Table 3. Distances (Å) from least-squares planes

	I		II		III
C(1)	0.009 (4)	C(5)	0.034 (4)	C(5)	-0.002 (4)
C(2)	-0.008(4)	Cl(2) ·	-0.009(1)	N(2)	0.005 (9)
C(3)	0.008 (4)	N(1) ·	-0.013 (3)	C(6)	-0.001(6)
C(4)	-0.009 (4)	N(2)	-0.012 (3)	C(9)	<i>−</i> 0·001 (6)
Cl(1)*	0.025 (1)	C(4)*	0.375 (4)		
O(1)*	-0.033 (4)				
O(2)*	0.063 (4)				
N(1)*	0.089 (3)				
Angles between planes (°): I-II 50 (1)					

II–III 5(1)

* Atoms not used in the definition of the least-squares plane.

50 (1)° with the amidine group. This rotation is necessary to avoid repulsion between Cl(2) and O(2). The observed distance is 3.286 (6) Å and corresponds to the sum of the van der Waals radii of Cl and O. The angle between the cyclobutene and amidine groups results from torsion angles C(3)-C(4)-N(1)-C(5) of -37 (1)° and C(4)-N(1)-C(5)-Cl(2) of -24 (1)°. This conformation allows an almost equal contribution of the N(1) π electron to the neighbouring π systems. C(5) has a small amount of pyramidal character (Table 3). In the crystal structure there is an intermolecular contact distance of 3.440(4) Å between Cl(1) and Cl(2) (symmetry code: $x, 1-y, -\frac{1}{2}+z$). No other intermolecular distances are shorter than the sum of the van der Waals radii of the constituent atoms.

References

- BLESSING, R. H., COPPENS, P. & BECKER, P. (1974). J. Appl. Cryst. 7, 488–492.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
- MAIN, P., WOOLFSON, M. M., LESSINGER, L., GERMAIN, G.
 & DECLERCQ, J.-P. (1974). MULTAN 74. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- RIED, W., DIETSCHMANN, H. & ERLE, H.-E. (1981). Synthesis. In the press.
- STEWART, J. M., KRUGER, G. J., AMMON, H. L., DICKINSON, C. & HALL, S. R. (1972). The XRAY system – version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Notes and News

Acta Cryst. (1981). B37, 2250

ICSD—Inorganic Crystal Structure Data Base

Complementary to the well known Cambridge Crystallographic Data File, a similar file for inorganic substances has been established at the University of Bonn (G. Bergerhoff and I. D. Brown). The current file contains information on 9000 structures: chemical name, chemical formula, mineral name, unit cell, space group, coordinates, temperature factors, references, remarks. More detailed information will be given in a paper to be published in *Acta Crystallographica*. The data base will be made available by Fachinformations zentrum Energie Physik Mathematik GmbH (Dr H. Behrens), D-7514 Eggenstein-Leopoldshafen, Federal Republic of Germany, from 1982 on, in three versions:

(1) On-line access *via* telecommunications systems (Euronet, Datex-P, *etc.*).

(2) Leasing the up-to-date data base and retrieval programs (IBM-FORTRAN) at an annual rate.

(3) Leasing only the up-to-date data base at an annual rate.

Detailed conditions are available on request from Dr Behrens at the address given above.