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In the course of further studies of phase transitions in martensites [Driver, Salje,

Howard, Lampronti, Ding & Carpenter (2020), Phys. Rev. B, 102, 014105],

errors were uncovered in a few entries in Table 3 of the paper by Carpenter &

Howard [(2018), Acta Cryst. B74, 560–573]. The required corrections are given

here.

In the course of detailed studies of the phase transitions in

Ti50Pd50–;xCrx martensites (Driver et al., 2020), we found there

were errors in some entries in Table 3 in the paper by

Carpenter & Howard (2018):

(i) The dimensions of the rhombohedral cell associated with

space group P3, recorded in the second last column, should be

amended to read 3a0, 3a0, 3a0. This cell is a smaller one than

that shown in the table and the rhombohedral angle in it is

close to 90�.

(ii) A number of corrections need to be made in the column

headed ‘Other labels’, the final column in this table.

(a) The entry ‘3R or 2M’ at the first appearance of space

group P2/m is to be removed.

(b) The entry ‘9R or 6M’ at the second appearance of space

group P2/m is to be replaced by ‘3R or 2M’.

The label ‘9R or 6M’ would be associated with space group

P2/m at k = 1
9 ;

1
9 ; 0, although the table as it was printed does

not extend to this.

The ‘Other labels’ were based largely on the work of

Otsuka et al. (1993). We wish to comment briefly on the matter

of notation, with particular reference to Fig. 4 in the Otsuka

paper. The different martensite structures are shown as being

based on different stackings of the nearly close-packed (110)

planes of the parent B2 structure, space group Pm3m. There

are considered to be three different stacking positions, A, B

and C. It can be seen in Otsuka’s figure that these positions are

separated by the translation vector ð1; 1; 0Þ=3 – since the first

basis vector for the monoclinic structures is (1; 1; 0) [Table 3 in

Carpenter & Howard (2018)], this vector is just am/3. We now

consider the Zhdanov symbols (Zhdanov, 1945) which

describe the stacking sequence, using +1 for ‘clockwise’

stacking such as A followed by B, and �1 for the reverse

‘anticlockwise’ stacking. In this notation the symbol ðmnÞ

indicates that there are m stackings of a clockwise nature

(starting from a zero-th layer) followed by n anticlockwise

stackings. The stacking sequence in Otsuka’s Fig. 4(c) is
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described by the Zhdanov symbol ð21Þ. As pointed out by

Delaey & Chandrasekaran (1995), the structure can be

described using a primitive monoclinic cell constructed from

the first complete stacking sequence, in this case just ð21Þ.

Otsuka et al. prefer to describe structures on the B-centred

monoclinic cell, and for this purpose they need two complete

stacking sequences. In the case under consideration this is

indicated by ð21Þ 2. In order for the final layer to lie directly

above the zero-th layer, the difference between the number of

clockwise and the number of anticlockwise steps must be a

multiple of 3. In this case, three complete stacking sequences

are required, that is ð21Þ3. The numeral in the Ramsdell

notation (Ramsdell, 1947) represents the number of layers

required to have the final layer lie over the initial layer, in this

case 9, leading to Ramsdell symbol 9R.

There is some consensus (Tadaki et al., 1975; Martynov et al.,

1983; Ohba et al., 1990) that in practice the stacking fault shear

can exceed (by up to�25%) its ideal am/3. This means the final

layer no longer lies exactly over the zero-th layer, the shift

being manifested as a modest monoclinic distortion.

There remain questions as to the relationships between

these different stacking sequences and the description

according to harmonic displacement models implied by the

entries in Carpenter & Howard’s Table 3. From its definition, a

structure for which the Ramsdell symbol is nR, seen as a

stacking of (110) layers (i.e. viewed along the [110]* direction),

should show a repeat after n layers. Now the entry in

Carpenter & Howard’s Table 3 with k = 1/n, 1/n, 0 corresponds

to a pattern of transverse displacements of the (110) layers

with a period of n layers, matching in some sense the stacking

sequence in the Ramsdell structure. For n odd the final layer,

strictly, does not lie directly over the initial layer [see Fig. 3(c)

in Carpenter & Howard], but leads to monoclinic distortion –

for the example of n = 7 the monoclinic angle is (from Table 3

in Carpenter & Howard) 98�. It is interesting to note that

Noda et al. (1990) examined different models to describe the

structure in the 7R martensite, and found harmonic models

fitted their data better than the stacking-fault ones.

The relationship between the different stacking sequences

and the entries in Carpenter & Howard’s Table 3 are best

confirmed by comparing unit-cell parameter ratios and

monoclinic angles from Carpenter & Howard’s Table 3 with

the experimental values derived from Otsuka’s Table 1; see

Table 1 in the present paper.

The agreement evident in this table strongly supports the

correspondences we have proposed. The higher value of a/b

compared with the theoretical value represents a distortion

that makes the (110) layers more nearly close-packed (Otsuka

et al., 1993). The monoclinic angles are, however, not so

informative, because for n odd they are determined, in the

Carpenter & Howard scheme, by a shift of am/2 between the

zero-th and nth layers, whereas in the Ramsdell stacking-fault

description the corresponding shift, even if non-zero, is un-

likely to exceed this value.
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Table 1
Comparison of the B2-based structures from Table 1 in Otsuka et al. (1993) with the corresponding theoretical structures taken from Table 3 of
Carpenter & Howard (2018).

The columns show the structure symbol in the ‘old’ notation, the k for the corresponding structure in Carpenter & Howard Table 3, then the values of the unit-cell
parameter ratios and monoclinic angles derived from the experimental values in the penultimate column of Otsuka’s Table 1 (with the ‘theoretical’ values of these
quantities from Carpenter & Howard in parentheses).

‘Old’ notation from Otsuka et al. Carpenter & Howard k a/b c/a � (�)

2H 1
2 ; 0; 1

2 1.542 (1.414) 0.981 (1.000) 90 (90)

3R 1
3 ;

1
3 ; 0 1.542 (1.414) 1.502 (1.581) 100 (108)

7R 1
7 ;

1
7 ; 0 1.551 (1.414) 3.464 (3.536) 94.4 (98)

9R 1
9 ;

1
9 ; 0 1.648 (1.414) 4.350 (4.528) 91.6 (96)

This table includes calculated values for k = 1
9 ;

1
9 ; 0, although they were not included in Table 3 of Carpenter & Howard.
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Martensitic phase transitions in which there is a group–subgroup relationship

between the parent and product structures are driven by combinations of soft-

mode and electronic instabilities. These have been analysed from the

perspective of symmetry, by considering possible order parameters operating

with respect to a parent structure which has space group Im�33m. Heusler

structures with different stoichiometries are derived by operation of order

parameters belonging to irreducible representations Hþ1 and P1 to describe the

atomic ordering configurations. Electronic instabilities are ascribed to an order

parameter belonging to the Brillouin zone centre, �þ3 , which couples with shear

strains to give tetragonal and orthorhombic distortions. An additional zone

centre order parameter, with �þ5 symmetry, is typically a secondary order

parameter but in some cases may drive a transition. Soft-mode instabilities

produce commensurate and incommensurate structures for which the order

parameters have symmetry properties relating to points along the � line of the

Brillouin zone for the cubic I lattice. The electronic and soft-mode order

parameters have multiple components and are coupled in a linear–quadratic

manner as �q�q2
�. As well as providing comprehensive tables setting out the

most important group–subgroup relationships and the order parameters which

are responsible for them, examples of NiTi, RuNb, Ti50Ni50�xFex, Ni2+xMn1�xGa

and Ti50Pd50�xCrx are used to illustrate practical relevance of the overall

approach. Variations of the elastic constants of these materials can be used to

determine which of the multiple order parameters is primarily responsible for

the phase transitions that they undergo.

1. Introduction

Ferroelastic phase transitions in functional oxides are

accompanied by symmetry-breaking shear strains which typi-

cally fall in the range �0.1–5% (Salje, 1993; Carpenter et al.,

1998). Most can be understood in terms of some structural or

electronic instability with a driving order parameter that gives

rise to the strain by coupling. Although the strength of

coupling between individual strain components, ei, and the

order parameter, Q, is a material property, its form, �eiQ,

�eiQ
2, �ei

2Q, �ei
2Q2 . . . , depends on symmetry and is deter-

mined by rigorous group theoretical rules. The same symmetry

rules apply to coupling between two or more order parameters

in materials with multiple instabilities, and the form of this

coupling determines how, for example, multiferroic materials

may respond to an external electric or magnetic field. As set

out for the cases of transitions in perovskites driven by

combinations of octahedral tilting, ferroelectric displacements,

atomic ordering and cooperative Jahn–Teller distortions, the

group theory program ISOTROPY (Stokes et al., 2007) has

allowed such relationships to be tabulated even for the most
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complex cases (Howard & Stokes, 1998, 2004, 2005; Stokes et

al., 2002; Carpenter & Howard, 2009).

Martensitic transitions in which there is a group/subgroup

relationship between parent and product structures, such as in

the cases of Heusler compounds and shape memory alloys

based on NiTi, may appear to be different because of the much

larger shear strains involved (typically � 10%), but they are

still essentially ferroelastic. Multiple instabilities are also

characteristic and the relevant order parameters relate to

atomic ordering, band Jahn–Teller effects, magnetic ordering,

superconductivity and soft modes. This leads to a great

diversity of structures and structure–property relationships

with potential for device applications. Exactly the same group

theoretical constraints apply as for perovskite superstructures,

and these determine the form of coupling of different order

parameters with strain, permissible couplings between

different order parameters and the full range of possible

structures which might result.

The primary objective of the present paper is to present a

group theoretical treatment of martensitic materials which can

be derived from the simplest b.c.c. parent structure with space

group Im�33m. It has been notoriously difficult to distinguish

between structure types on the basis of diffraction observa-

tions alone when the distinctions involve subtle differences in

screw axes or glide planes. The software package ISOTROPY

produces lists of allowable space groups which are definitive

for subgroup structures and can be used to resolve such

ambiguities. In addition, strain fields are long ranging so that

the interaction length of the order parameter(s) is (are) also

long ranging. As a consequence, critical fluctuations tend to be

suppressed and the resulting changes in physical properties

are expected to evolve according to mean field behaviour.

Landau theory therefore provides a rigorous and quantitative

framework for representing the thermodynamic and structural

evolution of martensitic phases with single or multiple

instabilities in response to changing temperature, pressure,

stress, magnetic field and electric field. Finally, it is well

understood that particular properties of interest can be engi-

neered or tuned by changing other properties. In other words,

one order parameter, such as for atomic ordering, can be

adjusted to optimize the evolution of a second, such as

magnetic moment, to produce, say, a desirable magnetocaloric

response. These interactions will differ according to the form

of allowed coupling between two (or more) order parameters,

as �Q1Q2, �Q1Q2
2, �Q1

2Q2, �Q1
2Q2

2.

2. Group theoretical analysis

2.1. Parent structures

Table 1, after Graf et al. (2011), lists the generic stoichio-

metry and structures of Heusler-type phases (XX0YZ) which

can be derived from a parent body-centred cubic (b.c.c.)

structure. Here X, X0, Y, Z represent different elements that

can combine together. Ordering of atoms according to order

parameters with symmetry determined by irreducible repre-

sentations of space group Im�33m are also given [using the

notation of Miller & Love (1967) here and throughout the rest

of the paper]. These belong to the special points P,

[1/2,1/2, 1/2], and H, [0,1,0], of the Brillouin zone (Fig. 1), and

give rise to four distinct subgroups. For example, the B2

structure of NiTi with space group Pm�33m has a single nonzero

order parameter with Hþ1 symmetry. The L21 structure of

Cu2MnAl, which is the classic X2YZ Heusler structure, has
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Table 1
Derivative structures based on a body centred cubic parent structure with space group Im�33m (after Graf et al., 2011).

Nonzero order parameters for irreducible representations Hþ1 and P1 of Im�33m describe the atomic ordering schemes in each case. Z in the Fm�33m structures (e.g. Bi
in BiF3) is taken to be on Wyckoff a. X, X0, Y, Z represent different possible combinations of elements.

Generic chemical
components

Generic chemical
formula Example

Conventional
label

Space
group Hþ1 P1

Unit-cell edge with
respect to Im�33m

X = X0 = Y = Z X4 W A2 Im�33m (0) (0,0) ao

X = X0, Y = Z X2Y2 NiTi B2 Pm�33m (a) (0,0) ao

X = X0, Y, Z X2YZ Cu2MnAl L21 Fm�33m (a) (0,b) 2ao

X = X0 = Y, Z X3Z BiF3 DO3 Fm�33m (a) (0,b) 2ao

X = Y, X0 = Z X2X02 NaTl B32a Fd�33m (0) (a,�a) 2ao

X, X0 = Y, Z XX02Z CuHg2Ti X F �443m (a) (b,c) 2ao

X, X0, Y, Z XX0YZ LiMgPdSn Y F �443m (a) (b,c) 2ao

Figure 1
Brillouin zone for Im�33m structures. Atomic ordering to give subgroup
structures listed in Table 1 is based on order parameters belonging to
irreducible representations (irreps) at special points H and P.



space group Fm�33m and two nonzero order parameter

components, one with Hþ1 symmetry and the second with P1

symmetry. The DO3 structure of BiF3 is similar, where now

X = Y. The different ordered structures form a hierarchy of

subgroup structures from the Im�33m parent, as set out in Fig. 2.

Solid lines in this figure represent phase transitions which are

allowed by symmetry to be thermodynamically continuous

according to Landau although, because they require rearran-

gement of atoms, would be expected to be slow.

2.2. Martensite structures

The ferroelastic transitions which give rise to martensitic

phases are characterized primarily by two effects, substantial

shear strains and the development of large unit cells. Both

depend on the symmetry of the driving order parameter(s)

and their coupling with strain. Most of the observed product

structures appear to be understandable in terms of separate

order parameters which have symmetry properties related to

the Brillouin zone centre (� point in Fig. 1) and points along

one of the h110i* directions of the reciprocal lattice for Im�33m

structures (� line of Fig. 1). These are set out in Table 2 for a

single reference structure with space group Im�33m (the A2

structure in Table 1). If the transitions were driven solely by an

electronic instability, such as band Jahn–Teller in Ni2MnGa

(Fujii et al., 1989; Brown et al., 1999), the order parameter

components would belong to irrep �þ3 in most cases and the

product structures would be tetragonal or orthorhombic. For

example, �þ3 (a,0) would give structures with space groups

I4/mmm, P4/mmm, I41/amd or I �44m2, depending on the form

of atomic order, and �þ3 (a,b) would give corresponding

orthorhombic structures (Table 2). A �þ5 order parameter is

also possible, however, and in the simplest cases would give

orthorhombic structures with space groups Fmmm, Cmmm,

Immm, Imma or Imm2 (Table 2).

By way of contrast, the driving mechanism for transitions

with order parameters belonging to points along the � line is

generally considered to involve an incipient soft mode [e.g. in

Ni–Mn–Ga alloys (Stuhr et al., 1997; Mañosa et al., 2001; Moya

et al., 2006) and in Ti–Pd–Cr (Shapiro et al., 2007)]. Observed

repeats along [110]* of the reference Im�33m structure, varying

between 2 and �14 (110) planes, correspond to k vectors for

the active representation (k-active in Table 2) of between

(1/2,1/2,0) and �(1/14,1/14,0); k-active = (1/2,1/2,0) corre-

sponds to the N-point, [1/2, 1/2, 0], of the Brillouin zone for

Im�33m structures (Fig. 1). Taking N�4 as the active repre-

sentation leads to a variety of orthorhombic or monoclinic

structures depending on whether the �þ3 contribution is (a,0)

or (a,b), respectively. Combining �þ3 (a,0) and N�4 (0,0,0,0,a,0)

leads to structures with space groups Cmcm, Pmma, Pmmn,

Pnma and Pmn21 as subgroups of Im�33m, Pm�33m, Fm�33m, Fd�33m

and F �443m, respectively. Combining �þ3 (a,b) with the simplest

N�4 components gives monoclinic structures, C2/m, P2/m,

P21/m, P21/c, P21. Other combinations of nonzero components

for N�4 are possible and will lead to a wide variety of predicted

structures, but reported structure types appear generally to

require only one nonzero component.

Repeat distances along [110]* (with respect to the cubic I

lattice)1 are observed to be incommensurate in some cases but

are commonly referred to in terms of a commensurate repeat,

n, such as 3, 5 and 7 for 3M, 5M and 7M structures, where n

corresponds to the number of atomic layers parallel to (110)

involved in a particular sequence of atomic displacements.The

layers may be slightly displaced according to a conventional

sinusoidal modulation or, as illustrated for example by Otsuka

et al. (1993), displaced (shuffled) in consequence of the

stacking characteristics of these nearly close-packed planes. In

either case, we can describe the situation using irrep �2 at k

vector (1/n,1/n,0) with just one component of the 12 compo-

nent order parameter nonzero. The incommensurate case can

be treated using the same 12 component �2 order parameter

with just one nonzero component, by taking the k vector for

the active representation to be (�,�,0). Otsuka et al. (1993)

introduced a new description in which 3M, 5M and 7M were

relabelled as 6M, 10M and 14M because they chose to describe

the structures on centred unit cells. In the 5M/10M structure,

for example, the (110) layers have a sequence of five shuffles

that must occur twice in the unit cell to achieve a B-centred

rather than primitive (in the case of a primitive starting

structure) cell. An earlier nomenclature, for at least some of

these martensites, is based on the number of (110) layers, in

most cases a larger number, needed to complete a stacking

sequence for these nearly close-packed atomic layers.

Considering the example of a parent structure with Pm�33m

ordering (from Table 2, see also Table 3), the space group of

the orthorhombic structure [�þ3 (a,0)] becomes Amm2 if n = 3,

Pmma or Pbam if n = 4 and Amm2 if n = 5. For odd values of n

the structures obtained are either orthorhombic on a cell in
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Figure 2
Hierarchy of ordered structures, as specified with respect to order
parameters belonging to irreps Hþ1 and P1. The transitions indicated by
solid lines are allowed to be continuous according to Landau theory.

1 Repeat distance is defined by the sequence of atomic displacements and may
or may not correspond to a crystallographic repeat.
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Table 2
Symmetry relationships, order parameters and unit-cell configurations for selected subgroups of space group Im�33m, as derived using the group theory
program ISOTROPY (Stokes et al., 2007).

Two orientations have been given in some cases for �þ3 , (a,0) and (a,a
ffiffiffi
3
p

), to illustrate how this choice affects basis vectors which define the unit cell of the
subgroup structure.

Space group �þ3 �þ5 Hþ1 P1 Lattice vectors Origin

229 Im�33m (0,0) (0,0,0) (0) (0,0) (1,0,0),(0,1,0),(0,0,1) (0,0,0)
139 I4/mmm (a,0) (0,0,0) (0) (0,0) (1,0,0),(0,1,0),(0,0,1) (0,0,0)
71 Immm (a,b) (0,0,0) (0) (0,0) (1,0,0),(0,1,0),(0,0,1) (0,0,0)
69 Fmmm (a,0) (b,0,0) (0) (0,0) (1,1,0),(0,0,1),(1,�1,0) (0,0,0)

221 Pm�33m (0,0) (0,0,0) (a) (0,0) (1,0,0),(0,1,0),(0,0,1) (0,0,0)
123 P4/mmm (a,0) (0,0,0) (b) (0,0) (1,0,0),(0,1,0),(0,0,1) (0,0,0)
47 Pmmm (a,b) (0,0,0) (c) (0,0) (1,0,0),(0,1,0),(0,0,1) (0,0,0)
65 Cmmm (a,0) (b,0,0) (c) (0,0) (1,�1,0),(1,1,0),(0,0,1) (0,0,0)

225 Fm�33m (0,0) (0,0,0) (a) (0,b) (2,0,0),(0,2,0),(0,0,2) (1/2,1/2,1/2)
139 I4/mmm (a,0) (0,0,0) (b) (0,c) (1,1,0),(�1,1,0),(0,0,2) (1/2,1/2,1/2)
69 Fmmm (a,b) (0,0,0) (c) (0,d) (2,0,0),(0,2,0),(0,0,2) (1/2,1/2,1/2)
71 Immm (a,0) (b,0,0) (c) (0,d) (1,1,0),(�1,1,0),(0,0,2) (1/2,1/2,1/2)

227 Fd�33m (0,0) (0,0,0) (0) (a,�a) (2,0,0),(0,2,0),(0,0,2) (3/4,3/4,3/4)
141 I41/amd (a,0) (0,0,0) (0) (b,�b) (�1,1,0),(�1,�1,0),(0,0,2) (3/4,3/4,3/4)
70 Fddd (a,b) (0,0,0) (0) (c,�c) (2,0,0),(0,2,0),(0,0,2) (3/4,3/4,3/4)
74 Imma (a,0) (b,0,0) (0) (c,�c) (1,�1,0),(1,1,0),(0,0,2) (3/4,3/4,3/4)

216 F �443m (0,0) (0,0,0) (a) (b,c) (2,0,0),(0,2,0),(0,0,2) (0,0,0)
119 I �44m2 (a,0) (0,0,0) (b) (c,d) (1,�1,0),(1,1,0),(0,0,2) (0,0,0)
22 F222 (a,b) (0,0,0) (c) (d,e) (2,0,0),(0,2,0),(0,0,2) (0,0,0)
44 Imm2 (a,0) (b,0,0) (c) (d,e) (1,�1,0),(1,1,0),(0,0,2) (0,0,0)

N�4 (k = 1/2,1/2,0)
Derived from Im�33m
63 Cmcm (a,a

ffiffiffi
3
p

) (0,b,0) (0) (0,0) (0,0,0,0,c,0) (1,0,0),(0,1,�1),(0,1,1) (0,1/2,0)
63 Cmcm (a,0) (b,0,0) (0) (0,0) (c,0,0,0,0,0) (0,0,1),(1,�1,0),(1,1,0) (0,1/2,1/2)
12 C2/m (a,b) (0,c,0) (0) (0,0) (0,0,0,0,d,0) (0,�1,1),(1,0,0),(0,1,1) (1/2,1/2,0)

Derived from Pm�33m
51 Pmma (a,a

ffiffiffi
3
p

) (0,b,0) (c) (0,0) (0,0,0,0,d,0) (0,1,1),(1,0,0),(0,1,�1) (0,1/2,0)
51 Pmma (a,0) (b,0,0) (c) (0,0) (d,0,0,0,0,0) (1,1,0),(0,0,1),(1,�1,0) (1/2,0,0)
10 P2/m (a,b) (0,c,0) (d) (0,0) (0,0,0,0,e,f) (0,1,1),(1,0,0),(0,1,�1) (0,1/2,0)

Derived from Fm�33m
59 Pmmn (a,a

ffiffiffi
3
p

) (0,b,0) (c) (0,d) (0,0,0,0,e,0) (2,0,0),(0,1,1),(0,�1,1) (0,1/2,0)
59 Pmmn (a,0) (b,0,0) (c) (0,d) (e,0,0,0,0,0) (0,0,2),(1,1,0),(�1,1,0) (1/2,0,0)
11 P21/m (a,b) (0,c,0) (d) (0,e) (0,0,0,0,f,g) (0,�1,1),(2,0,0),(0,1,1) (0,0,1/2)

Derived from Fd�33m
62 Pnma (a,a

ffiffiffi
3
p

) (0,b,0) (0) (c,�c) (0,0,0,0,d,0) (0,1,�1),(0,1,1),(2,0,0) (3/4,3/4,3/4)
62 Pnma (a,0) (b,0,0) (0) (c,�c) (d,0,0,0,0,0) (1,�1,0),(1,1,0),(0,0,2) (3/4,3/4,3/4)
14 P21/c (a,b) (0,c,0) (0) (d,�d) (0,0,0,0,e,0) (0,1,1),(2,0,0),(0,1,�1) (3/4,1/4,1/4)

Derived from F �443m
31 Pmn21 (a,a

ffiffiffi
3
p

) (0,b,0) (c) (d,e) (0,0,0,0,f,0) (0,1,1),(0,�1,1),(2,0,0) (0,3/4,1/4)
31 Pmn21 (a,0) (b,0,0) (c) (d,e) (f,0,0,0,0,0) (1,1,0),(�1,1,0),(0,0,2) (3/4,1/4,0)
4 P21 (a,b) (0,c,0) (d) (e,f) (0,0,0,0,g,h) (0,�1,1),(2,0,0),(0,1,1)) (0,0,1/2)

Derived from Im�33m
�2 (k = 1/3,1/3,0)

42 Fmm2 (a,0) (b,0,0) (0) (0,0) (0,c,0,0,0,0,0,0,0,0,0,0) (0,0,1),(3,3,0),(�1,1,0) (0,0,0)
12 C2/m (a,b) (c,0,0) (0) (0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,1),(1,2,0) (0,0,0)

�2 (k = 1/4,1/4,0)
63 Cmcm (a,0) (b,0,0) (0) (0,0) (c,0,0,0,0,0,0,0,0,0,0,0) (0,0,1),(1,�1,0),(2,2,0) (0,0,0)
12 C2/m (a,b) (c,0,0) (0) (0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,1),(2,2,0) (0,0,0)
64 Cmca (a,0) (b,0,0) (0) (0,0) (c,�c,0,0,0,0,0,0,0,0,0,0) (0,0,1),(1,�1,0),(2,2,0) (0,1/2,1/2)
12 C2/m (a,b) (c,0,0) (0) (0,0) (d,�d,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,1),(2,2,0) (1/2,0,1/2)

�2 (k = 1/5,1/5,0)
42 Fmm2 (a,0) (b,0,0) (0) (0,0) (0,c,0,0,0,0,0,0,0,0,0,0) (0,0,1),(5,5,0),(�1,1,0) (0,0,0)
12 C2/m (a,b) (c,0,0) (0) (0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,1),(2,3,0) (0,0,0)
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Table 2 (continued)

Space group �þ3 �þ5 Hþ1 P1 Lattice vectors Origin

�2 (k = 1/6,1/6,0)
64 Cmca (a,0) (b,0,0) (0) (0,0) (c,0,0,0,0,0,0,0,0,0,0,0) (0,0,1),(1,�1,0),(3,3,0) (0,0,0)
12 C2/m (a,b) (c,0,0) (0) (0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,1),(3,3,0) (0,0,0)
63 Cmcm (a,0) (b,0,0) (0) (0,0) (c,�c/

ffiffiffi
3
p

,0,0,0,0,0,0,0,0,0,0) (0,0,1),(1,�1,0),(3,3,0) (0,1/2,1/2)
12 C2/m (a,b) (c,0,0) (0) (0,0,0) (d,�d/

ffiffiffi
3
p

,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,1),(3,3,0) (1/2,0,1/2)

�2 (k = 1/7,1/7,0)
42 Fmm2 (a,0) (b,0,0) (0) (0,0) (0,c,0,0,0,0,0,0,0,0,0,0) (0,0,1),(7,7,0),(�1,1,0) (0,0,0)
12 C2/m (a,b) (c,0,0) (0) (0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,1),(3,4,0) (0,0,0)

�2 (k = �,�,0)
(incommensurate)

69.1.17.2 Fmmm(0,0,�)s00 (a,0) (b,0,0) (0) (0,0) (c,0,0,0,0,0,0,0,0,0,0,0) (�1,1,0,0),(0,0,�1,0),(�1,�1,0,0),(0,0,0,1) (0,0,0,0)
12.1.4.1 B2/m(�,�,0)00 (a,b) (c,0,0) (0) (0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (�1,1,0,0),(1,�2,0,0),(0,0,1,0),(0,0,0,1) (0,0,0,0)

Derived from Pm�33m
�2 (k = 1/3,1/3,0)

38 Amm2 (a,0) (b,0,0) (c) (0,0) (0,d,0,0,0,0,0,0,0,0,0,0) (0,0,1),(3,3,0),(�1,1,0) (0,0,0)
10 P2/m (a,b) (c,0,0) (d) (0,0) (e,0,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,1),(2,1,0) (0,0,0)

�2 (k = 1/4,1/4,0)
51 Pmma (a,0) (b,0,0) (c) (0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (2,2,0),(0,0,1),(1,�1,0) (0,0,0)
10 P2/m (a,b) (c,0,0) (d) (0,0) (e,0,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,1),(2,2,0) (0,0,0)
55 Pbam (a,0) (b,0,0) (c) (0,0) (d,�d,0,0,0,0,0,0,0,0,0,0) (1,�1,0),(2,2,0),(0,0,1) (1/2,0,0)
10 P2/m (a,b) (c,0,0) (d) (0,0) (e,�e,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,1),(2,2,0) (0,1/2,0)

�2 (k = 1/5,1/5,0)
38 Amm2 (a,0) (b,0,0) (c) (0,0) (0,d,0,0,0,0,0,0,0,0,0,0) (0,0,1),(5,5,0),(�1,1,0) (0,0,0)
10 P2/m (a,b) (c,0,0) (d) (0,0) (e,0,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,1),(3,2,0) (0,0,0)

�2 (k = 1/6,1/6,0)
55 Pbam (a,0) (b,0,0) (c) (0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (1,�1,0),(3,3,0),(0,0,1) (0,0,0)
10 P2/m (a,b) (c,0,0) (d) (0,0) (e,0,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,1),(3,3,0) (0,0,0)
51 Pmma (a,0) (b,0,0) (c) (0,0) (d,�d/

ffiffiffi
3
p

,0,0,0,0,0,0,0,0,0,0) (3,3,0),(0,0,1),(1,�1,0) (1/2,0,0)
10 P2/m (a,b) (c,0,0) (d) (0,0) (e,�e/

ffiffiffi
3
p

,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,1),(3,3,0) (0,1/2,0)

�2 (k = 1/7,1/7,0)
38 Amm2 (a,0) (b,0,0) (c) (0,0) (0,d,0,0,0,0,0,0,0,0,0,0) (0,0,1),(7,7,0),(�1,1,0) (0,0,0)
10 P2/m (a,b) (c,0,0) (d) (0,0) (e,0,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,1),(4,3,0) (0,0,0)

�2 k = (�,�,0)
(incommensurate)

65.1.15.10 Ammm(0,0,�)0s0 (a,0) (b,0,0) (c) (0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (0,0,1,0),(�1,1,0,0),(�1,�1,0,0),(0,0,0,1) (0,0,0,0)
10.1.2.1 P2/m(�,�,0)00 (a,b) (c,0,0) (d) (0,0) (e,0,0,0,0,0,0,0,0,0,0,0) (0,1,0,0),(�1,0,0,0),(0,0,1,0),(0,0,0,1) (0,0,0,0)

Derived from Fm�33m
�2 (k = 1/3,1/3,0)

44 Imm2 (a,0) (b,0,0) (c) (0,d) (0,e,0,0,0,0,0,0,0,0,0,0) (0,0,2),(3,3,0),(�1,1,0) (0,0,1/2)
12 C2/m (a,b) (c,0,0) (d) (0,e) (f,0,0,0,0,0,0,0,0,0,0,0) (2,4,0),(0,0,2),(1,�1,0) (0,0,1/2)

�2 (k = 1/4,1/4,0)
51 Pmma (a,0) (b,0,0) (c) (0,d) (0,e,0,0,0,0,0,0,0,0,0,0) (2,2,0),(0,0,2),(1,�1,0) (1/2,1/2,1/2)
10 P2/m (a,b) (c,0,0) (d) (0,e) (0,f,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,2),(2,2,0) (1/2,1/2,1/2)
62 Pnma (a,0) (b,0,0) (c) (0,d) (e,�e,0,0,0,0,0,0,0,0,0,0) (2,2,0),(0,0,2),(1,�1,0) (0,1/2,0)
11 P21/m (a,b) (c,0,0) (d) (0,e) (f,�f,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,2),(2,2,0) (0,1/2,0)

�2 (k = 1/5,1/5,0)
44 Imm2 (a,0) (b,0,0) (c) (0,d) (0,e,0,0,0,0,0,0,0,0,0,0) (0,0,2),(5,5,0),(�1,1,0) (0,0,1/2)
12 C2/m (a,b) (c,0,0) (d) (0,e) (f,0,0,0,0,0,0,0,0,0,0,0) (4,6,0),(0,0,2),(1,�1,0) (0,0,1/2)

�2 (k = 1/6,1/6,0)
58 Pnnm (a,0) (b,0,0) (c) (0,d) (e,�e

ffiffiffi
3
p

,0,0,0,0,0,0,0,0,0,0) (1,�1,0),(3,3,0),(0,0,2) (1/2,1/2,1/2)
10 P2/m (a,b) (c,0,0) (d) (0,e) (f,�f

ffiffiffi
3
p

,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,2),(3,3,0) (1/2,1/2,1/2)
59 Pmmn (a,0) (b,0,0) (c) (0,d) (e,�e/

ffiffiffi
3
p

,0,0,0,0,0,0,0,0,0,0) (0,0,2),(3,3,0),(�1,1,0) (0,1/2,0)
11 P21/m (a,b) (c,0,0) (d) (0,e) (f,�f/

ffiffiffi
3
p

,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,2),(3,3,0) (0,1/2,0)

�2 (k = 1/7,1/7,0)
44 Imm2 (a,0) (b,0,0) (c) (0,d) (0,e,0,0,0,0,0,0,0,0,0,0) (0,0,2),(7,7,0),(�1,1,0) (0,0,1/2)
12 C2/m (a,b) (c,0,0) (d) (0,e) (f,0,0,0,0,0,0,0,0,0,0,0) (6,8,0),(0,0,2),(1,�1,0) (0,0,1/2)



Amm2 comprising 2n layers, or monoclinic in P2/m. The

monoclinic structures [�þ3 (a,b)] all have space group P2/m.

If the modulations are treated as incommensurate, the

result is a structure in superspace group Ammm(0,0,�)0s0

(Tables 2 and 3). This represents a structure (Fig. 3a) with

basic (average) orthorhombic symmetry Ammm and a

modulation vector parallel to the z axis of the Ammm cell.

The trailing 0s0 is to indicate that the second symmetry
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Table 2 (continued)

Space group �þ3 �þ5 Hþ1 P1 Lattice vectors Origin

�2 (k = �,�,0)
(incommensurate)

71.1.12.2 Immm(0,0,�)s00 (a,0) (b,0,0) (c) (d,0) (e,0,0,0,0,0,0,0,0,0,0,0) (1,�1,0,0),(0,0,2,0),(�1,�1,0,0),(0,0,0,1) (0,0,0,0)
12.1.4.1 B2/m(�,�,0)00 (a,b) (c,0,0) (d) (e,0) (f,0,0,0,0,0,0,0,0,0,0,0 (0,2,0,0),(�1,�1,0,0),(0,0,2,0),(0,0,0,1) (0,0,0,0)

Derived from Fd�33m
�2 (k = 1/3,1/3,0)

46 Ima2 (a,0) (b,0,0) (0) (c,�c) (0,d,0,0,0,0,0,0,0,0,0,0) (3,3,0),(0,0,2),(1,�1,0) (�1,�1/2,�5/4)
15 C2/c (a,b) (c,0,0) (0) (d,�d) (e,0,0,0,0,0,0,0,0,0,0,0) (2,4,0),(0,0,2),(1,�1,0) (1/4,�1/4,�3/4)

�2 (k = 1/4,1/4,0)
57 Pbcm (a,0) (b,0,0) (0) (c,�c) (d,0,0,0,0,0,0,0,0,0,0,0) (0,0,2),(1,�1,0),(2,2,0) (1/4,�1/4,1/4)
13 P2/c (a,b) (c,0,0) (0) (d,�d) (e,0,0,0,0,0,0,0,0,0,0,0) (2,2,0),(0,0,2),(1,�1,0) (1/4,�1/4,1/4)
60 Pbcn (a,0) (b,0,0) (0) (c,�c) (d,d,0,0,0,0,0,0,0,0,0,0) (0,0,2),(1,�1,0),(2,2,0) (3/4,3/4,3/4)
14 P21/c (a,b) (c,0,0) (0) (d,�d) (e,e,0,0,0,0,0,0,0,0,0,0) (2,2,0),(0,0,2),(1,�1,0) (3/4,3/4,3/4)

�2 (k = 1/5,1/5,0)
46 Ima2 (a,0) (b,0,0) (0) (c,�c) (0,d,0,0,0,0,0,0,0,0,0,0) (5,5,0),(0,0,2),(1,�1,0) (�3/2,�1,�5/4)
15 C2/c (a,b) (c,0,0) (0) (d,�d) (e,0,0,0,0,0,0,0,0,0,0,0) (4,6,0),(0,0,2),(1,�1,0) (1/4,�1/4,�3/4)

�2 (k = 1/6,1/6,0)
52 Pnna (a,0) (b,0,0) (0) (c,�c) (d,0,0,0,0,0,0,0,0,0,0,0) (1,�1,0),(3,3,0),(0,0,2) (1/4,�1/4,1/4)
13 P2/c (a,b) (c,0,0) (0) (d,�d) (e,0,0,0,0,0,0,0,0,0,0,0) (3,3,0),(0,0,2),(1,�1,0) (1/4,�1/4,1/4)
62 Pnma (a,0) (b,0,0) (0) (c,�c) (0,d,0,0,0,0,0,0,0,0,0,0) (1,�1,0),(3,3,0),(0,0,2) (3/4,3/4,3/4)
14 P21/c (a,b) (c,0,0) (0) (d,�d) (0,e,0,0,0,0,0,0,0,0,0,0) (3,3,0),(0,0,2),(1,�1,0) (3/4,3/4,3/4)

�2 (k = 1/7,1/7,0)
46 Ima2 (a,0) (b,0,0) (0) (c,�c) (0,d,0,0,0,0,0,0,0,0,0,0) (7,7,0),(0,0,2),(1,�1,0) (�2,�3/2,�5/4)
15 C2/c (a,b) (c,0,0) (0) (d,�d) (e,0,0,0,0,0,0,0,0,0,0,0) (6,8,0),(0,0,2),(1,�1,0) (1/4,�1/4,�3/4)

�2 (k = �,�,0)
(incommensurate)

74.1.12.7 Icmm(0,0,�)0s0 (a,0) (b,0,0) (0) (c,c) (d,0,0,0,0,0,0,0,0,0,0,0) (0,0,2,0),(�1,1,0,0),(�1,�1,0,0),(0,0,0,1) (�1/4,1/4,�5/4,0)
15.1.4.1 B2/b(�,�,0)00 (a,b) (c,0,0) (0) (d,d) (e,0,0,0,0,0,0,0,0,0,0,0) (0,2,0,0),(1,�1,0,0),(0,0,�2,0),(0,0,0,1) (1/4,�1/4,3/4,0)

Derived from F �443m
�2 (k = 1/3,1/3,0)

8 Cm (a,0) (b,c,�c) (d) (e,f) (0,g,0,0,0,0,0,0,0,0,0,0) (1,�1,2),(3,3,0),(�1,1,0) (0,0,0)
5 C2 (a,b) (c,0,0) (d) (e,f) (g,0,0,0,0,0,0,0,0,0,0,0) (2,4,0),(0,0,2),(1,�1,0) (0,0,0)

�2 (k = 1/4,1/4,0)
28 Pma2 (a,0) (b,0,0) (c) (d,e) (f,0,0,0,0,0,0,0,0,0,0,0) (2,2,0),(�1,1,0),(0,0,2) (0,0,0)
3 P2 (a,b) (c,0,0) (d) (e,f) (g,0,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,2),(2,2,0) (0,0,0)
33 Pna21 (a,0) (b,0,0) (c) (d,e) (f,�f,0,0,0,0,0,0,0,0,0,0) (2,2,0),(�1,1,0),(0,0,2) (0,1/2,0)
4 P21 (a,b) (c,0,0) (d) (e,f) (g,�g,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,2),(2,2,0) (0,1/2,0)

�2 (k = 1/5,1/5,0)
8 Cm (a,0) (b,c,�c) (d) (e,f) (0,g,0,0,0,0,0,0,0,0,0,0) (1,�1,2),(5,5,0),(�1,1,0) (0,0,0)
5 C2 (a,b) (c,0,0) (d) (e,f) (g,0,0,0,0,0,0,0,0,0,0,0) (4,6,0),(0,0,2),(1,�1,0) (0,0,0)

�2 (k = 1/6,1/6,0)
34 Pnn2 (a,0) (b,0,0) (c) (d,e) (f,0,0,0,0,0,0,0,0,0,0,0) (1,�1,0),(3,3,0),(0,0,2) (0,0,0)
3 P2 (a,b) (c,0,0) (d) (e,f) (g,0,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,2),(3,3,0) (0,0,0)
31 Pmn21 (a,0) (b,0,0) (c) (d,e) (f,�f=

ffiffiffi
3
p

,0,0,0,0,0,0,0,0,0,0) (3,3,0),(�1,1,0),(0,0,2) (3/4,5/4,0)
4 P21 (a,b) (c,0,0) (d) (e,f) (g,�g=

ffiffiffi
3
p

,0,0,0,0,0,0,0,0,0,0) (�1,1,0),(0,0,2),(3,3,0) (0,1/2,0)

�2 (k = 1/7,1/7,0)
8 Cm (a,0) (b,c,�c) (d) (e,f) (0,g,0,0,0,0,0,0,0,0,0,0) (1,�1,2),(7,7,0),(�1,1,0) (0,0,0)
5 C2 (a,b) (c,0,0) (d) (e,f) (g,0,0,0,0,0,0,0,0,0,0,0) (6,8,0),(0,0,2),(1,�1,0) (0,0,0)

�2 (k = �,�,0)
(incommensurate)

44.1.12.5 I2mm(0,0,�)0s0 (a,0) (b,0,0) (c) (d,e) (f,0,0,0,0,0,0,0,0,0,0,0) (0,0,2,0),(�1,1,0,0),(�1,�1,0,0),(0,0,0,1) (0,0,0,0)
5.1.4.1 B2(�,�,0)0 (a,b) (c,0,0) (d) (e,f) (g,0,0,0,0,0,0,0,0,0,0,0) (0,2,0,0),(�1,�1,0,0),(0,0,2,0),(0,0,0,1) (0,0,0,0)



operator, the mirror plane perpendicular to the y axis,

reverses the phase of the modulation. The lattice vectors and

origin of this Ammm cell are given by the first three compo-

nents of the four dimensional vectors shown in Tables 2 and 3.

The repeat distance of the modulation will be 1/�.

The variations in symmetry obtained with commensurate

modulation vectors [Figs. 3(b) and 3(c)] may represent

examples of the artefacts encountered when incommensurate

modulations are approximated as commensurate (Janssen et

al., 2006).
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Table 3
Symmetry relationships, order parameters and unit-cell configurations for selected subgroups of space group Pm�33m.

Labels in the last column are taken from the literature, including, in particular, from Otsuka et al. (1993).

�þ3 �þ5 M�5 �2 k-active Basis vector Origin

Approximate unit
cell in relation to
parent cubic cell

Other
labels

221 Pm�33m ao B2
123 P4/mmm (a,0) (0,0,0) (1,0,0),(0,1,0),(0,0,1) (0,0,0) ao, ao, ao L10

47 Pmmm (a,b) (0,0,0) (1,0,0),(0,1,0),(0,0,1) (0,0,0) ao, ao, ao

65 Cmmm (a,0) (b,0,0) (0,0,0) (1,1,0),(�1,1,0),(0,0,1) (0,0,0)
ffiffiffi
2
p

ao,
ffiffiffi
2
p

ao, ao

51 Pmma (a,�
ffiffiffi
3
p

a) (0,0,b) (0,0,c,c,0,0) (1/2,0,1/2) (1,0,�1),(0,1,0),(1,0,1) (1/2,0,0)
ffiffiffi
2
p

ao, ao,
ffiffiffi
2
p

ao B19, 2H
or 2O

10 P2/m (a,b) (0,0,c) (0,0,d,e,0,0) (1/2,0,1/2) (1,0,�1),(0,1,0),(1,0,1) (1/2,0,0)
ffiffiffi
2
p

ao, ao,
ffiffiffi
2
p

ao 3R or
2M

11 P21/m (a,�
ffiffiffi
3
p

a) (b,b,c) (0,0,d,d,0,0) (0,0,0),
(1/2,0,1/2)

(0,1,0),(�1,0,1),(1,0,1) (0,0,1/2) ao,
ffiffiffi
2
p

ao,
ffiffiffi
2
p

ao B190

147 P�33 (0,0) (a,�a,a) (b,0,0,0,b,0,0,0,0,0,b,0) (1/3,1/3,0),
(1/3,0,1/3),
(0,1/3,�1/3)

(1,�1,2),(1,2,�1),
(�1,1,1)

(0,0,0) Rhombohedral cell:
3
ffiffiffi
2
p

ao, 3
ffiffiffi
2
p

ao,
3
ffiffiffi
2
p

ao

R-phase

38 Amm2 (a,0) (b,0,0) (0,c,0,0,0,0,0,0,0,0,0,0) (1/3,1/3,0) (0,0,1),(3,3,0),(�1,1,0) (0,0,0) ao, 3
ffiffiffi
2
p

ao,
ffiffiffi
2
p

ao

10 P2/m (a,b) (c,0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (1/3,1/3,0) (�1,1,0),(0,0,1),(2,1,0) (0,0,0) Monoclinic cell:ffiffiffi
2
p

ao, ao,
ffiffiffi
5
p

ao, � ’
[90 + tan�1(1/3)]� =
108�, orthorhombic
pseudo-cell:

ffiffiffi
2
p

ao,
ao, 3

ffiffiffi
2
p

ao, (� ’ 90�)

9R or
6M

51 Pmma (a,0) (b,0,0) (c,0,0,0,0,0,0,0,0,0,0,0) (1/4,1/4,0) (2,2,0),(0,0,1),(1,�1,0) (0,0,0) 2
ffiffiffi
2
p

ao, ao,
ffiffiffi
2
p

ao

10 P2/m (a,b) (c,0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (0,0,0)
(1/4,1/4,0)

(�1,1,0),(0,0,1),(2,2,0) (0,0,0)
ffiffiffi
2
p

ao, ao, 2
ffiffiffi
2
p

ao

55 Pbam (a,0) (b,0,0) (c,c,0,0,0,0) (d,�d,0,0,0,0,0,0,0,0,0,0) (1/4,1/4,0) (1,�1,0),(2,2,0),(0,0,1) (1/2,0,0)
ffiffiffi
2
p

ao, 2
ffiffiffi
2
p

ao, ao

10 P2/m (a,b) (c,0,0) (d,e,0,0,0,0) (f,�f,0,0,0,0,0,0,0,0,0,0) (0,0,0)
(1/4,1/4,0)

(�1,1,0),(0,0,1),(2,2,0) (0,1/2,0)
ffiffiffi
2
p

ao, ao, 2
ffiffiffi
2
p

ao

38 Amm2 (a,0) (b,0,0) (0,c,0,0,0,0,0,0,0,0,0,0) (1/5,1/5,0) (0,0,1),(5,5,0),(�1,1,0) (0,0,0) ao, 5
ffiffiffi
2
p

ao,
ffiffiffi
2
p

ao

10 P2/m (a,b) (c,0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (1/5,1/5,0) (�1,1,0),(0,0,1),(3,2,0) (0,0,0) Monoclinic cell:ffiffiffi
2
p

ao, ao,
ffiffiffiffiffi
13
p

ao, � ’
[90 + tan�1(1/5)]� =
101�, orthorhombic
pseudo-cell:

ffiffiffi
2
p

ao,
ao, 5

ffiffiffi
2
p

ao, (� ’ 90�)

5M or
10M

55 Pbam (a,0) (b,0,0) (c,0,0,0,0,0,0,0,0,0,0,0) (1/6,1/6,0) (1,�1,0),(3,3,0),(0,0,1) (0,0,0)
ffiffiffi
2
p

ao, 3
ffiffiffi
2
p

ao, ao

10 P2/m (a,b) (c,0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (0,0,0)
(1/6,1/6,0)

(�1,1,0),(0,0,1),(3,3,0) (0,0,0)
ffiffiffi
2
p

ao, ao, 3
ffiffiffi
2
p

ao

51 Pmma (a,0) (b,0,0) (c,�c,0,0,0,0) (d,�d/
ffiffiffi
3
p

,0,0,0,0,0,0,0,0,0,0) (1/6,1/6,0) (3,3,0),(0,0,1),(1,�1,0) (1/2,0,0) 3a
ffiffiffi
2
p

o,
ffiffiffi
2
p

ao, ao

10 P2/m (a,b) (c,0,0) (d,e,0,0,0,0) (f,�f/
ffiffiffi
3
p

,0,0,0,0,0,0,0,0,0,0) (0,0,0)
(1/6,1/6,0)

(�1,1,0),(0,0,1),(3,3,0) (0,1/2,0)
ffiffiffi
2
p

ao, ao, 3
ffiffiffi
2
p

ao

38 Amm2 (a,0) (b,0,0) (0,c,0,0,0,0,0,0,0,0,0,0) (1/7,1/7,0) (0,0,1),(7,7,0),(�1,1,0) (0,0,0) ao, 7
ffiffiffi
2
p

ao,
ffiffiffi
2
p

ao

10 P2/m (a,b) (c,0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (1/7,1/7,0) (�1,1,0),(0,0,1),
(4,3,0)

(0,0,0) Monoclinic cell:ffiffiffi
2
p

ao, ao, 5ao, � ’
[90 + tan�1(1/7)]� =
98�, orthorhombic
pseudo-cell:

ffiffiffi
2
p

ao, ao,
7
ffiffiffi
2
p

ao, (� ’ 90�)

7R, 7M
or
14M

Incommensurate
65.1.15.10

Ammm(0,0,�)0s0
(a,0) (b,0,0) (c,0,0,0,0,0,0,0,0,0,0,0) (�,�,0) (0,0,1,0),(�1,1,0,0),

(�1,�1,0,0),
(0,0,0,1)

(0,0,0,0) ao,
ffiffiffi
2
p

ao,
ffiffiffi
2
p

ao/� IC

10.1.2.1
P2/m(�,�,0)00

(a,b) (c,0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (0,0,0), (�,�,0) (0,1,0,0),(�1,0,0,0),
(0,0,1,0),(0,0,0,1)

(0,0,0,0)



For a structure with ordering on the basis of Fm�33m, the

orthorhombic product structures have space groups Imm2 (n =

3), Pmma (n = 4), Imm2 (n = 5), and the monoclinic structures

have space group P2/m (n = even) or C2/m (n = odd).

Comparison of these with known structures needs to take

account of the fact that the values of n in Table 2 refer to Im�33m

as the parent structure. The Fm�33m structure has a unit cell

which is double the dimensions of the Im�33m cell, so that nI = 6

(k = 1/6,1/6,0) with respect to the latter becomes nF = 3

(k = 1/3,1/3,0) with respect to the former. The Pmma structure

reported by Brown et al. (2006) as the product of a phase

transition from a parent structure with space group Fm�33m has

nF = 2 (k = 1/2,1/2,0), and would correspond to the structure

with nI = 4 (k = 1/4,1/4,0) in Table 2. The Pnnm structure with

nF = 3 reported by Brown et al. (2002) would correspond to the

structure with nI = 6 (k = 1/6,1/6,0) in Table 2, and similarly for

nF = 7, nI = 14. The P2/m structure described by Brown et al.

(2011) has nF = 3, k = (1/3,1/3,0) and corresponds to the

structure with nI = 6, k = (1/6,1/6,0) in Table 2.

Table 3 contains the same information as Table 2 for the

specific case of a Pm�33m parent structure, in a slightly different

format that might prove to be more practicable when

considering B2 structures such as NiTi and NiAl or TiAl and

RuNb. The zone boundary irrep N�4 becomes M�5 so that the

structural relationships acquire the more familiar form for

Pm�33m, Pmma and P21/m structures as already set out by

Barsch (2000). �þ3 (a,0) gives P4/mmm, corresponding to the �0

structure of RuNb stable between �1030 and �1170 K (e.g.

Dirand et al., 2012; Nó et al., 2015a, 2015b), the room-

temperature structure of TiAl (Duarte et al., 2012) and the

structure of NixAl1�x, x ’ 0.64, quenched from high

temperatures (Potapov et al., 1997). The low-temperature (�00)
structure of RuNb has been reported to be either ortho-

rhombic, Cmmm (Chen & Franzen, 1989), or monoclinic,

P2/m (Nó et al., 2015a,b) or P21/m (Mousa et al., 2009). All

three of these structure types would have the same unit cell as

some permutation of
ffiffiffi
2
p

ao �
ffiffiffi
2
p

ao � ao, but differing in the

combination of driving order parameters.

Other sets of structures can be generated by considering k-

active as having directions along several of the h110i* direc-

tions, instead of just one. For example, if there are three

equivalent directions, (1/3,1/3,0), (1/3,0,1/3), (0,1/3,�1/3), a

trigonal structure is obtained from a Pm�33m parent. This is the

R-phase observed in Ni–Ti and Au–Cd alloys (e.g. Otsuka &

Ren, 2005; Zolotukin et al., 2012), and can be generated with

(a,0,0,0,a,0,0,0,0,0,a,0) as components of the �2 order para-

meter (Table 3). As reviewed by Otsuka & Ren (2005), various

suggestions have been made for the correct space group of this

structure, including P�331m (Vatanayon & Hehemann, 1975;

Goo & Sinclair, 1985), P3 (Ohba et al., 1992; Hara et al., 1997)

and P�33 (Schryvers & Potapov, 2002; Sitepu, 2003). The group

theoretical treatment set out here gives space group P�33 for the

particular combination of order parameters listed in Table 3. If

there are just two equivalent directions, (1/3,1/3,0), (1/3,0,1/3),

tetragonal structures will result, but these have not been

explored further.
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Figure 3
Examples of the graphics output from ISODISTORT (Stokes et al., 2017). (a) An incommensurate modulation with k vector (0.143,0.143,0) applied to a
parent structure in Pm�33m (e.g. NiTi, Ni red, Ti blue). The basic space group for the distorted structure is Ammm, and the figure shows, as well as the
parent cell, the cell corresponding to this basic (average) symmetry. Note that the basic symmetry is orthorhombic. The modulation vector is along the z
axis of the Ammm cell, and the period is 1/0.143, i.e. approximately seven (110) planes. (b) and (c) show results obtained from applying a commensurate
modulation, k vector (1/7,1/7,0). It can be seen that, though the displacements have a period of seven (110) planes, the atomic arrangement precludes the
construction of a simple unit cell with this period. The unit cell in (b) is obtained in orthorhombic symmetry, Amm2, by extending the cell to 14 (110)
planes, and the unit cell in (c) by resorting to the monoclinic symmetry P2/m. The symmetries in (b) and (c), and especially the monoclinic symmetry in
(c), may be artefacts arising from commensurate choices for the modulation vector k.



For practical convenience when considering L21 Heusler

compounds, Table 4 shows subgroup structures with respect to

Fm�33m, rather than Im�33m, as the parent structure. This

includes, for example, the martensite structures of

Ni2Mn1.44Sn0.56 and Ni2Mn1.48Sb0.52 described by Brown et al.

(2006, 2010), which have space group Pmma and, when

referring to the larger parent cell, k-active = (1/2,1/2,0).

Ni2MnGa has two martensitic structures with space group

Pnnm: k-active = (1/3,1/3,0) and (1/7,1/7,0) (Brown et al.,

2002). The martensite structure of Ni1.84Mn1.64In0.52 has space

group P2/m and k-active = (0,0,0) and (1/3,1/3,0) (Brown et al.

2011). The room-temperature structure of Ni2.19Mn0.82Ga has

space group I4/mmm (Banik et al., 2007), which corresponds to

�þ3 (a,0), �þ5 (0,0,0), �2 (0,0,0,0,0,0,0,0,0,0,0,0), k-active =

(0,0,0). A limitation of using subgroups of Fm�33m in terms of a

sequence as 1/n, n = 2, 3, 4 . . . , however, is that the n = odd

entries in Table 2 are not included. For example, a structure

with k = (1/3,1/3,0) in Table 2 would have k-active = (2/3,2/3,0)

if it was added to Table 4. The choice of label, 3M or 6M, 5M

or 10M, etc., also depends on whether reference is being made

to the superlattice repeat, with respect to the Fm�33m cell, or to

the number of atomic layers in the repeating unit (Singh et al.

2015).

2.3. Primary and secondary order parameters

Inspection of Table 2 reveals that the �þ3 order parameter

can act on its own, whereas nonzero values of components of

N�4 and �2 are always accompanied by nonzero values of

components from both �þ3 and �þ5 . The latter can just be

secondary order parameters, consequential on coupling to

tetragonal and orthorhombic shear strains, et and eo (�þ3 ), or
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Table 4
Symmetry relationships, order parameters and unit cell configurations for selected subgroups of space group Fm�33m.

Note that components of the k-active vector are a factor of two larger here than for the same structures in Table 2, due to the fact that the parent Fm�33m structure
has a unit cell with dimensions twice those of the Im�33m parent cell. For the same reason, the lattice vectors listed to describe the origin and basis are halved relative
to those shown in Table 2. Finally, we note that the origin of space group Fm�33m is at (1/2,1/2,1/2) with respect to the Im�33m cell.

�þ3 �þ5 �2 k-active Basis vector Origin

Approximate unit cell
in relation to parent
cubic cell

225 Fm�33m aoF

139 I4/mmm (a,0) (0,0,0) (1/2,1/2,0),(�1/2,1/2,0),(0,0,1) (0,0,0) aoF/
ffiffiffi
2
p

, aoF/
ffiffiffi
2
p

, aoF

69 Fmmm (a,b) (0,0,0) (1,0,0),(0,1,0),(0,0,1) (0,0,0) aoF

71 Immm (a,0) (b,0,0) (0,0,0) (1/2,1/2,0),(�1/2,1/2,0),(0,0,1) (0,0,0)
ffiffiffi
2
p

aoF,
ffiffiffi
2
p

aoF, aoF

51 Pmma (a,0) (b,0,0) (c,0,0,0,0,0,0,0,0,0,0,0) (1/2,1/2,0) (1,1,0),(0,0,1),(1/2,�1/2,0) (0,0,0) aoF/
ffiffiffi
2
p

, aoF/
ffiffiffi
2
p

, aoF

10 P2/m (a,b) (c,0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (0,0,0) (1/2,1/2,0) (�1/2,1/2,0),(0,0,1),(1,1,0) (0,0,0) aoF/
ffiffiffi
2
p

, aoF,
ffiffiffi
2
p

aoF

62 Pnma (a,0) (b,0,0) (c,�c,0,0,0,0,0,0,0,0,0,0) (1/2,1/2,0) (1,1,0),(0,0,1),(1/2,�1/2,0) (1/4,0,1/4)
ffiffiffi
2
p

aoF, aoF, aoF/
ffiffiffi
2
p

11 P21/m (a,b) (c,0,0) (d,�d,0,0,0,0,0,0,0,0,0,0) (0,0,0) (1/2,1/2,0) (�1/2,1/2,0),(0,0,1),(1,1,0) (1/4,0,1/4) aoF/
ffiffiffi
2
p

, aoF,
ffiffiffi
2
p

aoF

58 Pnnm (a,0) (b,0,0) (c,0,0,0,0,0,0,0,0,0,0,0) (1/3,1/3,0) (1/2,�1/2,0),(3/2,3/2,0),(0,0,1) (0,0,0) aoF/
ffiffiffi
2
p

, 3aoF/
ffiffiffi
2
p

, aoF

10 P2/m (a,b) (c,0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (0,0,0) (1/3,1/3,0) (�1/2,1/2,0),(0,0,1),(3/2,3/2,0) (0,0,0) aoF/
ffiffiffi
2
p

, aoF, 3aoF/
ffiffiffi
2
p

59 Pmmn (a,0) (b,0,0) (c,�c/
ffiffiffi
3
p

,0,0,0,0,0,0,0,0,0,0) (1/3,1/3,0) (0,0,1),(3/2,3/2,0),(�1/2,1/2,0) (1/4,0,1/4) aoF, 3aoF/
ffiffiffi
2
p

, aoF/
ffiffiffi
2
p

11 P21/m (a,b) (c,0,0) (d,�d/
ffiffiffi
3
p

,0,0,0,0,0,0,0,0,0,0) (0,0,0) (1/3,1/3,0) (�1/2,1/2,0),(0,0,1),(3/2,3/2,0) (1/4,0,1/4) aoF/
ffiffiffi
2
p

, aoF, 3aoF/
ffiffiffi
2
p

51 Pmma (a,0) (b,0,0) (c,0,0,0,0,0,0,0,0,0,0,0) (1/4,1/4,0) (2,2,0),(0,0,1),(1/2,�1/2,0) (0,0,0) 2
ffiffiffi
2
p

aoF, aoF, aoF/
ffiffiffi
2
p

10 P2/m (a,b) (c,0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (0,0,0) (1/4,1/4,0) (�1/2,1/2,0),(0,0,1),(2,2,0) (0,0,0) aoF/
ffiffiffi
2
p

, aoF, 2
ffiffiffi
2
p

aoF

62 Pnma (a,0) (b,0,0) (c,�0.414c,0,0,0,0,0,0,0,0,0,0) (1/4,1/4,0) (2,2,0),(0,0,1),(1/2,�1/2,0) (1/4,0,1/4) 2
ffiffiffi
2
p

aoF, aoF, aoF/
ffiffiffi
2
p

11 P21/m (a,b) (c,0,0) (d,�0.414d,0,0,0,0,0,0,0,0,0,0) (0,0,0) (1/4,1/4,0) (�1/2,1/2,0),(0,0,1),(2,2,0) (1/4,0,1/4) aoF/
ffiffiffi
2
p

, aoF, 2
ffiffiffi
2
p

aoF

58 Pnnm (a,0) (b,0,0) (c,0,0,0,0,0,0,0,0,0,0,0) (1/5,1/5,0) (1/2,�1/2,0),(5/2,5/2,0),(0,0,1) (0,0,0) aoF/
ffiffiffi
2
p

, 5aoF/
ffiffiffi
2
p

, aoF

10 P2/m (a,b) (c,0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (0,0,0) (1/5,1/5,0) (�1/2,1/2,0),(0,0,1),(5/2,5/2,0) (0,0,0) aoF/
ffiffiffi
2
p

, aoF, 5aoF/
ffiffiffi
2
p

59 Pmmn (a,0) (b,0,0) (0.951c, �0.309c,0,0,0,0,0,0,0,0,0,0) (1/5,1/5,0) (0,0,1),(5/2,5/2,0),(�1/2,1/2,0) (1/4,0,1/4)† aoF, 5aoF/
ffiffiffi
2
p

, aoF/
ffiffiffi
2
p

11 P21/m (a,b) (c,0,0) (0.951d,�0.309d,0,0,0,0,0,0,0,0,0) (0,0,0) (1/5,1/5,0) (�1/2,1/2,0),(0,0,1),(5/2,5/2,0) (1/4,0,1/4)† aoF/
ffiffiffi
2
p

, aoF, 5aoF/
ffiffiffi
2
p

51 Pmma (a,0) (b,0,0) (c,0,0,0,0,0,0,0,0,0,0,0) (1/6,1/6,0) (3,3,0),(0,0,1),(1/2,�1/2,0) (0,0,0) 3
ffiffiffi
2
p

aoF, aoF, aoF/
ffiffiffi
2
p

10 P2/m (a,b) (c,0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (0,0,0) (1/6,1/6,0) (�1/2,1/2,0),(0,0,1),(3,3,0) (0,0,0) aoF/
ffiffiffi
2
p

, aoF, 3
ffiffiffi
2
p

aoF

62 Pnma (a,0) (b,0,0) (1.366c,�0.366c,0,0,0,0,0,0,0,0,0,0) (1/6,1/6,0) (3,3,0),(0,0,1),(1/2,�1/2,0) (1/4,0,1/4)† 3
ffiffiffi
2
p

aoF, aoF, aoF/
ffiffiffi
2
p

11 P21/m (a,b) (c,0,0) (1.366d,�0.366d,0,0,0,0,0,0,0,0,0,0) (0,0,0) (1/6,1/6,0) (�1/2,1/2,0),(0,0,1),(3,3,0) (1/4,0,1/4)† aoF/
ffiffiffi
2
p

, aoF, 3
ffiffiffi
2
p

aoF

58 Pnnm (a,0) (b,0,0) (c,0,0,0,0,0,0,0,0,0,0,0) (1/7,1/7,0) (1/2,�1/2,0),(7/2,7/2,0),(0,0,1) (0,0,0) aoF/
ffiffiffi
2
p

, 7aoF/
ffiffiffi
2
p

, aoF

10 P2/m (a,b) (c,0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (0,0,0) (1/7,1/7,0) (�1/2,1/2,0),(0,0,1),(7/2,7/2,0) (0,0,0) aoF/
ffiffiffi
2
p

, aoF, 7aoF/
ffiffiffi
2
p

59 Pmmn (a,0) (b,0,0) (0.975c,�0.223c,0,0,0,0,0,0,0,0,0,0) (1/7,1/7,0) (0,0,1),(7/2,7/2,0),(�1/2,1/2,0) (1/4,0,1/4)† aoF, 7aoF/
ffiffiffi
2
p

, aoF/
ffiffiffi
2
p

11 P21/m (a,b) (c,0,0) (0.975d,�0.223d,0,0,0,0,0,0,0,0,0,0) (0,0,0) (1/7,1/7,0) (�1/2,1/2,0),(0,0,1),(7/2,7/2,0) (1/4,0,1/4)† aoF/
ffiffiffi
2
p

, aoF, 7aoF/
ffiffiffi
2
p

Incommensurate
71.1.12.2

Immm(0,0,�)s00
(a,0) (b,0,0) (c,0,0,0,0,0,0,0,0,0,0,0) (�,�,0) (1/2,�1/2,0,0),(0,0,1,0),

(1/2,1/2,0,0),(0,0,0,1)
(0,0,0,0) aoF/

ffiffiffi
2
p

,
aoF, aoF/�

ffiffiffi
2
p

12.1.4.1
B2/m(�,�,0)00

(a,b) (c,0,0) (d,0,0,0,0,0,0,0,0,0,0,0) (0,0,0) (�,�,0) (0,1,0,0),(1/2,�3/2,0,0),
(0,0,�1,0),(0,0,0,1)},

(0,0,0,0)

† Domains other than the default domain provided by ISOTROPY have been selected in order to have a consistent origin of (1/4,0,1/4).



shear strains e4, e5, e6 (�þ5 ), but they could also represent

primary order parameters due to separate instabilities. Simi-

larly, �þ5 is invariably accompanied by nonzero values of

components of �þ3 which may be secondary but could be

primary from a separate, additional instability. At the heart of

the diversity of martensite structures is the existence of both

the fundamental electronic instability and the possibility of

additional instabilities associated, for example, with the soft

mode.

If the �þ3 order parameter acts alone, the pattern of spon-

taneous strains is determined by coupling terms in the Landau

free-energy expansion

G ¼
1

2
a�3þ

�
T � Tc�3þ

��
q2

1�3þ þ q2
2�3þ
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6

�
:

Here q represents order parameter components, a, b, c are

standard Landau coefficients, �’s are coupling coefficients,

Tc�3þ is the critical temperature, ea (= e1 + e2 + e3) is the

volume strain, et [= (2e3 � e1 �e2)=
ffiffiffi
3
p

] is the tetragonal shear

strain, eo (= e1� e2) is the orthorhombic shear strain, e4, e5 and

e6 are the remaining shear strains, and Co
11, Co

12, Co
44 are elastic

constants of the parent cubic structure. If the �þ5 order para-

meter acts alone, the Landau expansion is

G ¼
1

2
a�5þ

�
T � Tc�5þ
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If the single order parameter is N�4 or �2, the equivalent

Landau expansion requires six or 12 components, respectively,

though the space groups of real structures so far identified can

be understood with just one or two nonzero values. The

generality of couplings with strain is that they must be linear–

quadratic, �eq2, or biquadratic, �e2q2. For each of the three

cases, the relationship(s) between individual strains and the

driving order parameter(s) can be found by applying the

equilibrium condition, @G/@e = 0, in the usual way (e.g.

Carpenter et al., 1998).

In materials with multiple instabilities, coupling between

the separate order parameters can be direct or indirect via the

common strain. The simplest generalization here is for

coupling between a zone centre order parameter, q�, and an

order parameter from along the � line out to the N point, q�.

Biquadratic coupling, �q2
�q2

�, is always allowed between two

order parameters with different symmetries and a wide variety

of sequences of structures and phase transitions can result

(Salje & Devarajan, 1986). The important parameters are the

strength of coupling, �, and the relative critical temperatures

of the two instabilities, Tc� and Tc�. Linear–quadratic

coupling, �q�q2
�, is also allowed for some combinations, but

leads to a much more restricted range of possibilities (Salje &

Carpenter, 2011). In principle, Tc� > Tc� would be expected to

give rise to a single transition from a state with q� = 0, q� = 0 to

one with q� 6¼ 0, q� 6¼ 0 because q� generates a conjugate field

for q�. Alternatively, for Tc� < Tc�, the sequence can be a

second-order transition to a structure with q� 6¼ 0, q� = 0,

followed by a first-order transition to a phase with q� 6¼ 0,

q� 6¼ 0. Coupling terms between �þ3 and �þ5 can in principle

also be linear–quadratic and biquadratic as:

�
h

q1�3þ

�
2q2

1�5þ � q2
2�5þ � q2

3�5þ

�
þ

ffiffiffi
3
p

q2�3þ

�
q2

3�5þ � q2
2�5þ

�i

and
�
�
q2

1�3þ þ q2
2�3þ

��
q2

1�5þ þ q2
2�5þ þ q2

3�5þ

�
:

Indirect coupling via shear strains would give the linear–

quadratic term while coupling via the volume strain would

give rise to the biquadratic term.

An example of coupling between order parameters for

instabilities with two nonzero components of �þ3 and one

nonzero component of M�5 , with respect to a parent Pm�33m

structure, can be represented by the Landau expansion:

G ¼
1

2
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þ
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From Table 3, if the nonzero components of �þ3 are (a,�
ffiffiffi
3
p

a)

and the nonzero components of M�5 are (0,0,c,c,0,0), the

resultant structure has Pmma symmetry (B19 structure). This

has �þ5 (0,0,b), i.e. the shear strain e5, as a secondary order

parameter. However, the same outcome could be obtained

using �þ5 with M�5 as primaries and �þ3 as secondary, or taking

M�5 as driving and both �þ3 and �þ5 as secondary.

Treatment of magnetic transitions is beyond the scope of

the present work but all the same symmetry and strain

coupling arguments would apply. The only fundamental

difference is that the coupling of a magnetic order parameter

M with strains e will be of the form �eM2 or �e2M2. It follows

that pseudoproper ferroelastic softening will not be observed

if the transition is driven by the magnetic instability. A Landau

expansion which includes strain as a driving order parameter,

an order parameter for the structural modulations and the

magnetic order parameter has been given by Vasil’ev et al.

(2003). A simpler form, with only the �-point and magnetic

order parameters, is given in Vasil’ev et al. (1999).

3. Some examples of real materials

Applications of the group theoretical approach set out above

can be illustrated with three specific examples, using alloys

relating to NiTi, TiPd and Ni2MnGa.

3.1. NiTi, RuNb

NiTi undergoes a single transition from the B2 structure to

the B190 structure at �335 K, corresponding to Pm�33m–P21/m

(Otsuka & Ren, 2005). P21/m is not a symmetry subgroup of

order 2 with respect to Pm�33m, however, but it is a subgroup

order 2 with respect to Pmma. Following Barsch (2000) and

Otsuka & Ren (2005), there appear to be two instabilities and

these are seen in sequence as Pm�33m–Pmma–P21/m in

Ti50Ni50�xCux (Nam et al., 1990). Symmetry relationships are

as listed in Table 3: the active representations are M�5 of Pm�33m

and �þ3 of Pmma (Barsch, 2000). With respect to Pm�33m

symmetry the two discrete electronic instabilities relate

essentially to �þ3 and �þ5 , coupled to the M-point (zone

boundary) mode.

Michal & Sinclair (1981) have given a = 2.885, b = 4.120, c =

4.622 Å, � = 96.8� for the unit cell of the monoclinic structure

at room temperature, which corresponds to �ao �
ffiffiffi
2
p

ao �ffiffiffi
2
p

ao, where ao is the dimension of the primitive parent cubic

structure. Using an orthogonal reference system with X, Y and

Z parallel to crystallographic x, y and z of the parent structure,

the nonzero shear strains are ety = (2e2 � e1 � e3)=
ffiffiffi
3
p

, e6 = e4

6¼ e5. Here ety is the tetragonal shear strain with the unique

axis aligned parallel to the crystallographic y-axis. In terms of

the lattice parameters of the monoclinic structure, individual

strains are given by e2 = (a � ao)/ao, e1 + e3 =
��

b=
ffiffiffi
2
p
� ao

�
=ao

+
�
c=

ffiffiffi
2
p
� ao

�
=ao

�
, e5 =

��
b=

ffiffiffi
2
p
� ao

�
=ao�

�
c=

ffiffiffi
2
p
� ao

�
=ao

�
,

e4 = e6 ’
1
2 cos�. Using ao as approximated by (abc/2)1/3, gives

the values ety = �0.079, je5j = 0.118, e6 = e4 ’ �0.059. These

three shear strains are substantially greater than any that are

typically associated with transitions driven by phonon-related

instabilities.

Evidence for a separate soft-mode transition in Ni–Ti alloys

is revealed by the changes in transition sequences induced by

addition of minor components in solid solution. The transition

sequence in Ti50Ni50�xFex is Pm�33m–P�33–P21/m (B2–R–B190)

(Honma et al., 1980), taking the R-phase as having space

group P�33. In a sample with x = 3.2, a precursor is incom-

mensurate but the R-phase itself is commensurate (Shapiro et

al., 1984; Salamon et al., 1985). There is a small discontinuity in

the pseudocubic lattice angle, �, at the Pm�33m–P�33 transition

and this angle decreases to 89.3� with falling temperature

(Salamon et al., 1985). The transition is thus weakly first order,

with the symmetry-breaking shear strain, e4 = e5 = e6 ’ cos�,

reaching a maximum value of �0.012, consistent with the

transition being driven by softening of an acoustic phonon

along the [110]* branch (Satija et al., 1984; Moine et al., 1984).

Salje et al. (2008) found the same strain variation in a different

sample with the same composition. The electronic and soft-

mode instabilities are suppressed to different extents with

increasing Fe-content such that the stability field of the R-

phase expands. In principle they could combine to produce

superlattice structures with commensurate or incommensurate

repeat distances along [110]* but, for stoichiometric Ni–Ti, the

lowest energy (P21/m) structure is not a subgroup of P�33 and

has the two gamma point order parameters combined with an

M-point order parameter. Parlinski & Parlinska-Wojtan

(2002) have shown that the latter can also be understood in

terms of a soft mode.

In NiTi, the �þ5 order parameter changes from (0,0,b) to

(b,b,c) causing Pmma to become P21/m. The same order

parameter could be primary for the second symmetry change

in RuNb where the sequence is Pm�33m–P4/mmm [�þ3 (a,0), �þ5
(0,0,0), M�5 (0,0,0,0,0,0)]–Cmmm [�þ3 (a,0), �þ5 (b,0,0), M�5
(0,0,0,0,0,0)] or P2/m [�þ3 (a,b), �þ5 (0,0,c), M�5 (0,0,d,e,0,0)].

The tetragonal shear strain, etz [= (2e3 � e1 � e2)=
ffiffiffi
3
p

],

calculated from the lattice parameters given by Shapiro et al.

(2006) for the tetragonal phase at 900 K, is 0.07 [e1 = (a � ao)/

ao, e2 = (b � ao)/ao, e3 = (c � ao)/ao]. Tetragonal, etz, and

orthorhombic, eo = e1 � e2, strains calculated from the

orthorhombic lattice parameters given for 873 K are 0.14 and

�0.02, respectively. In both cases, the same procedure as

described above was used for estimating ao. The large increase

in shear strain at the second transition is consistent with an

electronic driving mechanism and �þ5 being primary.

3.2. Ni2+xMn1�xGa

The L21 Heusler compound Ni2MnGa is cubic, space group

Fm�33m, at high temperatures. Lowering of the symmetry from

a parent Im�33m structure in which the atoms would be disor-

dered between all the crystallographic sites is described by two

order parameters, one belonging to irrep Hþ1 and the second to

irrep P1. It undergoes two phase transitions during cooling, at

�260 and �200 K. Following Brown et al. (2002), the first is to

a ‘pre-martensitic’ structure which is incommensurate (Singh

et al., 2015) but can be represented in terms of an orthor-
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hombic structure with space group Pnnm and unit cell a �

aoF=
ffiffiffi
2
p

, b � 3aoF=
ffiffiffi
2
p

, c � aoF, where aoF is the lattice para-

meter of the parent cubic F unit cell (Table 4; Brown et al.,

2002). The driving mechanism is related to softening of the

(�2) soft acoustic phonon at q � (1/3,1/3,0) (Zheludev et al.,

1995; Stuhr et al., 1997; Mañosa et al., 2001). Strains accom-

panying this transition are such that distortion from cubic

lattice geometry is small (Brown et al., 2002; Ohba et al., 2005).

Ohba et al. (2005) gave lattice parameters at 250 K as a =

5.8285, b = 5.8142, c = 5.7886 Å, which yield linear strain

components e1 = (a � aoF)/aoF = 0.003, e2 = (b � aoF)/aoF =

0.001, e3 = (c � aoF)/aoF = �0.004 (with the usual approx-

imation for ao). Expressed in symmetry-adapted forms the

tetragonal and orthorhombic shear strains are etz =�0.007 and

eo = 0.002, respectively.

The second transition is to a structure which may also be

incommensurate but can be represented as being orthor-

hombic in the same space group, Pnnm, with unit cell a �

aoF=
ffiffiffi
2
p

, b � 7aoF=
ffiffiffi
2
p

, c � aoF (Table 4; Brown et al., 2002;

Ranjan et al., 2006; Righi et al., 2006; Zheludev et al., 1996).

Determining strains in the same way from the lattice para-

meters given by Brown et al. (2002), a = 4.2152, b = 29.3016, c =

5.5570 Å, gives et = �0.076 and eo = 0.007, respectively. The

factor of 10 increase in et with respect to the pre-martensitic

phase seems to be characteristic for strain coupling with the

�þ3 order parameter at a band Jahn–Teller transition. The two

order parameters produce a large tetragonal strain from the

electronic instability and multiplication of the cell dimension

from the soft mode. There is also a nonzero order parameter

component (a,0,0) belonging to �þ5 (Table 4), but it does not

appear to drive any of the instabilities and is therefore

genuinely secondary.

Increasing the Ni content at the expense of Mn in

Ni2+xMn1�xGa causes the transition temperatures for both

transitions to increase, with slopes that give a diminishing field

for the pre-martensite structure (Fig. 4, after Vasil’ev et al.,

2003; Entel et al., 2014). The martensite structures also change

from a 5M (k-active = (1/5,1/5,0) structure reported at x = 0.02

(Vasil’ev et al., 2003) to 7M (k-active = (1/7,1/7,0) and then to

the I4/mmm structure, which has the (a,0) electronic distortion

only. Linear-quadratic coupling, �q�3þq2
�2, is permitted by

symmetry and, from the discussion in x2.3 above, would be

expected to give rise to a single transition directly from a state

with q�3þ = 0, q�2 = 0 to one with q�3þ 6¼ 0, q�2 6¼ 0 for Tc�2>

Tc�3+. Instead this sequence is observed at relatively high Ni

contents where Tc�2 falls below the martensitic transition

temperature. The implication is that linear–quadratic coupling

is not a dominant factor in determining the stability of the

martensitic structures. Either coupling between the two order

parameters is weak or it is dominated by biquadratic terms,

�q2
�3þq2

�2, which could arise via the common volume strain.

The q�2 component presumably diminishes with increasing

Ni-content since it is zero in the I4/mmm structure.

3.3. Ti50Pd50�xCrx

Ti50Pd50�xCrx represents a further example of changing

structural sequences with increasing doping. There is a

crossover between two sequences, Pm�33m (B2)–Pmma (B19)

and Pm�33m–incommensurate (IC)–incommensurate marten-

site (ICM), at x � 4.5 (Fig. 5, following Enami et al., 1989;

Schwartz et al., 1995; Shapiro et al., 2007). In contrast with

Ni2+xMn1�xGa, the trend is of decreasing transition tempera-

tures with increasing doping, and structures with q�2 6¼ 0

appear at relatively high values of x. The 9R structure is

monoclinic (P2/m) and has a �2 repeat of three, while the ICM
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Figure 4
Mn-rich portion of the Ni2+xMn1�xGa phase diagram, after Vasil’ev et al.
(2003) and Entel et al. (2014). An approximate location for the boundary
between Pnnm structures (q�3+ 6¼ 0, q�2 6¼ 0) and the I4/mmm structure
(q�3+ 6¼ 0, q�2 = 0) is based on the data given by Banik et al. (2007, their
Table 1). Tc marks the paramagnetic (PM) to ferromagnetic (FM)
transition.

Figure 5
Simplified phase diagram showing the variation of transition tempera-
tures for B2–incommensurate (IC) and B2–B19, IC–9R, IC–incommen-
surate martensite (ICM) transitions at the Pd-rich end of the TiPd–TiCr
solid solution. The first-order martensitic transition occurs in stoichio-
metric TiPd at �810 K (Matveeva et al., 1982; Enami & Nakagawa et al.,
1993). Vertical dashed lines are approximate composition limits for
different martensitic phases observed at room temperature, based on
observations of Enami et al. (1989) and Schwartz et al. (1995).



structure has IC repeat distances derived from the �2 order

parameter over a range between �3 and �5. This pattern is

similar to that of other Ti–Pd alloys with V, Mn, Fe, Ce or Ni as

the additional, minor component (Enami & Nakagawa, 1993).

Linear-quadratic coupling, �q�3þq2
�2 is again allowed by

symmetry but the transition sequences with falling tempera-

ture are the same as observed for Ni2+xMn1�xGa in not

complying with what would be expected from the generalized

treatment of Salje & Carpenter (2011). In this system, the

contributions of q�2 clearly increase with increasing Cr

content as the transition temperature for structures with

q�3+ 6¼ 0 reduces. Other martensite materials with group–

subgroup relationships need to be examined, but it appears

that biquadratic coupling may be dominant in systems with

band Jahn–Teller transitions.

4. Patterns of elastic anomalies due to strain–order
parameter coupling

Differences in the symmetry properties of martensitic struc-

tures define distinct patterns of thermodynamic behaviour and

are not simply matters of form or representation. The most

obvious way to distinguish between them is by observing

variations in the elastic constants, as set out more generally,

for example, by Carpenter & Salje (1998). Due to bilinear

coupling of a symmetry breaking shear strain with the primary

order parameter, �esbq, transitions driven by the �þ3 order

parameter will show pseudoproper ferroelastic softening of

C11–C12 and those driven by �þ5 will show pseudoproper

ferroelastic softening of C44 as temperature reduces towards

the transition point. Transitions driven by a �2 (or M�5 ) order

parameter will be improper ferroelastic with stepwise soft-

ening in either or both of C11–C12 and C44 below the transition

point due to coupling of the form �esbq2.

In some previous Landau expansions produced to describe

the electronic and soft mode instabilities with order para-

meters belonging separately to zone centre and zone

boundary irreps, strain itself was used as the driving order

parameter for the electronic part (e.g. Entel et al., 2006;

Vasil’ev et al., 2003). In other words, the expectation was for a

true-proper, as opposed to pseudo-proper, ferroelastic tran-

sition, with specific implications for the evolution of the elastic

constants (e.g. Carpenter & Salje, 1998). The pattern of

evolution of the shear modulus, at least, for the simplest case

of the Pm�33m–P4/mmm transition in Ru–Nb, which involves

only the �þ3 order parameter, is of nonlinear softening as the

transition point is approached from both sides (Dirand et al.,

2012; Nó et al., 2015a,b). This fits with pseudoproper beha-

viour which, in turn, suggests that it is the change in electronic

structure and not the strain that provides the driving order

parameter.

The compilation of temperature-dependent single-crystal

elastic constants given by Otsuka & Ren (2005, their Fig. 38)

for Ni–Ti–Fe and Ni–Ti–Cu alloys shows softening of both

C11–C12 and C44 as the martensitic transitions are approached

from above. This confirms the proximity of electronic

instabilities with symmetries belonging to both �þ3 and �þ5 .

The pattern of evolution of both C11–C12 and C44 in

Ni2MnGa ahead of and through the L21 (Fm�33m) to IC (�3M,

Pnnm) transition (e.g. Mañosa et al., 1997; Stipcich et al., 2004)

is characteristic of improper ferroelastic behaviour, implying

that the driving order parameter relates predominantly to �2

and, hence, that �þ3 is secondary. Some precursor softening of

C11–C12 has been reported by Stipcich et al. (2004), however,

and this was enhanced following heat treatments (Seiner et al.,

2013). A driving role clearly can exist for �þ3 but with a

strength that depends on the structural state of the sample.

The additional factor controlling this strength is most likely

the degree of atomic order, as could be expressed in terms of

coupling of �2 and �þ3 order parameters with Hþ1 and P1 order

parameters. This coupling is biquadratic in lowest order,

�q2
�q2

H, �q2
�q2

P, �q2
�q2

H, �q2
�q2

P. As a consequence, the effects of

changes in the degree of atomic order are most likely to be

seen as renormalization of the critical temperature for the

martensitic and soft-mode transitions. This is exactly analo-

gous to the influence of Fe/Mo ordering on phase transitions in

Sr2FeMoO6 (Yang et al., 2016).

5. Conclusions

Group theoretical analysis of order parameters relating to

atomic ordering, electronic instabilities and soft-mode beha-

viour has been used to specify the symmetry relationships

which can lead to a wide variety of structures in alloys with

multiple premartensitic and martensitic phase transitions.

Coupling between order parameters can be direct or

indirect via coupling with common strains. The most signifi-

cant coupling in this context is between �-point and �2 order

parameters, with both linear–quadratic and biquadratic terms

allowed. In the small number of materials considered as

examples here, the characteristic sequences of transformations

expected from linear–quadratic coupling are not observed,

however.

Transformation sequences and phase stabilities in a given

material depend on the balance of energies associated with

each of the possible order parameters. The composition and

degree of atomic order can be chosen so that, in principle, the

different order parameters and the strength of their coupling

can be engineered to produce optimal properties in functional

materials.

In terms of testing models of multiple phase transitions in

martensitic phases, observed patterns of elastic constants are

likely to prove definitive, because of the characteristic patterns

of elastic softening and stiffening in ferroelastic materials due

to bilinear, linear–quadratic and biquadratic coupling with

strains.
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