

vertices in the graph, and (2) minimizing the difference

between the nominal minimum distance between unlinked

vertices and the calculated separation of linked vertices in the

graph where the difference is positive and giving the differ-

ence zero weight where it is negative.

3.2. Embedding software: GraphT–T

GraphT–T (V1.0Beta) is a web-based visualization software

for embedding graphs in 3D Euclidean space while restraining

the metric properties of the resultant unit-distance graph. The

metric properties of unit-distance graphs are computed using a

3D spring-force algorithm in which the initial spring length

(T–T distance) can be set to any value (e.g. hT–Ti =

3.06�0.15 Å). This algorithm was constructed using the open-

source algorithms 3d-force-graph and ngraph (Appendix A).

A third open-source algorithm, d3-force (Appendix A), was

used which utilizes a Verlet integration (Verlet, 1967), as

would be typically applied to an n-body problem to integrate

Newton’s equations of motion, where vertices represent

bodies with mass equal to one (all vertices represent the same

T cation, e.g. Si4+).

The net forces acting on vertices of a particular unit-

distance graph are calculated iteratively according to

Newton’s laws of motion using a Barnes–Hut (n-body) simu-

lation (Barnes & Hut, 1986). For Fs calculations, k is adjus-

table to allow deviation from the set spring length. For Fc

calculations, K is adjustable to allow the occurrence of T� � �T

separations less than the threshold value of � = 3.713 Å (less

than 1.16 times the T–T distance). The Fc calculation involves

all unique pairs of vertices, and the run-time (rt) of the

GraphT–T algorithm increases exponentially as the number of

vertices (n) in the input graph increases (rt increases propor-

tionally to n2). Thus, rt is impractically large for chain graphs

with many vertices. To avoid this problem, the Barnes–Hut

simulation groups adjacent vertices as bodies and calculates

the position of the centre of charge of that body. The net

repulsive force exerted on all other bodies from the centre of

charge of each body is calculated and used to calculate a new

position for each vertex after each iteration. Vertices are

grouped using a quadtree structure where the chain is divided

into qc cells that contain nqc vertices. Averaging the position of

nqc vertices introduces a small amount of error in the Fc

calculation and the resultant vertex coordinates. However, qc

may be adjusted, and as qc approaches n, nqc decreases and the

error in Fc decreases. If qc = n, then nqc = 1 and the Barnes–

Hut simulation is no different from a brute-force algorithm

where Fc is calculated for all unique pairs of vertices. Of

course, by setting qc = n, final vertex coordinates will have less

positional error than when qc < n but will result in a value of rt

that is impractically large. These positional errors are typically

negligible with respect to the allowed T–T variation.

The embedding parameters in GraphT–T include spring

coefficient (k), Coulomb’s constant (K), spring length, drag

coefficient, theta, time step and cooldown time, all of which

may be adjusted by the user. The drag coefficient can be

increased to damp the movement of vertices after each

iteration to decrease oscillation and speed up convergence.

Theta is adjusted to increase or decrease qc in the Barnes–Hut

research papers

Acta Cryst. (2024). A80, 282–292 Maxwell Christopher Day et al. � GraphT–T (V1.0Beta) 285

simulation. The time step is adjusted to increase or decrease

the speed of each iteration and controls how the discretization

of each equation of motion is performed. The cooldown time

is adjusted to increase or decrease the number of iterations

before the calculation stops. Unit-distance graphs that contain

a repeat unit with a large number of vertices often require a

large number of iterations before convergence is reached and

thus require a relatively long cooldown time.

Non-isomorphic chain graphs may require slightly different

embedding parameters to produce unit-distance graphs that

satisfy the T–T and T� � �T restraints. Furthermore, a single

chain graph may be embedded using different parameters to

produce geometrically different unit-distance graphs that

satisfy the T–T and T� � �T restraints. Thus Day et al. (2024)

determined the ideal ranges for each parameter by embedding

a series of chain graphs using GraphT–T until the minimum

T� � �T separations were maximized, and the average T–T

distances were in best agreement with the equilibrium spring

length. These parameters are listed by Day et al. (2024, Tables

1–4). Some unit-distance graphs show distortion that occurs

over many repeat units [e.g. modulated and helical chains

(Day et al., 2024)] and thus must be input into GraphT–T by

multiplying nt (number of vertices in the repeat unit) by a

variable p, where p = 9–50 for most chain graphs. For

example, a 2V2
3V2 chain graph with p = 9 corresponds to a

chain graph with n vertices where n =
P

r � p = 4 � 9 = 36

vertices.

As described in Section 2.1, the average distance between

tetrahedra (T–T distances) observed in chain-silicate minerals

is 3.06 Å, and thus setting the equilibrium spring length in

GraphT–T to 3.06 Å may seem practical. However, using such

a small spring length results in unit-distance graphs that are

visually difficult to comprehend as vertices appear very close

together. To overcome this problem, we set the spring length

to 50.00 to ensure that the geometry of unit-distance graphs

produced with GraphT–T is easily understood. Although this

increases the convergence time (minimum cooldown time) for

some chain graphs, it does not affect the GraphT–T outputs

(geometry of unit-distance graphs) as Fs and Fc and the

resultant T–T distances and T� � �T separations are simply

scaled by a factor of 16.34 (3.06 � 16.34 = 50.00 Å and � = 50

� 1.16 = 58 Å). After the embedding process is complete, they

may be re-scaled (e.g. 50/16.34 = 3.06 Å and 58/16.34 = 3.55 Å)

such that they can be compared with T–T distances and T� � �T

separations observed in crystal structures.

3.2.1. Convergence of the embedding process. In

GraphT–T, when the first phase of the embedding process

starts, all vertices occupy the same position (x, y, z = 0, 0, 0) in

the 3D visual rendering space and thus all T–T distances and

T� � �T separations are zero. As embedding progresses, T–T

distances will approach the set spring length and T� � �T

separations will increase due to repulsion involving Fc. The

average T� � �T separation will increase until T–T distances

reach a point (restrained by k, the spring coefficient) such that

Fs is no longer compatible with further increase in the T� � �T

separations. At this point, the unit-distance graph has

converged.

The minimum, maximum and average T–T distances and

T� � �T separations are calculated and reported in real time

such that the user can determine when a particular unit-

distance graph has converged. Once convergence is reached,

vertices will continue to respond to Fs and Fc and each vertex

will oscillate around a point in response to these forces. Before

convergence is reached, reported T–T distances and T� � �T

separations will trend towards higher or lower values although

the rate at which this occurs may be relatively slow depending

on k, K and the drag coefficient. For unit-distance graphs that

have converged using large values of k and K, the degree of

vertex oscillation may be relatively large, and convergence will

never result in a single set of coordinates for any given vertex,

but rather a range of coordinates. Therefore, average T–T

distances and minimum T� � �T separations are reported as

ranges [RhT–Ti and RhT� � �Timin in Tables 1–4 of Day et al.

(2024)] and are referred to as the compatibility parameters of

the unit-distance graph to which they correspond. Note that

T� � �T is always reported as a minimum and that, for

some unit-distance graphs, variation due to oscillation in

T–T and T� � �T is negligible (when k and K are relatively

small) and such values are reported as single integers (denoted

as hT–Ti and T� � �Tmin) rather than ranges as described

above.

A chain graph which has been embedded using GraphT–T

to produce a unit-distance graph that has converged can be

described as:

(i) Compatible: if a unit-distance graph converges such that

the T–T and T� � �T restraints are satisfied, the corresponding

chain graph may correspond to a chain of tetrahedra and is

considered as potentially compatible with a crystal structure.

(ii) Incompatible: if a unit-distance graph converges such

that the T–T and/or T� � �T restraints are not satisfied, the

corresponding chain graph cannot correspond to a chain of

tetrahedra and is considered incompatible with a crystal

structure. If a unit-distance graph does not converge (Section

4.3), it is incompatible.

3.2.2. Two-step embedding: a solution for metastable unit-

distance graphs. As the embedding process progresses and

convergence is achieved, any given vertex should occupy a

position with associated T–T distances that are as close as

possible to the equilibrium spring length (e.g. 3.06�0.15 Å)

and T� � �T separations that are as large as possible. For some

unit-distance graphs, particularly complicated ones with a high

average vertex connectivity, this is not the case as one or more

vertices may occupy a non-ideal position (a false minimum)

with respect to the associated T–T distances and T� � �T

separations. Any unit-distance graph that contains one or

more vertices that occupy a false minimum is referred to as

metastable. Metastable unit-distance graphs occur where one

or more vertices become trapped in a position where a

temporary increase in the corresponding T–T distances and

T� � �T separations (Fs and Fc) towards less ideal values is

required for that vertex to move to a more ideal position with

respect to the ideal T–T distances and T� � �T separations.

Metastable unit-distance graphs will converge to false minima

and will show large discrepancies between the minimum and

research papers

286 Maxwell Christopher Day et al. � GraphT–T (V1.0Beta) Acta Cryst. (2024). A80, 282–292

maximum T–T distances and T–T separations significantly

smaller than the threshold values.

To reduce the probability of generating metastable unit-

distance graphs, graphs are embedded using a two-phase

procedure. In the first phase, the spring coefficient (k) is

relatively small (k = 0.0008) for the first 15 s of the embedding

process to allow vertices to move rapidly to positions that are

close to ideal. In this phase, the probability that vertices

become trapped at false minima is low as Fs is smaller than the

recommended user-defined embedding parameters and more

easily counteracted by Fc. In the second phase of embedding,

the user-defined embedding parameters are applied to the

unit-distance graph, the positions of vertices are refined and

the minimum and maximum T–T distances and minimum

T� � �T separations are reported by GraphT–T. During the first

phase of embedding, T� � �T separations are often significantly

smaller than during the second phase as Fc is a function of the

distance between unlinked vertices (r2, Section 3.1), and at a

particular distance between any two unlinked vertices

(�7.43 Å = 2 � 3.713 Å), Fc becomes negligible.

Consider the cubic unit-distance graph in Fig. 2(a); black

edges are 3.06 Å long, vertex 1 occupies a position in the

centre of the cube and is linked to vertices 2 and 3 by the red

edges. The length (L) of the red 1–2 and 1–3 edges is

(3:06
ffiffiffi
3
p

)/2 = 2.65 Å and is shorter than the minimum allowed

T–T distance of 2.91 Å and therefore is not allowed. During

embedding, vertex 1 will be subject to a spring force in the

direction of the red arrows to increase the 1–2 and 1–3 edge

lengths. However, in doing so, the T–T separation distance

between vertex 1 and vertices 6, 7, 8 and 9 will decrease and

the repulsion force on vertex 1 will increase. Regardless of

which face of the cube vertex 1 moves towards, the counter-

acting effects of Fs and Fc will prevent the vertex from moving

to a position in which both the T–T distance and T� � �T

separation restraints are satisfied; thus the unit-distance graph

in Fig. 2(a) is metastable. For this graph to move away from

the metastable state and perhaps converge to a stable state,

vertex 1 must move past vertices 2 and 3 and undergo a

temporary increase in Fs from subsequent shortening of the

1–2 and 1–3 edges [Fig. 2(b)]. The size of Fs and Fc will allow

this type of movement in the first phase of embedding but not

in the second phase. At the end of phase one, vertex 1 has

moved to a position in which the T–T distance and T� � �T

separation distance are much closer to the ideal values [Fig.

2(c)]. The position of vertex 1 [Fig. 2(c)] is then refined during

the second phase of embedding.

4. Examples: embedding chain graphs using GraphT–T

4.1. The amphibole ribbon

Amphibole-supergroup minerals (Hawthorne et al., 2012)

comprise the largest group of chain-silicate minerals and

contain 2T2
3T2 ribbons of (TO4)n� tetrahedra [Fig. 3(a)]; the

corresponding 2V2
3V2 chain graph is shown in Fig. 3(b). To

determine to what degree the topological properties of this

chain arrangement contribute to the relatively high stability

and abundance of amphiboles, one must compare the

compatibility parameters (given by GraphT–T) of this

arrangement with other topologically similar arrangements. To

do this, Day & Hawthorne (2022) generated all possible, non-

isomorphic ribbons with identical vertex connectivity 2V2
3V2;

one of these ribbons is shown in Fig. 3(c).

Several chain graphs have been included in GraphT–T as

examples to allow the user to test sets of parameters on a

series of non-isomorphic graphs with different vertex

connectivities. The chain graph in Fig. 3(b) corresponds to

ChainGraph2; this chain graph can be loaded using the

Generator dropdown menu and the length of this chain graph

can be adjusted by setting the parameter n as shown in Fig.

4(a), where n is the number of repeat units included in the

visual rendering. As discussed in Section 3.2.2, in the first

phase of the embedding process, vertices occupy the same

position and, after �1 s, vertices will appear clustered [Fig.

4(a)] as they begin to move away from one another [Fig. 4(b)]

research papers

Acta Cryst. (2024). A80, 282–292 Maxwell Christopher Day et al. � GraphT–T (V1.0Beta) 287

Figure 2
(a) An example of a metastable unit-distance graph in which vertex 1
occupies a false-minimum position where the 1–2 and 1–3 edges are
shorter than the other (black) edges and thus vertex 1 experiences Fs in
the direction of the red arrows. In response to Fs, vertex 1 also experi-
ences Fc (black dashed arrows) as the distance between vertex 1 and all
other vertices to which it is not linked is shorter than the length of the
black edge. For vertex 1 to move from this false minimum, Fs must
increase temporarily as shown in (b) in order to converge to the ideal
position shown in (c).

Figure 3
(a) The 2T2

3T2 chain of (SiO4)4� tetrahedra in amphibole-supergroup
minerals with a repeat unit that contains four tetrahedra; (b) the corre-
sponding 2V2

3V2 chain graph with a repeat unit that contains four
vertices; (c) another 2V2

3V2 chain graph that is non-isomorphic (topolo-
gically different) with the chain graph in (b).

to assume positions in which the T–T distance and T� � �T

separation restraints are satisfied (or close to satisfied), as

shown in Fig. 4(c).

Once the first phase of embedding has finished and the

second phase has begun, vertices will change colour from

yellow to red and the user-specified embedding parameters

will be applied to the unit-distance graph (Fig. 5). The unit-

distance graph in Fig. 5 is produced once the cooldown time

for the second phase of embedding has elapsed. Here, RhT–Ti

= 50.001–50.003 Å is in excellent agreement with the set

equilibrium spring length (50) and RhT� � �Timin = 81.493–

82.863 Å which is significantly larger than � = 58 Å, and thus

we confirm that this graph is compatible.

Embedding the chain graph in Fig. 3(c) in 2D results in the

unit-distance graph in Fig. 6(a). In 2D, this unit-distance graph

is forced to curve to shorten the 4–4 edge [Fig. 3(c)] to make

all edges of equal length. However, at a particular value of n,

the chain is forced to curve in on itself, resulting in unrealis-

tically small T� � �T separations, e.g. the 4–4 separation, shown

by a red ellipse, is approximately the same size as the T–T

distances [Fig. 6(a)]. Thus, we conclude that this chain graph is

incompatible in 2D. Embedding the chain graph in Fig. 3(c) in

3D using GraphT–T results in the unit-distance graphs in Figs.

6(b) and 6(c). This unit-distance graph is forced to form a helix

in order to equalize edge lengths and prevent unrealistic T–T

separations (e.g. the 4–4 separation). Here, RhT–Ti = 48.146–

51.956 Å which is in good accord with the set equilibrium

spring length (50 Å) and RhT� � �Ti = 61.870–63.607 Å which is

larger than � = 58 Å; thus, we confirm this chain graph is

compatible. This type of geometric distortion is referred to as

medium-range modification by Day et al. (2024) and is

discussed in more detail in Section 4.2.1. A more detailed

analysis of the compatibility parameters for the unit-distance

graph shown in Fig. 5 and other chains with vertex connec-

tivity 2V2
3V2 (e.g. Fig. 6) is given by Day et al. (2024).

The embedding parameters used for the chain graphs in

Figs. 3(b) and 3(c) were taken from Day et al. (2024). These

parameters were determined experimentally and refined using

a method described in Section 4.3.

4.2. Termination effects

As all chains of tetrahedra, and the corresponding chain

graphs, are 1-periodic, one must select some finite length

(number of repeat units) of the chain to embed using

GraphT–T. Vertices at either end of a finite segment of any

chain graph will be subject to different net forces during

embedding compared with analogous vertices (of a different

repeat unit) that occur at, or close to, the middle of the chain.

This is because the net forces acting on a given vertex are

affected by the connectivity of that vertex, the number of

unlinked vertices to which it is adjacent, and its proximity to

each of those unlinked vertices. Therefore, vertices (and

edges) at the end of any unit-distance graph will converge to a

geometry different from that of the middle of the unit-distance

graph. For example, consider the chain graph in Fig. 3(b).

Each repeat unit contains two 2-connected vertices (vertices 1

and 3) and two 3-connected vertices (vertices 2 and 4) except

for the repeat units at both ends of the chain graph. Vertices 2

and 4 at the end of the chain graph [shown with red arrows,

Fig. 3(b)] are 2-connected rather than 3-connected, and thus

are subject to a different net force during embedding

compared with the translationally symmetric vertices 2 and 4

in the other repeat units. Embedding this chain graph results

in a chain geometry at both ends of the corresponding unit-

distance graph that is different from the rest of the chain. This

research papers

288 Maxwell Christopher Day et al. � GraphT–T (V1.0Beta) Acta Cryst. (2024). A80, 282–292

Figure 4
(a) The GraphT–T interface showing the first few seconds of the first
phase of the embedding process for a 2V2

3V2 unit-distance graph. (b) The
unit-distance graph after 2–5 s showing rapid expansion and movement of
vertices towards ideal positions with respect to the ideal T–T distances
and T� � �T separations. (c) The unit-distance graph after 10–15 s where
vertices occupy positions close to ideal with respect to the T–T and T� � �T
constraints.

Figure 5
The GraphT–T interface showing the 2V2

3V2 chain in amphibole-super-
group minerals that has converged to a compatible unit-distance graph
using the embedding parameters recommended by Day et al. (2024). Note
the asymmetry of the hexagons at each end of the unit-distance graph due
to termination effects.

is shown in Fig. 5, where the middle of the unit-distance graph

consists of three regular, edge-sharing hexagons in which all

vertices lie on a single plane. The hexagons on either end have

different geometries and contain vertices that lie out of the

plane containing the middle hexagons; this is a called a

termination effect.

4.2.1. Recommended n for input chain graphs. Vertices that

experience termination effects always have a lower connec-

tivity than equivalent (translationally symmetric) vertices and

thus have more freedom to move in response to Fs and Fc. It

follows that termination effects tend to skew the average T–T

distances and T� � �T separations to larger values. For chain

graphs in which
P

r (cVr) is relatively small (1–8) and where n

(the number of repeat units) is relatively small (1–4), termi-

nation effects may increase the T–T distances and T� � �T

separations to the point where the user may erroneously

identify a unit-distance graph as compatible when in fact it is

incompatible or vice versa (see Section 3.2.1). This problem is

easily mitigated by using n � 5 for any chain graph that the

user wishes to embed. Even for chain graphs with
P

r = 1–8,

setting n � 5 results in an increase in T–T and T� � �T (in the

corresponding unit-distance graph) due to termination effects

that is negligible with respect to the positional errors of

vertices once convergence is reached. In general, as n

increases, the ratio of vertices subject to end effects and those

not subject to end effects (vertices in the middle of the chain)

decreases and thus any increase in T–T and T� � �T due to end

effects is inversely correlated with n. Therefore, we recom-

mend that one sets n as large as possible for any chain graph

one wishes to embed using GraphT–T. However, one must

also consider realistic computation times and the increase in

probability of a metastable unit-distance occurring with

increasing n.

Particular chain graphs require different types of geometric

distortion [e.g. helical arrangements, Figs. 6(a)–6(c)] in order

to converge to a compatible unit-distance graph. This type of

geometric distortion is referred to as medium-range modifi-

cation by Day et al. (2024), who provide a more detailed

analysis of this phenomenon than is given here. Unit-distance

graphs that experience medium-range modification often have

repeat units that are significantly larger (contain many more

vertices) than the corresponding chain graph and thus it is

recommended that n is set to a large value to ensure that at

least one complete repeat unit can be recognized by the user

once convergence is reached. This will ensure that values are

reported for all symmetrically non-equivalent T–T distances

and T� � �T separations in the repeat unit and that an accurate

analysis of the compatibility of the unit-distance graph can be

made.

4.3. Refining embedding parameters: the 4V2 shoelace graph

Assuming a starting point as the default set of embedding

parameters (Section 3.2), one may iteratively embed a given

chain graph and refine the embedding parameters based on

how or if the compatibility parameters (reported T–T

distances and T� � �T separations) of the resultant unit-distance

graph trend towards ideal values (i.e. if the average T–T

distance trends towards the set spring length with each

embedding iteration).

Reaching an endpoint and determining the exact value of

each embedding parameter that results in a unit-distance

graph with ideal geometry (i.e. T–T distances as close as

possible to the set spring length) can be difficult and time

consuming. However, for most graphs, the embedding para-

meters need not be refined to such a high degree as the

principal goal of using GraphT–T is to determine whether a

research papers

Acta Cryst. (2024). A80, 282–292 Maxwell Christopher Day et al. � GraphT–T (V1.0Beta) 289

Figure 6
(a) The unit-distance graph produced by embedding the chain graph
shown in Fig. 3(c) in 2D. This chain is forced to curve in on itself to ensure
approximately equal T–T distances. At a particular length (number of
tetrahedra, n), this results in T� � �T separations that are too short (shown
with a red ellipse). This unit-distance graph embedded in 3D viewed (b)
along the long axis of the chain and (c) into the long axis of the chain.
Note how the chain is forced to form a helical arrangement to prevent
unrealistically short T� � �T separations as shown with the red ellipse in
(a).

Figure 7
(a) The 4V2 ‘shoelace’ chain graph and (b) the corresponding unit-
distance graph embedded using the default embedding parameters shown
in the visualization menu. Although this graph converges, it is incompa-
tible as RhT–Ti and RhT� � �Timin are significantly larger and smaller than
the set spring length (30 Å), respectively.

chain graph is compatible or incompatible with the metrics of

crystal structures, and this can almost always be determined

well before each embedding parameter is fully refined. In the

following example, we show how by iteratively refining k and

K, one can determine if a given chain graph is compatible or

incompatible.

Consider the chain graph in Fig. 7(a) with vertex connec-

tivity 4V2 which is referred to by the authors as the shoelace

graph and is loaded in GraphT–T as example ChainGraph6.

To determine whether this chain graph is compatible, we begin

by embedding it with GraphT–T using the default embedding

parameters in Fig. 7(b) and n is set to 10 to minimize termi-

nation effects. Using these embedding parameters, the chain

graph quickly converges to a unit-distance graph with

RhT� � �Timin = 28.056–28.541 Å and RhT–Ti = 37.310–

43.306 Å and is thus incompatible (using the default embed-

ding parameters) as the set spring length is 30 Å. Next, we can

set the embedding parameters to those recommended by Day

et al. (2024) as shown in Fig. 8. Using these parameters, the

chain graph converges much more slowly to a unit-distance

graph with T� � �Tmin = 33.208 Å and RhT–Ti = 50.003–

50.006 Å which is thus incompatible (using the embedding

parameters shown in Fig. 8) as T� � �Tmin (= 33.208 Å) is less

than the set spring length (50 Å). Here, k has been increased

and K has been decreased with respect to the values of k and

K used to embed this graph in Fig. 7(b). As a result, there is

less competition between Fs and Fc and a negligible degree of

vertex oscillation once the unit-distance graph in Fig. 8 has

converged; this is apparent from comparison of the compat-

ibility parameters for Figs. 7(a) and 8 shown in Table 1. Next,

one may wish to increase T� � �Tmin (as reported in Fig. 8) by

increasing K and decreasing k. These results are shown in

Table 1 (rows [3]–[5]) where K is increased from � 1.2 to � 2.5

to � 10.0 while keeping k the same (0.001). This results in a

progressive increase in T� � �Tmin towards the allowed

threshold of � = 58 Å, but also a progressive increase in RhT–

Ti away from the set spring length (50 Å). This behaviour is

commonly observed for chain graphs with a high average

vertex connectivity (e.g. 4V2) and is characteristic of incom-

patible graphs.

In Fig. 9(a) (Table 1, row [6]), K is increased to � 50 and

RhT� � �Timin = 72.474–73.803 Å, but to accommodate this

change, RhT–Ti also increases and is now approximately

double the set spring length. Consequently, one may now

attempt to iteratively increase k to decrease RhT–Ti, and this

is shown in Table 1 (rows [7]–[12]); however, k can only be

research papers

290 Maxwell Christopher Day et al. � GraphT–T (V1.0Beta) Acta Cryst. (2024). A80, 282–292

Figure 8
The 4V2 ‘shoelace’ unit-distance graph embedded using the embedding
parameters recommended by Day et al. (2024). This graph converges and
has T–T distances (RhT–Ti = 50.003–50.006 Å) in excellent agreement
with the set spring length (50 Å) but is incompatible as T� � �Tmin =
33.208 Å.

Table 1
Compatibility parameters for the 4V2 shoelace graph for different values
of k (spring coefficient) and K (Coulomb’s constant).

RhT–Ti and RhT� � �Timin values that are compatible and incompatible with the
set spring length are shown in bold and italic, respectively. Apart from k and
K, default [1] and recommended [2] embedding parameters are identical (see

Figs. 7 and 8) other than spring length which is set to 30 Å and 50 Å,
respectively. For some values of k and K, variation in T–T and/or T� � �T (the
degree of vertex oscillation), once converged, is negligible and thus RhT–Ti
and RhT� � �Timin are reported as single integers (marked with *) rather than
ranges.

Selected k and K RhT–Ti (Å) RhT� � �Timin (Å) Fig.

[1] k = 0.0008, K = � 1.2
(default embedding
parameters)

37.310–43.306 28.056–28.541 7(b)

[2] k = 0.0035, K = � 0.003

(recommended embedding
parameters)

50.003–50.006 33.208* 8

[3] k = 0.001, K = � 1.2 53.058–56.157 37.509–37.556 –
[4] k = 0.001, K = � 2.5 55.865–60.986 40.257–40.418 –
[5] k = 0.001, K = � 10.0 66.156–77.272 51.127–51.351 –
[6] k = 0.001, K = � 50.0 91.301–116.635 72.474–73.803 9(a)

[7] k = 0.0015, K = � 50.0 83.188–100.236 66.615–67.524 –
[8] k = 0.002, K = � 50.0 75.300–96.002 61.624–63.184 –
[9] k = 0.0025, K = � 50.0 74.139–91.431 57.597–59.950 9(b)
[10] k = 0.003, K = � 50.0 Does not converge –
[11] k = 0.004, K = � 50.0 Does not converge –
[12] k = 0.02, K = � 50.0 Does not converge 9(c)

Figure 9
(a) The 4V2 ‘shoelace’ unit-distance graph where RhT–Ti = 91.301–
116.635 Å and is thus incompatible where k = 0.001 and K = � 50. In an
attempt to decrease RhT–Ti, k is increased to 0.0025 and the unit-distance
graph in (b) is produced where RhT–Ti = 74.139–91.431 Å and
RhT� � �Timin = 57.597–59.950 Å. Thus, one may conclude this chain graph
is incompatible as any further increase in k, in an attempt to reduce RhT–
Ti, will result in a decrease in RhT� � �Timin to values below � = 58 Å. This
is shown in (c) where k is increased to 0.02 and the resultant unit-distance
graph does not converge.

increased to 0.0025 before RhT� � �Timin drops below � = 58 Å

[Fig. 9(b), Table 1, row [9]]. Any value of k � 0.003 where

K = � 50 results in a unit-distance graph that does not

converge and thus no values are reported in Table 1 for [10]–

[12]. In Fig. 9(c), the non-convergent unit-distance graph is

shown in which all T–T distances and T� � �T separations show

significant deviation from one another. At this point, based on

the results in Table 1, one can conclude that the 4V2 ‘shoelace’

graph is incompatible as there is clearly no combination of k

and K in which both the T–T and T� � �T restraints are satisfied.

Although only two of the embedding parameters (k and K)

were varied for the 4V2 graph, Day et al. (2024) determined

that if a graph cannot be embedded to produce a compatible

unit-distance graph by iteratively refining K and k (as

described above), the graph is almost always incompatible

irrespective of how the other embedding parameters are set.

Refining the embedding parameters for compatible graphs

is much simpler and, for most cases, the compatibility of a

graph is immediately apparent if the embedding parameters

recommended by Day et al. (2024) are used. Thus, once the

compatibility was determined for a graph, embedding para-

meters were not fully refined by Day et al. (2024) as there was

no need to continue the refinement process any further. For

example, consider the graph in Fig. 5: on embedding using the

recommended values for each parameter, it is immediately

apparent that the graph is compatible as the compatibility

parameters are in close accord with the T–T and T� � �T

restraints. However, it may be possible to improve the

compatibility parameters (i.e. increase T� � �Tmin) by further

refinement of k and K. The drag coefficient and/or theta

values may also be refined but their effect on the final

compatibility parameters is typically minimal.

5. Summary

GraphT–T (V1.0Beta) has been developed to embed 1-peri-

odic chain graphs in 3D Euclidean space. It uses a combination

of notional spring-force algorithms (see links to open-source

code in Appendix A), and during the embedding process, the

distances between unlinked and linked vertices (i.e. distance

between tetrahedra) of the corresponding unit-distance graph

are restrained to be in accord with those in chain-silicate

minerals and related synthetic compounds. Here, examples are

provided to show how one can iteratively refine the embed-

ding parameters (e.g. spring coefficient, k, and Coulomb’s

coefficient, K) to determine if the input chain graph is

compatible or incompatible with the observed metrics of

chains of TO4 tetrahedra. Compatible chain graphs may form

crystal structures and incompatible chain graphs are unlikely

to form crystal structures. For example, GraphT–T has been

used extensively by Day et al. (2024) who embedded a suite of

observed and hypothetical chain arrangements generated by

Day & Hawthorne (2022) to identify topological properties of

chain graphs that control properties such as flexibility (or

rigidity). They showed that most chains with stoichiometry

TO2.5–TO2.0 are relatively rigid and incompatible, which may

explain why such chain stoichiometries are not observed in

chain-silicate minerals or related synthetic compounds.

5.1. Future work

GraphT–T can be used to determine the compatibility of

any 0D to 3D arrangement of polyhedra if the allowed T–T

distances and T� � �T separations observed in analogous crystal

structures are determined prior to the embedding process.

Currently, we are working on modifying GraphT–T to allow

analysis of mixed polymerizations of tetrahedra (e.g. alumi-

nosilicate [(Al3+,Si4+)On] chains) where embedding para-

meters are specified for sets of vertices that correspond to

different cations (e.g. Si4+ and Al3+, or Si4+ and As5+). This will

also allow embedding of chain graphs with vertices corre-

sponding to Si4+ and O2� , providing the opportunity to

determine the effect of repulsion between O2� anions on the

compatibility of such graphs.

This version of GraphT–T is still undergoing beta testing by

the authors; please report any problems or suggestions to the

corresponding author. A web-based version of GraphT–T is

available at https://graphtt.github.io. The open-source code

can be accessed at https://github.com/GraphTT/graphtt.

github.io/ where a Zip file can be downloaded containing all

component files required to set-up and run GraphT–T locally.

This Zip file and installation instructions are also available as

supporting information. For information about how to install

GraphT–T locally and how to use GraphT–T, refer to

Appendix A.

APPENDIX A

A1. Accessing the GraphT–T software

A web-based version of the GraphT–T software can be

accessed at https://graphtt.github.io. The program code is open

source and can be accessed at https://github.com/GraphTT/

graphtt.github.io/ where a Zip file can be downloaded

containing all component files required to set-up and run

GraphT–T locally. This is done by clicking on the green ‘Code’

button and then by selecting ‘Download ZIP’. This Zip file

(called ‘graphtt.github.io-main’) and instructions (called

‘GraphT–T Instructions rev.pdf’) about how to install and run

GraphT–T locally are also available as supporting informa-

tion. The open-source component code (see Section 3.2) can

be accessed at github.com using the following links:

https://github.com/d3/d3-force

https://github.com/vasturiano/3d-force-graph

https://github.com/anvaka/ngraph.forcelayout.

If any problems are experienced when executing the open-

source code or running GraphT–T locally, please contact Dr

Ali Rostami (rostamiev@gmail.com) and Dr Maxwell C. Day

(umday23@myumanitoba.ca).

A2. Operating the GraphT–T software

Currently, graphs must be uploaded to GraphT–T in a G6

file format (e.g. graph.g6). Using the GraphTea program,

graphs can be drawn and then saved as a G6 file, the G6 format

research papers

Acta Cryst. (2024). A80, 282–292 Maxwell Christopher Day et al. � GraphT–T (V1.0Beta) 291

https://graphtt.github.io
https://github.com/GraphTT/graphtt.github.io/
https://github.com/GraphTT/graphtt.github.io/
https://graphtt.github.io
https://github.com/GraphTT/graphtt.github.io/
https://github.com/GraphTT/graphtt.github.io/
https://github.com/d3/d3-force
https://github.com/vasturiano/3d-force-graph
https://github.com/anvaka/ngraph.forcelayout

string can then be entered into GraphT–T. GraphTea can be

downloaded from http://graphtheorysoftware.com/ and a

detailed description of how to use the software is provided by

Rostami et al. (2014b). The user can also test the program

using the pre-loaded example graphs accessed using the

‘Generator’ dropdown menu. Examples ChainGraph1 and

ChainGraph2 correspond to the chains observed in astro-

phyllite- and amphibole-supergroup minerals (e.g. Figs. 4 and

5), respectively. Examples ChainGraphs 4–7 are not observed

in minerals and are embedded and evaluated by Day et al.

(2024).

Once a graph has been loaded as a G6 file, one can start

the embedding process by pressing the ‘Go’ button. Before

embedding is started, the user may wish to adjust the

embedding parameters accessed in the ‘Visualization’ drop-

down menu. As discussed in Section 3.2.2, these parameters

apply only to the second phase of embedding rather than the

first phase of embedding in which each parameter is assigned a

default value which cannot be adjusted by the user. It is

advised that users use the recommended embedding para-

meters provided by Day et al. (2024) as a starting point in the

refinement process of the embedding parameters (Section

4.3). At any point during the refinement process, the set

embedding parameters can be saved using the ‘Local save’

button and then re-loaded using the ‘Load from local save’

button. If the browser is refreshed when using the web-based

version of GraphT–T, the saved embedding parameters will be

lost. During embedding, GraphT–T will report the minimum

T� � �T separation distance and the minimum, maximum and

average T–T distances for each consecutive iteration. Once

the unit-distance graph has converged (if convergence is

possible), RhT–Ti and RhT� � �Timin can be recorded. Users

may rotate or move the graph in the display interface using the

left and right cursors and zoom in and out by scrolling.

Additional options for reporting other properties of

embedded unit-distance graphs and for exporting data (e.g.

images and vertex coordinates) will be made available in the

next version of the program (GraphT–T V1.1).

Funding information

The work was supported by a Graduate Fellowship to MCD

from the University of Manitoba and a Discovery Grant to

FCH from the Natural Sciences and Engineering Research

Council of Canada.

References

Barnes, J. & Hut, P. (1986). Nature, 324, 446–449.
Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst.

Growth Des. 14, 3576–3586.

Chung, S. J., Hahn, Th. & Klee, W. E. (1984). Acta Cryst. A40, 42–50.

Day, M. C. & Hawthorne, F. C. (2020). Mineral. Mag. 84, 165–244.
Day, M. C. & Hawthorne, F. C. (2022). Acta Cryst. A78, 212–233.

Day, M. C., Rostami, A. & Hawthorne, F. C. (2024). Acta Cryst. A80,
258–281.

Delgado-Friedrichs, O. & O’Keeffe, M. (2003). Acta Cryst. A59, 351–
360.

Eon, J.-G. (1998). J. Solid State Chem. 138, 55–65.

Eon, J.-G. (1999). J. Solid State Chem. 147, 429–437.

Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.
Gagné, O. C. & Hawthorne, F. C. (2018a). Acta Cryst. B74, 63–78.

Gagné, O. C. & Hawthorne, F. C. (2018b). Acta Cryst. B74, 79–96.

Gagné, O. C. & Hawthorne, F. C. (2020). IUCrJ, 7, 581–629.

Grew, E. S., Hålenius, U., Pasero, M. & Barbier, J. (2008). Mineral.
Mag. 72, 839–876.

Hagberg, A., Schult, D. & Swart, P. (2008). Proceedings of the 7th
Python in Science Conference, edited by G. Varoquaux et al., pp. 11–
15. Pasadena, USA.

Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W., Martin,
R. F., Schumacher, J. C. & Welch, M. D. (2012). Am. Mineral. 97,
2031–2048.

Joyner, D. (2007). Computing Graph Properties with Sage, https://doc.
sagemath.org/html/en/reference/graphs/sage/graphs/graph.html.

Klee, W. E. (2004). Cryst. Res. Technol. 39, 959–968.

Kolitsch, U. (2008). Ann. Meet. Deutsche Mineral. Ges., Abs. No. 120.
Berlin, Germany.

Ma, C., Krot, A. N., Beckett, J. R., Nagashima, K. & Tschauner, O.
(2015). Meteorit. Planet. Sci. 50 (S1), Abstract No. 5025.

Ma, C., Krot, A. N. & Nagashima, K. (2017). Am. Mineral. 102, 1556–
1560.

Menke, W. & Menke, J. (2022). Environmental Data Analysis with
MatLab or Python. London: Elsevier.

Michail, D., Naveh, B. & Sichi, J. V. (2019). JGraphT - a Java Library
for Graph Data Structures and Algorithms [Computer Software],
https://jgrapht.org/javadoc/org.jgrapht.core/org/jgrapht/
package-summary.html.

O’Keeffe, M. & Treacy, M. M. J. (2021). Acta Cryst. A77, 130–137.

O’Keeffe, M. & Treacy, M. M. J. (2022). Acta Cryst. A78, 234–241.

Rostami, M. A., Azadi, A. & Seydi, M. (2014a). Proceedings
of the 2014 International Conference on Education and
Educational Technologies II (EET’14), Prague, Czech Republic.
Communications, Circuits and Educational Technologies, pp. 48–
51, https://www.inase.org/library/2014/prague/bypaper/ECS-EET/
ECS-EET-06.pdf.

Rostami, M. A., Bücker, H. M. & Azadi, A. (2014b). Open Learning
and Teaching in Educational Communities. EC-TEL 2014, edited
by C. Rensing, S. de Freitas, T. Ley & P. J. Muñoz-Merino. Lecture
Notes in Computer Science, Vol. 8719, 514–517. Cham: Springer.

Siek, J., Lee, L.-Q. & Lumsdaine, A. (2002). The Boost Graph
Library: User Guide and Reference Manual. Boston: Addison-
Wesley Professional.

Sokolova, E., Cámara, F., Hawthorne, F. C. & Ciriotti, M. E. (2017).
Mineral. Mag. 81, 143–153.

Treacy, M. M. J., Foster, M. D., Randall, K. H. & O’Keeffe, M. (2023).
Cryst. Growth Des. 23, 4186–4197.

Treacy, M. M. J., Randall, K. H., Rao, S., Perry, J. A. & Chadi, D. J.
(1997). Z. Kristallogr. – Cryst. Mater. 212, 768–791.

Treacy, M. M. J., Rivin, I., Balkovsky, E., Randall, K. H. & Foster,
M. D. (2004). Microporous Mesoporous Mater. 74, 121–132.

Verlet, L. (1967). Phys. Rev. 159, 98–103.

research papers

292 Maxwell Christopher Day et al. � GraphT–T (V1.0Beta) Acta Cryst. (2024). A80, 282–292

http://graphtheorysoftware.com/
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB17
https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/graph.html
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB23
https://jgrapht.org/javadoc/org.jgrapht.core/org/jgrapht/package-summary.html
https://jgrapht.org/javadoc/org.jgrapht.core/org/jgrapht/package-summary.html
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB53
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB54
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB24
https://www.inase.org/library/2014/prague/bypaper/ECS-EET/ECS-EET-06.pdf
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB52
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB52
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB51
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB51
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=uv5025&bbid=BB28

	Abstract
	1. Introduction
	1.1. Terminology

	2. Rationale for embedding graphs in 3D Euclidean space
	2.1. Restraining metric properties of unit-distance graphs during embedding
	2.1.1. Chain arrangements with T cations other than Si4+

	3. GraphT-T embedding algorithms
	3.1. The embedding process
	3.2. Embedding software: GraphT-T
	3.2.1. Convergence of the embedding process
	3.2.2. Two-step embedding: a solution for metastable unit-distance graphs

	4. Examples: embedding chain graphs using GraphT-T
	4.1. The amphibole ribbon
	4.2. Termination effects
	4.2.1. Recommended n for input chain graphs

	4.3. Refining embedding parameters: the 4V2 shoelace graph

	5. Summary
	5.1. Future work

	A1. Accessing the GraphT-T software
	A2. Operating the GraphT-T software
	Funding information
	References

