research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Selected solid-state behaviour of three di-tert-butyl-substituted N-salicylideneaniline derivatives: temperature-induced phase transitions and chromic behaviour

crossmark logo

aDepartment of Chemistry, Durham University, South Road, Durham DH1 3LE, UK, and bSchool of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
*Correspondence e-mail: hazel.sparkes@bristol.ac.uk

Edited by W. Lewis, University of Sydney, Australia (Received 6 August 2020; accepted 23 August 2021; online 29 September 2021)

The synthesis, single-crystal structures and chromic behaviour of three related Schiff bases, namely, (E)-2,4-di-tert-butyl-6-{[(4-fluoro­phen­yl)imino]­meth­yl}phenol, C21H26FNO, 1, (E)-2,4-di-tert-butyl-6-{[(4-chloro­phen­yl)imino]­meth­yl}phenol, C21H26ClNO, 2, and (E)-6-{[(4-bromo­phen­yl)imino]­meth­yl}-2,4-di-tert-butyl­phenol, C21H26BrNO, 3, are reported. Two polymorphs of 1 were obtained, which were found to have different photochromic properties. Schiff bases 2 and 3 were found to be isostructural and underwent a phase transition upon cooling which was attributed to the dynamic disorder in one of the tert-butyl groups resolving at low temperature. All of the structures were found to exist in the enol rather than the keto form based on the C—O(H) and imine C=N bond lengths, and contained an intra­molecular O—H⋯N hydrogen bond alongside weaker inter­molecular C—H⋯O contacts.

1. Introduction

Compounds which display reversible property changes upon some sort of stimulus are of inter­est due to potential applications, including optical switches (Sliwa et al., 2005[Sliwa, M., Létard, S., Malfant, I., Nierlich, M., Lacroix, P. G., Asahi, T., Masuhara, H., Yu, P. & Nakatani, K. (2005). Chem. Mater. 17, 4727-4735.]), sensors (Sahu et al., 2020[Sahu, M., Manna, A. K., Rout, K., Mondal, J. & Patra, G. K. (2020). Inorg. Chim. Acta, 508, 119633.]) or optical data storage (Wang et al., 2020[Wang, H., Ji, X. F., Page, Z. A. & Sessler, J. L. (2020). Mater. Chem. Front. 4, 1024-1039.]). Within these are com­pounds displaying temperature-dependent thermochromic (Seeboth et al., 2014[Seeboth, A., Lötzsch, D., Ruhmann, R. & Muehling, O. (2014). Chem. Rev. 114, 3037-3068.]; Suzuki et al., 2019[Suzuki, Y., Kato, T., Huang, H. Y., Yoshikawa, I., Mutai, T. & Houjou, H. (2019). J. Photochem. Photobiol. Chem. 385, 112096.]) or light-induced photochromic (Wu et al., 2020[Wu, L., Chen, R. J., Luo, Z. W. & Wang, P. (2020). J. Mater. Sci. 55, 12826-12835.]) colour changes. One such class of com­pounds that has been found to exhibit both thermochromism and photochromism in the solid state are N-salicylideneanilines, Schiff bases of salicyl­aldehyde derivatives with aniline derivatives (Senier & Shepheard, 1909[Senier, A. & Shepheard, F. G. (1909). J. Chem. Soc. Trans. 95, 1943-1955.]; Cohen & Schmidt, 1962[Cohen, M. D. & Schmidt, G. M. J. (1962). J. Phys. Chem. 66, 2442-2446.]; Cohen et al., 1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]). Typically, their thermochromism involves a lightening of colour from red/orange to orange/yellow upon cooling, while their photochromic colour changes usually result in a darkening of colour from yellow to orange/red upon irradiation with UV light. Initially, the two properties were thought to be mutually exclusive (Cohen & Schmidt, 1962[Cohen, M. D. & Schmidt, G. M. J. (1962). J. Phys. Chem. 66, 2442-2446.]; Cohen et al., 1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]); how­ever, now it is believed that most, if not all, of N-sali­cyl­idene­anilines display thermochromism, with some also showing photochromism (Fujiwara et al., 2004[Fujiwara, T., Harada, J. & Ogawa, K. (2004). J. Phys. Chem. B, 108, 4035-4038.]).

The mechanism for the thermochromic colour change is believed to be due to an enol to cis-keto tautomerism, while the photochromism involves a cis to trans isomerism of the keto form (Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]; Robert et al., 2009[Robert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327-4342.]) (Fig. 1[link]). Evidence of the thermoproduct has been observed for N-(5-chloro­salicyl­idene)-4-hy­droxy­aniline, where the population of the cis-keto form was found to increase upon cooling (Ogawa et al., 1998[Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107-7108.], 2000[Ogawa, K., Harada, J., Tamura, I. & Noda, Y. (2000). Chem. Lett. 29, 528-529.]), while the photoproduct has been seen crystallographically for N-3,5-di-tert-butyl­salicyl­idene-3-nitro­aniline using two-photon irradiation (Harada et al., 1999[Harada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809-5810.]). The enol form is believed to be colourless, while the keto form is coloured (Ogawa et al., 1998[Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107-7108.]; Fujiwara et al., 2004[Fujiwara, T., Harada, J. & Ogawa, K. (2004). J. Phys. Chem. B, 108, 4035-4038.]; Harada et al., 2007[Harada, J., Fujiwara, T. & Ogawa, K. (2007). J. Am. Chem. Soc. 129, 16216-16221.]). However, the thermochromism cannot be fully explained by the keto–enol tautomerism alone. In order to fully explain the thermochromism, it is necessary to take into account fluorescence (Harada et al., 2007[Harada, J., Fujiwara, T. & Ogawa, K. (2007). J. Am. Chem. Soc. 129, 16216-16221.]). The impact of fluorescence is particularly significant for thermochromic com­pounds at lower temperature and can in fact be the dominant cause of colour change, while at higher temperatures, fluorescence is negligible. The presence of fluorescence at lower temperature results in different perceived colours to those observed from the diffuse reflectance spectra, e.g. N-(5-chloro-2-hy­droxy­benzyl­idene)aniline appears yellowish green at 80 K but diffuse reflectance suggests the colour to be pale yellow since fluorescence was eliminated in the measurement of diffuse reflectance spectra. The extent of the thermochromism of the N-salicylideneanilines has been linked to the dihedral angle (Φ) between the two aromatic rings, with those having Φ < 25° being generally strongly thermochromic, as a smaller inter­planar or dihedral angle results in reduced over­lap between the N-atom lone pair and the aromatic aniline moiety. This allows for easier H-atom transfer and creates a stronger intra­molecular hydrogen bond. While a larger dihedral angle increases overlap between the N-atom lone pair and the aromatic aniline moiety giving greater delocalization into the π-system and reducing the basicity of the N atom and thus the thermochromism (Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]; Robert et al., 2009[Robert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327-4342.]). For photochromism, the link to dihedral angle is more com­plicated and com­pounds with Φ < 20° are generally nonphotochromic, those with Φ > 30° are more likely to be photochromic and those in between can be either photochromic or nonphotochromic (Johmoto et al., 2012[Johmoto, K., Ishida, T., Sekine, A., Uekusa, H. & Ohashi, Y. (2012). Acta Cryst. B68, 297-304.]). Other factors have also been found to influence the chromic behaviour of the N-salicylideneanilines, including substituents that weaken the O—H bond or increase the basicity of the N atoms, tending to result in more strongly thermochromic com­pounds (Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]). In addition, crystal packing also affects chromic behaviour, with more closely packed structures tending to be more strongly thermochromic and more open packed structures more likely to be photochromic (Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]; Robert et al., 2009[Robert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327-4342.]). The latter is likely to be due to the large conformational change required for the transition, with tightly packed structures having greater steric restrictions to conformational change. The presence of bulky groups, such as tert-butyl substituents, or creating cavities using hosts can help to increase space in the lattice of a structure and favour photochromism, as more space presumably reduces the steric restraint on the mol­ecule for the significant conformational change required for cis to trans isomerism to occur (Johmoto et al., 2012[Johmoto, K., Ishida, T., Sekine, A., Uekusa, H. & Ohashi, Y. (2012). Acta Cryst. B68, 297-304.], Pistolis et al., 1996[Pistolis, G., Gegiou, D. & Hadjoudis, E. (1996). J. Photochem. Photobiol. Chem. 93, 179-184.]; Koyama et al., 1994[Koyama, H., Kawato, T., Kanatomi, H., Matsushita, H. & Yonetani, K. (1994). J. Chem. Soc. Chem. Commun. pp. 579-580.]).

[Scheme 1]
[Figure 1]
Figure 1
Illustration of the proposed mechanism for the thermo- or photochromism in N-salicylideneaniline derivatives.

The structures of three related N-salicylidineanlines, namely, (E)-2,4-di-tert-butyl-6-{[(4-fluoro­phen­yl)imino]­meth­yl}phenol, 1, (E)-2,4-di-tert-butyl-6-{[(4-chloro­phen­yl)imino]­meth­yl}phenol, 2, and (E)-6-{[(4-bromo­phen­yl)imino]­meth­yl}-2,4-di-tert-butyl­phenol, 3, are reported alongside a study into their chromic properties (Scheme 1[link]). The structure of 2 has been reported previously at 273 K (Li et al., 2007[Li, J., Zhao, R. & Ma, C. (2007). Acta Cryst. E63, o4923.]), but no investigation into the chromic properties or thermal behaviour has been reported. The structure of 3 has also been reported and is known to be photochromic; however, the thermal behaviour was not studied (Johmoto et al., 2012[Johmoto, K., Ishida, T., Sekine, A., Uekusa, H. & Ohashi, Y. (2012). Acta Cryst. B68, 297-304.]).

2. Experimental

2.1. Synthesis

All reagents were used as supplied by Aldrich. Compounds were synthesized by direct condensation of the appropriate salicyl­aldehyde and aniline derivatives in ethanol. 1.25 (for 1 and 3) or 2.5 mmoles (for 2) of the salicyl­aldehyde and aniline were each dissolved in ethanol (25 ml), and the resulting solutions combined and refluxed with stirring for 4 h. Any precipitate was filtered off, rinsed with ethanol and left to dry. The (remaining) solution was then removed under reduced pressure using a rotary evaporator until (further) precipitate formed. Recrystallization was carried out by slow evaporation from ethanol.

2.2. Characterization

Elemental C, H and N content analysis was carried out by the Durham University Analytical service using an Exeter Analytical E-440 Elemental Analyzer.

2.3. Single-crystal X-ray diffraction data collection and refinement

Details of the X-ray data collection and refinement are provided in Table 1[link] and Table S1 in the supporting information. All H atoms, apart from the O—H hydrogen involved in the intra­molecular hydrogen bonding with the imine N atom were positioned geometrically and refined using a riding model. The H atoms involved in the intra­molecular hydrogen bond were located in the Fourier difference map wherever feasible. In 2 and 3, one of the tert-butyl groups was disordered [apart from at 120 (2) and 100 (2) K for 2, and at 100 (2) K for 3], the sum of the occupancies of the disordered parts was set to equal 1. The data for 2 at 300 (2), 250 (2) and 200 (2) K drop off at high angle, presumably due to the presence of the disorder in the tert-butyl group; as a consequence, the data were cut at resolution limits of 0.95, 0.91 and 0.89 Å, respectively. Likewise the data for 3 were also weak at 300 (2) K and were consequently cut at a resolution limit of 0.86 Å. The inter­planar dihedral angle and fold angles were calculated in OLEX2 (Dolomanov et al., 2012) by measuring the angles between planes com­puted through the six non-H atoms of the two rings. For the acentric structure of 1B at 120 K, the diffraction data did not establish the absolute structure.

Table 1
Experimental details

  1A at 100 K 1B at 120 K 2 at 100 K 3 at 100 K
Crystal data
Chemical formula C21H26FNO C21H26FNO C21H26ClNO C21H26BrNO
Mr 327.43 327.43 343.88 388.34
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, Pna21 Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 120 100 100
a, b, c (Å) 6.5324 (3), 10.6141 (8), 14.1675 (9) 12.2569 (3), 8.9658 (2), 16.5739 (4) 17.3011 (11), 10.6780 (7), 10.1200 (6) 17.4450 (3), 10.69412 (16), 10.15010 (17)
α, β, γ (°) 80.364 (5), 81.094 (4), 74.507 (5) 90, 90, 90 90, 90.252 (6), 90 90, 90.1557 (16), 90
V3) 926.97 (10) 1821.35 (7) 1869.6 (2) 1893.58 (5)
Z 2 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.08 0.08 0.21 2.18
Crystal size (mm) 0.38 × 0.36 × 0.26 0.46 × 0.43 × 0.10 0.35 × 0.31 × 0.10 0.3 × 0.05 × 0.05
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire3 Gemini ultra Oxford Diffraction Xcalibur Sapphire3 Gemini ultra Oxford Diffraction Xcalibur Sapphire3 Gemini ultra Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Analytical (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.870, 1.000 0.973, 0.992 0.435, 1.000 0.692, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7178, 3792, 2765 25510, 3712, 3517 13865, 3830, 2740 28200, 4491, 3799
Rint 0.038 0.049 0.087 0.036
(sin θ/λ)max−1) 0.625 0.625 0.625 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.110, 1.04 0.034, 0.077, 1.05 0.071, 0.176, 1.08 0.026, 0.060, 1.04
No. of reflections 3792 3712 3830 4491
No. of parameters 227 226 227 227
No. of restraints 0 1 0 22
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.20 0.16, −0.16 0.78, −0.33 0.46, −0.22
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

2.4. Raman

Irradiation was carried out using two UV LED sources (λ ∼ 365 nm) in the dark to minimize conversion back to the ground state and measurements were recorded with the 764 nm laser on a Horiba Jobin Yvon LabRAM HR Raman spectrometer.

2.5. Diffuse reflectance spectroscopy

The sample was ground to give uniform particle distribution and placed in a 40 × 10 × 2 mm quartz cuvette to ensure optical thickness. A cuvette sample holder with a white polytetra­fluoro­ethyl­ene (PTFE) block spacer was used to load the sample into an Oxford Instruments Cryostat. The sample was irradiated with an Ocean Optics halogen light source and an Avantes AvaSpec-2048-2 CCD detector (placed at an acute angle to minimize detection of specular reflectance) collected the reflectance spectra, which were recorded using AvaSoft basic software. Cryostat temperature control was performed using an Oxford Intelligent Temperature Controller and each temperature was stabilized for 10 min or until ±0.1 K before recording the spectrum. A white PTFE block was used to record a reference spectrum before each data set collection. Irradiation was carried out using a 405 nm laser po­inter or UV LEDs after an initial ground-state spectrum was collected. The diffuse reflectance spectra are illustrated as percent reflectance versus wavelength and Kubelka–Munk function, F(R), versus wavelength. If S is independent of λ, then F(R) versus λ is equivalent to the absorption spectrum for a diffuse reflector. To allow basic trends to be easily observed, moving averages were applied to data during analysis.

3. Results and discussion

3.1. Structural characterization

Compound 1 was found to produce two different polymorphs upon recrystallization, 1A and 1B, which had different morphologies and structures. Polymorph 1A formed yellow rectangular block-like crystals and crystallized in the triclinic space group P[\overline{1}], while 1B formed bright-yellow octa­hedral-shaped crystals and crystallized in the ortho­rhom­bic space group Pna21. Only one polymorph was identified during these studies for 2 and 3, both of which were yellow.

The four structures are all similar in that they have the same basic backbone with a phenyl group substituted with a hy­droxy and two tert-butyl groups, and joined to a halogen-substituted phenyl group via an imine group (Fig. 2[link]). The structures all exist in the enol form at low temperature rather than the less common keto form, with the C7=N1 bond lengths ranging from 1.279 (3) to 1.286 (2) Å and the C1—O1 bond lengths ranging from 1.353 (3) to 1.358 (2) Å, which are consistent with double C=N (typically ∼1.279 Å) and single C—O (typically ∼1.362 Å) bonds, respectively (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). In all cases, the H atom was also located in the Fourier difference map in the vicinity of the O atom, supporting the presence of the enol form of the anil. All the structures contain an intra­molecular O1—H1⋯N1 hydrogen bond with similar parameters, e.g. O1⋯N1 distances ranging from 2.544 (2) to 2.633 (3) Å (see Table 2[link]). The structures also contain weaker inter­molecular C—H⋯O inter­actions (see Table 3[link]).

Table 2
O—H⋯N hydrogen-bond geometry (Å, °)

  T (K) D—H⋯A D—H H⋯A DA D—H⋯A
1A 100 O1—H1⋯N1 0.94 (3) 1.72 (3) 2.587 (2) 151 (2)
1B 120 O1—H1⋯N1 0.96 (3) 1.64 (3) 2.544 (2) 155 (2)
2 300 O1—H1⋯N1 0.84 (4) 1.84 (4) 2.612 (4) 151 (4)
  250 O1—H1⋯N1 0.91 (3) 1.76 (4) 2.615 (4) 155 (3)
  200 O1—H1⋯N1 0.90 (3) 1.78 (3) 2.611 (3) 153 (3)
  150 O1—H1⋯N1 0.92 (3) 1.77 (3) 2.615 (3) 151 (3)
  120 O1—H1⋯N1 0.86 (4) 1.82 (4) 2.633 (3) 157 (4)
  100 O1—H1⋯N1 0.94 (4) 1.77 (4) 2.626 (3) 150 (3)
3 300 O1—H1⋯N1 0.83 (5) 1.84 (5) 2.614 (4) 154 (5)
  250 O1—H1⋯N1 0.84 (3) 1.83 (3) 2.612 (3) 154 (3)
  200 O1—H1⋯N1 0.82 (3) 1.85 (3) 2.611 (2) 153 (3)
  150 O1—H1⋯N1 0.86 (1) 1.83 (2) 2.612 (2) 152 (3)
  120 O1—H1⋯N1 0.86 (1) 1.84 (2) 2.622 (2) 151 (3)
  100 O1—H1⋯N1 0.85 (1) 1.84 (1) 2.6257 (18) 152 (2)

Table 3
C—H⋯O and C—H⋯F hydrogen-bond geometry (Å, °)

  T (K) D—H⋯A D—H H⋯A DA D—H⋯A
1A 100 C12—H12⋯O1i 0.95 2.62 3.345 (2) 133
1B 120 C10—H10⋯O1ii 0.95 2.60 3.523 (3) 165
    C19—H19B⋯O1iii 0.98 2.72 3.522 (3) 140
    C17—H17A⋯F1iv 0.98 2.57 3.453 (3) 150
2 300 C12—H12⋯O1v 0.93 2.71 3.461 (4) 138
  250 C12—H12⋯O1v 0.94 2.68 3.438 (3) 138
  200 C12—H12⋯O1v 0.95 2.65 3.415 (2) 138
  150 C12—H12⋯O1vi 0.95 2.56 3.359 (3) 142
  100 C12—H12⋯O1vi 0.95 2.54 3.343 (4) 142
  150 C12—H12⋯O1v 0.95 2.63 3.396 (3) 138
  120 C12—H12⋯O1vi 0.95 2.56 3.359 (3) 142
3 300 C12—H12⋯O1vii 0.93 2.76 3.522 (3) 140
  250 C12—H12⋯O1vii 0.94 2.73 3.500 (2) 140
  200 C12—H12⋯O1vii 0.94 2.71 3.483 (3) 140
  150 C12—H12⋯O1vii 0.95 2.67 3.458 (2) 140
  120 C12—H12⋯O1vii 0.95 2.62 3.425 (2) 142
  100 C12—H12⋯O1vii 0.95 2.61 3.415 (2) 143
Symmetry codes: (i) −x, −y + 2, −z; (ii) x + [{1\over 2}], −y + [{3\over 2}], z; (iii) −x + [{3\over 2}], y + [{1\over 2}], z + [{1\over 2}]; (iv) −x + 2, −y + 1, z + [{1\over 2}]; (v) −x + 2, −y + 1, −z + 1; (vi) −x + 2, −y, −z + 1; (vii) −x, −y, −z.
[Figure 2]
Figure 2
Illustration of the structures of 1A [at 100 (2) K], 1B [120 (2) K], 2 [100 (2) K] and 3 [100 (2) K], with the atomic numbering schemes depicted. Displacement ellipsoids are drawn at the 50% probability level.

The structure of 1A consists of mol­ecules oriented such that the plane of the mol­ecules is in approximately the ([\overline{1}]01) plane, with short aromatic C—H⋯O contacts between pairs of adjacent mol­ecules. The tert-butyl groups within these pairs are at opposite ends to each other (Fig. 3[link]). Examining the structure of 1B shows that the mol­ecules are packed in a com­pletely different manner to 1A; in 1B, alternate mol­ecules in the c-axis direction are orientated in either the [101] or [10[\overline{1}]] direction (Fig. 3[link]). Inter­molecular inter­actions in this case are (i) short C—H⋯O contacts involving the H atoms on a methyl group and an aromatic H atom, and (ii) C—H⋯F contacts involving methyl-group H atoms (see Fig. 4[link] and Table 3[link]). The structures of 2 and 3 were found to be iso­structural, crystallizing in the monoclinic space group P21/c. All of the mol­ecules are oriented such that the plane of the mol­ecules is in approximately the (101) plane, with short aromatic C—H⋯O contacts between pairs of adjacent mol­ecules. Within these pairs, the mol­ecules are arranged such that the tert-butyl groups are at opposite ends to each other (Fig. S1). Although in a different crystal system and space group, the structures of 2 and 3 are similar to that of 1A in terms of the packing and inter­molecular inter­actions.

[Figure 3]
Figure 3
Illustration of the packing of 1A at 100 (2) K and 1B at 120 (2) K, looking down the b axis. H atoms have been omitted for clarity.
[Figure 4]
Figure 4
Inter­molecular hydrogen bonding (dashed lines) in 1A at 100 (2) K and 1B at 120 (2) K.

3.2. Thermal behaviour

The structures of 2 and 3 are isostructural and upon cooling both undergo a phase transition somewhere between 150 and 120 K, during which the a-axis length decreases by ∼0.37 Å for 2 and by ∼0.27 Å for 3, while the b axis increases by ∼0.20 Å for 2 and by ∼0.10 Å for 3. These changes are accom­panied by a decrease in the β angle of just over 1° in both cases (see Figs. S2 and S3 in the supporting information). Across the full temperature range measured, the behaviour of the unit-cell parameters is slightly different for the two com­pounds but shows many similarities. For 2, the a axis decreases almost linearly until 150 K and then shows a sharp decrease after the phase transition; the b axis decreases approximately linearly until 200 K, increases slightly to 150 K and then increases sharply by 120 K; the β angle decreases approximately linearly until 150 K, then shows a sharp decrease to 120 K before increasing slightly at 100 K; and the c axis and unit-cell volume decrease almost linearly throughout, with slight inflections at around 175 and 150 K. For 3 overall across the temperature range, upon cooling, the a and c cell-axes lengths, β angle and unit-cell volume decrease approximately linearly prior to the phase transition and continue to decrease after the phase transition. In the case of the b axis, it initially decreases until ∼200 K, increases slightly at 150 K and then increases sharply through the phase transition.

Examining the crystal structures above and below the transition, the cause of the phase transition appears to be dynamic disorder in one of the tert-butyl groups; at higher temperature, the group is disordered, while at low temperature, the disorder resolves. In the case of 2, the disordered tert-butyl group is modelled over three positions at 150 (2) K, but is fully ordered at 120 (2) K, while for 3 at 150 (2) K, the tert-butyl group is also modelled over three positions, at 120 (2) K it was modelled over two positions and it was only at 100 (2) K that it was fully ordered.

The majority of the N-salicylideneanilines show thermochromism upon cooling, with com­pounds that are red/orange at room temperature becoming paler or yellow and those that are yellow at room temperature becoming paler. However, it was inter­esting to note that upon cooling, the crystals of 2 and 3 showed an apparent `reverse thermochromism' around the phase-transition temperature, with the crystals becoming more red (Fig. 5[link] and Fig. S4 in the supporting information). Diffuse reflectance spectra were also collected for all of the com­pounds and are available in the supporting information (Figs. S5 and S6). No account was taken of the potential effect of fluorescence, which can affect the observed colour upon cooling (Harada et al., 2007[Harada, J., Fujiwara, T. & Ogawa, K. (2007). J. Am. Chem. Soc. 129, 16216-16221.]); however, the spectra are presented to support the visually observed trends. In the case of the reflectance spectra for 1, which is likely to be a mixture of both polymorphs, the shoulder shifts to lower wavelengths upon cooling suggesting a lightening in colour. In the cases of 2 and 3, there is also a shift in the position of the main shoulder to lower wavelengths upon cooling, but this is also accom­panied by additional changes in the spectra. The spectrum for 2 shows additional changes in the ∼500–580 nm region with additional shoulders appearing. These appear to start by around 200 K and become more pronounced upon further cooling, which is consistent with results observed visually in Fig. 5[link]. A similar situation, although less pronounced, is observed for 3, where additional shoulders appear in the range ∼500–580 nm for the spectra at 200 K and below. The apparent `reverse thermochromism' is believed to be related to the phase transition that has occurred rather than the normal thermochromism seen in N-salicylideneanilines. It was noted that the dihedral angle between the two six-membered rings decreases by around 1.2–1.9° as the temperature is reduced and in the case of 2, there is a noticeably larger step around the phase transition between 150 (2) and 120 (2) K. In both cases, the fold angle increases as the temperature is reduced and there is a large step increase of ∼2.3–2.5° between 150 (2) and 120 (2) K (see Table 4[link]). Although relatively small, it is possible that these structural changes may be related to the observed colour change, as structures with smaller dihedral angles have reduced overlap between the N-atom lone pair and the aromatic aniline, allowing for a stronger O—H⋯N hydrogen bond favoured by the strongly thermochromic com­pounds (Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]; Robert et al., 2009[Robert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327-4342.]). In the case of N-salicylideneaniline, a similar reverse thermochromism has been seen, whereupon heating above 306 K the colour changes from red to yellow. This was associated with the planar β-form transitioning to the nonplanar disordered α1-form; however, the change in structure in this case was much more significant, with a change in the dihedral angle from (β) ∼2° to (α1) ∼49° (Arod et al., 2007[Arod, F., Pattison, P., Schenk, K. J. & Chapuis, G. (2007). Cryst. Growth Des. 7, 1679-1685.]). More examples and further studies would be required to confirm a correlation between the colour change observed here and the phase transition having occurred.

Table 4
Dihedral angles (°) between planes calculated through the six atoms of the two rings

  T (K) Dihedral angle (°) Fold angle (°)
1A 100 39.03 (5) 8.68 (5)
1B 120 20.61 (7) 3.24 (7)
2 300 26.75 (7) 9.01 (9)
  250 26.56 (8) 8.87 (8)
  200 26.33 (6) 9.09 (6)
  150 25.80 (9) 9.28 (9)
  120 24.96 (10) 11.84 (10)
  100 24.83 (9) 12.05 (9)
3 300 25.83 (8) 9.29 (9)
  250 25.49 (6) 9.45 (6)
  200 25.33 (8) 9.69 (7)
  150 24.88 (7) 10.16 (7)
  120 24.70 (7) 12.49 (7)
  100 24.63 (5) 13.20 (5)
[Figure 5]
Figure 5
Illustration of the colour change of 1B, 2 and 3 upon cooling.

3.3. Photochromism

Upon irradiation, three of the crystals (1A, 2 and 3) were found to display photochromism, becoming much darker in colour when irradiated with UV light. On the other hand, polymorph 1B did not show a colour change even upon pro­longed irradiation (Fig. 6[link]). The occurrence of photochromism for 3 had been reported previously (Johmoto et al., 2012[Johmoto, K., Ishida, T., Sekine, A., Uekusa, H. & Ohashi, Y. (2012). Acta Cryst. B68, 297-304.]).

[Figure 6]
Figure 6
Illustration of the behaviour of each of the crystal structures at room temperature upon irradiation with a UV LED (λ ∼ 365 nm) for (a) unirradiated and (b) irradiated.

Raman data were collected before irradiation and after irradiation with a UV LED (Fig. 7[link]). The three crystals displaying photochromism (1A, 2 and 3) all showed the appearance of new peaks upon irradiation; the main peak positions are given in Table 5[link]. As expected, the spectrum of 1B showed no change in the Raman spectra upon irradiation. It is clear that only a small amount of the photoproduct has been formed, which is not uncommon as photoyield is often low, particularly without two-photon excitation, and the change is often restricted to the surface of the crystal (Harada et al., 2008[Harada, J., Nakajima, R. & Ogawa, K. (2008). J. Am. Chem. Soc. 130, 7085-7091.]). Therefore, it is unsurprising that even after irradiation with a UV laser, no changes were observed in the single-crystal X-ray structures. Diffuse reflectance spectra before and after irradiation for samples of 2 and 3 are presented in the supporting information (Fig. S7); these support the observation by eye and from the Raman with significant changes in the spectra upon irradiation. In both cases, the position of the shoulder in the reflectance spectra shifts to higher wavelengths upon irradiation. No diffuse reflectance spectra upon irradiation are presented for 1 due to the sample likely being a mixture of polymoprhs.

Table 5
Position of main peaks that appear in Raman upon irradiation

Compound New peaks (cm−1)
1A 1651, 1525, 1373, 1302 and 1143
1B
2 1528, 1423, 1311 and 1152
3 1518, 1418, 1301 and 1134
[Figure 7]
Figure 7
Raman spectra of 1A, 1B, 2 and 3 before irradiation (red) and after irradiation (blue) with UV LEDs.

It has also been found that com­pounds with more `space' in the crystal lattice are more likely to show photochromism as it is easier for the com­pound to undergo the necessary cis to trans isomerism. The presence of bulky tert-butyl groups can help create space and potentially enable photochromism to be displayed (Johmoto et al., 2012[Johmoto, K., Ishida, T., Sekine, A., Uekusa, H. & Ohashi, Y. (2012). Acta Cryst. B68, 297-304.]). However, only three of the structures reported herein (1A, 2 and 3) display photochromism. The packing and inter­molecular inter­actions in 1A, 2 and 3 are relatively similar, as discussed earlier; however, 1B has significantly different packing and inter­molecular inter­actions. It seems reasonable to suggest that these differences may well link to the different photochromic behaviour of the com­pounds. A link has been proposed between the inter­planar or dihedral angle between the two aromatic rings and the likelihood of this type of com­pound showing photochromism with the observation that photochromic com­pounds tend to have a larger dihedral angle, typically dihedral angles below 20° are associated with nonphotochromic com­pounds, those above 30° are more likely to be photochromic and those between 20 and 30° can display photochromism (Johmoto et al., 2012[Johmoto, K., Ishida, T., Sekine, A., Uekusa, H. & Ohashi, Y. (2012). Acta Cryst. B68, 297-304.]). The structures reported here fit in with these general observations and those with the larger dihedral angles between the two aromatic rings are the ones displaying photochromism (see Table 4[link]). It is possible that in order to form the aromatic C—H⋯O inter­action present in 1A, 2 and 3, a larger dihedral angle is required between the two rings, while the C—H⋯O inter­actions in 1B do not require this twisting, hence photochromism may be favoured for 1A, 2 and 3 with the larger dihedral angle but is not seen for 1B due to the smaller dihedral angle.

4. Conclusions

The structures of three related Schiff base com­pounds are reported; for one, (E)-2,4-di-tert-butyl-6-{[(4-fluoro­phen­yl)imino]­meth­yl}phenol, 1, two polymorphic structures are reported. The basic structures of the com­pounds are very similar, all existing in the enol form and showing an inter­molecular O—H⋯N hydrogen bond and short C—H⋯O contacts. However, the packing of the two polymorphs of 1 were found to be significantly different. Compounds 2 and 3 were found to be isostructural with each other and displayed a temperature-induced phase transition upon cooling, this was attributed to the disorder in one of the tert-butyl groups resolving at low temperature, which was linked to a colour change from yellow to red around the phase transition. Three of the structures, i.e. 1A, 2 and 3, were found to show photochromism upon irradiation with UV LEDs, while 1B did not; this was linked with differences in the packing and to the inter­planar or dihedral angle between the two aromatic rings being greater than 25° for the photochromic structures and being less than 25° for 1B. The presence of photochromism was identified both by eye and Raman spectroscopy.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010) for 1A_100K, 1B_120K, 2_300K, 2_250K, 2_200K; CrysAlis PRO (Agilent, 2011) for 2_150K; CrysAlis PRO (Rigaku OD, 2018) for 2_120K, 2_100K; CrysAlis PRO (Agilent, 2013) for 3_300K, 3_250K, 3_200K, 3_150K, 3_120K; CrysAlis PRO (Agilent, 2012) for 3_100K. Cell refinement: CrysAlis PRO (Oxford Diffraction, 2010) for 1A_100K, 1B_120K, 2_300K, 2_250K, 2_200K; CrysAlis PRO (Agilent, 2011) for 2_150K; CrysAlis PRO (Rigaku OD, 2018) for 2_120K, 2_100K; CrysAlis PRO (Agilent, 2013) for 3_300K, 3_250K, 3_200K, 3_150K, 3_120K; CrysAlis PRO (Agilent, 2012) for 3_100K. Data reduction: CrysAlis PRO (Oxford Diffraction, 2010) for 1A_100K, 1B_120K, 2_300K, 2_250K, 2_200K; CrysAlis PRO (Agilent, 2011) for 2_150K; CrysAlis PRO (Rigaku OD, 2018) for 2_120K, 2_100K; CrysAlis PRO (Agilent, 2013) for 3_300K, 3_250K, 3_200K, 3_150K, 3_120K; CrysAlis PRO (Agilent, 2012) for 3_100K. Program(s) used to solve structure: SHELXS (Sheldrick, 2008) for 1A_100K, 1B_120K, 2_300K, 2_250K, 2_200K, 2_150K, 2_120K, 2_100K, 3_200K, 3_150K, 3_120K; olex2.solve 1.3 (Bourhis et al., 2015) for 3_300K, 3_250K, 3_100K. For all structures, program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(E)-2,4-Di-tert-butyl-6-{[(4-fluorophenyl)imino]methyl}phenol (1A_100K) top
Crystal data top
C21H26FNOZ = 2
Mr = 327.43F(000) = 352
Triclinic, P1Dx = 1.173 Mg m3
a = 6.5324 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6141 (8) ÅCell parameters from 2473 reflections
c = 14.1675 (9) Åθ = 2.6–32.5°
α = 80.364 (5)°µ = 0.08 mm1
β = 81.094 (4)°T = 100 K
γ = 74.507 (5)°Block, yellow
V = 926.97 (10) Å30.38 × 0.36 × 0.26 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
3792 independent reflections
Radiation source: Enhance (Mo) X-ray Source2765 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 16.1511 pixels mm-1θmax = 26.4°, θmin = 2.6°
ω scansh = 78
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.870, Tmax = 1.000l = 1517
7178 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.0587P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3792 reflectionsΔρmax = 0.28 e Å3
227 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.43318 (16)0.71941 (11)0.13456 (8)0.0341 (3)
N10.1460 (2)0.73505 (14)0.10716 (10)0.0193 (3)
C60.4004 (2)0.63436 (17)0.22077 (12)0.0166 (4)
C50.5210 (2)0.51460 (17)0.26395 (12)0.0177 (4)
H50.4967040.4340370.2532660.021*
C20.5864 (2)0.75621 (17)0.29626 (12)0.0170 (4)
C30.7022 (2)0.63411 (17)0.33586 (12)0.0169 (4)
H30.8078130.6332800.3753010.020*
C40.6751 (2)0.51175 (16)0.32204 (12)0.0157 (4)
C10.4334 (2)0.75440 (17)0.23617 (12)0.0173 (4)
C80.0021 (2)0.72584 (17)0.04634 (12)0.0189 (4)
C70.2494 (2)0.63086 (17)0.15637 (12)0.0178 (4)
H70.2261300.5480610.1504150.021*
C180.8113 (3)0.38311 (17)0.37083 (13)0.0195 (4)
C90.1292 (3)0.63623 (18)0.06969 (13)0.0218 (4)
H90.1170310.5765350.1277150.026*
C160.6915 (3)0.96656 (17)0.22125 (13)0.0220 (4)
H16A0.5828320.9842840.1769380.033*
H16B0.8277290.9160330.1916530.033*
H16C0.7093421.0502480.2349610.033*
C100.2737 (3)0.63413 (19)0.00811 (13)0.0235 (4)
H100.3605340.5728980.0231020.028*
C170.7940 (3)0.86411 (18)0.38272 (14)0.0263 (4)
H17A0.9294210.8127710.3530770.039*
H17B0.7517240.8157440.4447010.039*
H17C0.8116460.9494050.3931130.039*
C140.6201 (3)0.88670 (17)0.31578 (12)0.0188 (4)
C130.0239 (3)0.81493 (18)0.03769 (13)0.0251 (4)
H130.0601520.8777030.0527920.030*
C110.2889 (3)0.72204 (18)0.07475 (13)0.0238 (4)
C120.1674 (3)0.81263 (19)0.09945 (14)0.0289 (5)
H120.1814860.8722580.1574550.035*
C201.0496 (3)0.37493 (18)0.33704 (13)0.0242 (4)
H20A1.0876530.4509000.3540140.036*
H20B1.0759660.3753760.2669940.036*
H20C1.1367940.2933250.3686000.036*
C150.4108 (3)0.96707 (19)0.36626 (14)0.0268 (4)
H15A0.3701380.9161710.4273470.040*
H15B0.2968540.9857610.3245890.040*
H15C0.4327781.0502480.3788860.040*
C210.7722 (3)0.38104 (19)0.48069 (13)0.0273 (5)
H21A0.6211690.3850420.5028330.041*
H21B0.8093600.4572000.4978780.041*
H21C0.8613080.2995540.5114970.041*
C190.7593 (3)0.26188 (18)0.34583 (16)0.0322 (5)
H19A0.7835360.2620490.2758020.048*
H19B0.6091890.2635280.3686460.048*
H19C0.8515840.1820590.3769700.048*
O10.31911 (19)0.87039 (12)0.19288 (9)0.0222 (3)
H10.230 (4)0.850 (2)0.1544 (18)0.067 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0347 (6)0.0368 (7)0.0347 (7)0.0015 (5)0.0196 (5)0.0129 (6)
N10.0183 (7)0.0203 (8)0.0199 (8)0.0047 (6)0.0044 (6)0.0024 (7)
C60.0153 (8)0.0192 (9)0.0160 (9)0.0062 (7)0.0007 (6)0.0021 (8)
C50.0200 (9)0.0141 (9)0.0199 (10)0.0069 (7)0.0002 (7)0.0024 (8)
C20.0184 (9)0.0160 (9)0.0167 (9)0.0061 (7)0.0008 (7)0.0021 (8)
C30.0163 (8)0.0197 (9)0.0158 (9)0.0062 (7)0.0023 (6)0.0025 (8)
C40.0168 (8)0.0152 (9)0.0150 (9)0.0058 (7)0.0005 (6)0.0006 (7)
C10.0151 (8)0.0161 (9)0.0188 (10)0.0018 (7)0.0017 (7)0.0007 (8)
C80.0171 (9)0.0199 (9)0.0189 (10)0.0008 (7)0.0027 (7)0.0064 (8)
C70.0174 (9)0.0171 (9)0.0204 (10)0.0073 (7)0.0017 (7)0.0056 (8)
C180.0198 (9)0.0158 (9)0.0218 (10)0.0042 (7)0.0029 (7)0.0001 (8)
C90.0185 (9)0.0287 (11)0.0170 (10)0.0036 (8)0.0017 (7)0.0033 (8)
C160.0230 (9)0.0160 (9)0.0281 (11)0.0067 (7)0.0039 (7)0.0022 (8)
C100.0184 (9)0.0297 (11)0.0247 (10)0.0072 (8)0.0014 (7)0.0113 (9)
C170.0343 (11)0.0176 (10)0.0314 (11)0.0076 (8)0.0126 (8)0.0057 (9)
C140.0235 (9)0.0138 (9)0.0210 (10)0.0053 (7)0.0062 (7)0.0033 (8)
C130.0300 (10)0.0189 (10)0.0275 (11)0.0059 (8)0.0091 (8)0.0012 (9)
C110.0194 (9)0.0271 (11)0.0248 (11)0.0036 (8)0.0099 (7)0.0119 (9)
C120.0345 (11)0.0232 (11)0.0287 (11)0.0021 (9)0.0141 (8)0.0008 (9)
C200.0227 (9)0.0191 (10)0.0289 (11)0.0033 (7)0.0020 (7)0.0016 (8)
C150.0326 (10)0.0214 (10)0.0276 (11)0.0054 (8)0.0037 (8)0.0087 (9)
C210.0269 (10)0.0256 (11)0.0220 (11)0.0008 (8)0.0026 (7)0.0053 (9)
C190.0347 (11)0.0157 (10)0.0480 (14)0.0057 (8)0.0176 (9)0.0022 (10)
O10.0244 (7)0.0138 (6)0.0289 (8)0.0028 (5)0.0114 (5)0.0003 (6)
Geometric parameters (Å, º) top
F1—C111.370 (2)C16—C141.539 (2)
N1—C81.423 (2)C10—H100.9500
N1—C71.286 (2)C10—C111.371 (3)
C6—C51.402 (2)C17—H17A0.9800
C6—C11.404 (2)C17—H17B0.9800
C6—C71.455 (2)C17—H17C0.9800
C5—H50.9500C17—C141.536 (2)
C5—C41.387 (2)C14—C151.545 (2)
C2—C31.390 (2)C13—H130.9500
C2—C11.415 (2)C13—C121.385 (2)
C2—C141.534 (2)C11—C121.373 (3)
C3—H30.9500C12—H120.9500
C3—C41.406 (2)C20—H20A0.9800
C4—C181.536 (2)C20—H20B0.9800
C1—O11.3592 (19)C20—H20C0.9800
C8—C91.391 (3)C15—H15A0.9800
C8—C131.391 (2)C15—H15B0.9800
C7—H70.9500C15—H15C0.9800
C18—C201.540 (2)C21—H21A0.9800
C18—C211.535 (2)C21—H21B0.9800
C18—C191.523 (3)C21—H21C0.9800
C9—H90.9500C19—H19A0.9800
C9—C101.388 (2)C19—H19B0.9800
C16—H16A0.9800C19—H19C0.9800
C16—H16B0.9800O1—H10.94 (3)
C16—H16C0.9800
C7—N1—C8120.33 (16)H17B—C17—H17C109.5
C5—C6—C1120.21 (15)C14—C17—H17A109.5
C5—C6—C7118.57 (16)C14—C17—H17B109.5
C1—C6—C7121.15 (15)C14—C17—H17C109.5
C6—C5—H5119.4C2—C14—C16110.64 (14)
C4—C5—C6121.10 (17)C2—C14—C17111.82 (14)
C4—C5—H5119.4C2—C14—C15109.58 (14)
C3—C2—C1116.26 (16)C16—C14—C15110.44 (14)
C3—C2—C14122.59 (15)C17—C14—C16107.11 (15)
C1—C2—C14121.15 (14)C17—C14—C15107.17 (15)
C2—C3—H3117.5C8—C13—H13119.8
C2—C3—C4125.01 (16)C12—C13—C8120.38 (18)
C4—C3—H3117.5C12—C13—H13119.8
C5—C4—C3116.80 (15)F1—C11—C10118.13 (17)
C5—C4—C18123.02 (16)F1—C11—C12119.07 (16)
C3—C4—C18120.17 (15)C10—C11—C12122.80 (17)
C6—C1—C2120.59 (14)C13—C12—H12120.8
O1—C1—C6120.16 (15)C11—C12—C13118.35 (17)
O1—C1—C2119.24 (16)C11—C12—H12120.8
C9—C8—N1122.77 (15)C18—C20—H20A109.5
C9—C8—C13119.78 (16)C18—C20—H20B109.5
C13—C8—N1117.39 (16)C18—C20—H20C109.5
N1—C7—C6122.81 (17)H20A—C20—H20B109.5
N1—C7—H7118.6H20A—C20—H20C109.5
C6—C7—H7118.6H20B—C20—H20C109.5
C4—C18—C20109.36 (14)C14—C15—H15A109.5
C21—C18—C4109.72 (14)C14—C15—H15B109.5
C21—C18—C20109.01 (14)C14—C15—H15C109.5
C19—C18—C4111.96 (14)H15A—C15—H15B109.5
C19—C18—C20108.05 (15)H15A—C15—H15C109.5
C19—C18—C21108.67 (15)H15B—C15—H15C109.5
C8—C9—H9120.0C18—C21—H21A109.5
C10—C9—C8119.91 (17)C18—C21—H21B109.5
C10—C9—H9120.0C18—C21—H21C109.5
H16A—C16—H16B109.5H21A—C21—H21B109.5
H16A—C16—H16C109.5H21A—C21—H21C109.5
H16B—C16—H16C109.5H21B—C21—H21C109.5
C14—C16—H16A109.5C18—C19—H19A109.5
C14—C16—H16B109.5C18—C19—H19B109.5
C14—C16—H16C109.5C18—C19—H19C109.5
C9—C10—H10120.6H19A—C19—H19B109.5
C11—C10—C9118.76 (18)H19A—C19—H19C109.5
C11—C10—H10120.6H19B—C19—H19C109.5
H17A—C17—H17B109.5C1—O1—H1107.1 (15)
H17A—C17—H17C109.5
F1—C11—C12—C13179.32 (15)C1—C6—C7—N13.2 (3)
N1—C8—C9—C10178.67 (15)C1—C2—C3—C41.3 (2)
N1—C8—C13—C12179.09 (16)C1—C2—C14—C1660.64 (19)
C6—C5—C4—C30.6 (2)C1—C2—C14—C17179.95 (15)
C6—C5—C4—C18179.95 (15)C1—C2—C14—C1561.4 (2)
C5—C6—C1—C20.8 (2)C8—N1—C7—C6179.10 (15)
C5—C6—C1—O1178.83 (14)C8—C9—C10—C110.5 (2)
C5—C6—C7—N1173.76 (15)C8—C13—C12—C111.0 (3)
C5—C4—C18—C20120.93 (18)C7—N1—C8—C935.5 (2)
C5—C4—C18—C21119.54 (18)C7—N1—C8—C13147.21 (16)
C5—C4—C18—C191.2 (2)C7—C6—C5—C4176.67 (15)
C2—C3—C4—C50.3 (3)C7—C6—C1—C2177.70 (15)
C2—C3—C4—C18179.23 (15)C7—C6—C1—O11.9 (2)
C3—C2—C1—C61.5 (2)C9—C8—C13—C121.7 (3)
C3—C2—C1—O1178.09 (15)C9—C10—C11—F1179.59 (15)
C3—C2—C14—C16119.41 (17)C9—C10—C11—C120.2 (3)
C3—C2—C14—C170.1 (2)C10—C11—C12—C130.1 (3)
C3—C2—C14—C15118.58 (17)C14—C2—C3—C4178.65 (15)
C3—C4—C18—C2059.6 (2)C14—C2—C1—C6178.43 (15)
C3—C4—C18—C2159.9 (2)C14—C2—C1—O12.0 (2)
C3—C4—C18—C19179.34 (15)C13—C8—C9—C101.4 (2)
C1—C6—C5—C40.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.94 (3)1.72 (3)2.587 (2)151 (2)
(E)-2,4-Di-tert-butyl-6-{[(4-fluorophenyl)imino]methyl}phenol (1B_120K) top
Crystal data top
C21H26FNODx = 1.194 Mg m3
Mr = 327.43Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 9836 reflections
a = 12.2569 (3) Åθ = 2.6–30.7°
b = 8.9658 (2) ŵ = 0.08 mm1
c = 16.5739 (4) ÅT = 120 K
V = 1821.35 (7) Å3Block, yellow
Z = 40.46 × 0.43 × 0.10 mm
F(000) = 704
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
3712 independent reflections
Radiation source: Enhance (Mo) X-ray Source3517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 16.1511 pixels mm-1θmax = 26.4°, θmin = 2.6°
ω scansh = 1515
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.973, Tmax = 0.992l = 2020
25510 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.3311P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3712 reflectionsΔρmax = 0.16 e Å3
226 parametersΔρmin = 0.16 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.83391 (12)0.36730 (17)0.43826 (9)0.0179 (3)
H10.882 (2)0.444 (3)0.4185 (15)0.021*
F11.24654 (12)0.88292 (16)0.22645 (8)0.0315 (4)
N10.93534 (14)0.61161 (19)0.41684 (10)0.0158 (4)
C20.70056 (17)0.3514 (2)0.54254 (12)0.0145 (4)
C50.75575 (17)0.6436 (2)0.59100 (12)0.0155 (4)
H50.7740230.7424420.6065370.019*
C30.65163 (17)0.4218 (2)0.60789 (13)0.0153 (4)
H30.5968860.3687510.6365730.018*
C40.67783 (16)0.5664 (2)0.63433 (12)0.0146 (4)
C10.78248 (17)0.4315 (2)0.50160 (12)0.0142 (4)
C81.01342 (17)0.6906 (2)0.37055 (13)0.0155 (4)
C180.61916 (18)0.6314 (2)0.70838 (12)0.0175 (5)
C60.80852 (17)0.5789 (2)0.52448 (13)0.0152 (4)
C70.88583 (17)0.6668 (2)0.47806 (12)0.0163 (5)
H70.8999270.7671220.4933600.020*
C121.11018 (18)0.7010 (2)0.24320 (13)0.0197 (5)
H121.1230580.6642210.1903040.024*
C91.07431 (18)0.8109 (3)0.39872 (14)0.0192 (5)
H91.0627220.8478150.4517640.023*
C170.5735 (2)0.1317 (3)0.56633 (14)0.0220 (5)
H17A0.5981150.1262240.6225150.033*
H17B0.5544910.0315960.5472680.033*
H17C0.5093380.1965920.5628160.033*
C101.15182 (19)0.8770 (3)0.34937 (13)0.0207 (5)
H101.1928780.9601470.3677790.025*
C140.66538 (17)0.1957 (2)0.51368 (13)0.0170 (5)
C111.16826 (18)0.8199 (3)0.27322 (14)0.0201 (5)
C131.03219 (18)0.6367 (2)0.29277 (13)0.0182 (5)
H130.9907960.5545690.2734650.022*
C190.6631 (2)0.7856 (2)0.73042 (14)0.0236 (5)
H19A0.7416620.7789550.7407180.035*
H19B0.6259600.8218840.7789610.035*
H19C0.6497930.8547510.6857060.035*
C210.4968 (2)0.6469 (3)0.68953 (16)0.0294 (6)
H21A0.4868010.7167060.6446340.044*
H21B0.4585450.6846260.7372920.044*
H21C0.4670050.5492450.6746760.044*
C150.6215 (2)0.2072 (3)0.42655 (13)0.0228 (5)
H15A0.5994730.1080660.4077050.034*
H15B0.6788040.2465190.3912150.034*
H15C0.5584190.2743040.4254410.034*
C200.6349 (2)0.5281 (3)0.78124 (14)0.0245 (5)
H20A0.6050520.4292910.7688050.037*
H20B0.5968030.5697370.8280830.037*
H20C0.7128760.5191300.7933630.037*
C160.7618 (2)0.0853 (2)0.51666 (15)0.0245 (5)
H16A0.7880010.0764770.5723210.037*
H16B0.8209680.1219760.4821920.037*
H16C0.7376910.0126020.4973740.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0187 (8)0.0178 (8)0.0172 (8)0.0018 (6)0.0048 (6)0.0023 (6)
F10.0307 (8)0.0376 (8)0.0262 (8)0.0148 (7)0.0106 (6)0.0024 (6)
N10.0140 (9)0.0167 (9)0.0166 (9)0.0000 (7)0.0001 (7)0.0014 (7)
C20.0144 (10)0.0157 (10)0.0135 (10)0.0007 (8)0.0029 (8)0.0006 (8)
C50.0175 (11)0.0136 (10)0.0154 (11)0.0000 (9)0.0036 (8)0.0016 (8)
C30.0140 (10)0.0186 (11)0.0133 (10)0.0024 (8)0.0009 (8)0.0018 (8)
C40.0136 (10)0.0168 (10)0.0133 (10)0.0012 (8)0.0013 (8)0.0013 (8)
C10.0141 (10)0.0175 (10)0.0109 (10)0.0021 (8)0.0019 (8)0.0008 (8)
C80.0123 (10)0.0172 (10)0.0172 (11)0.0013 (8)0.0008 (8)0.0051 (9)
C180.0177 (11)0.0205 (11)0.0142 (11)0.0013 (9)0.0019 (9)0.0039 (9)
C60.0124 (10)0.0174 (10)0.0158 (11)0.0004 (8)0.0021 (8)0.0014 (8)
C70.0166 (11)0.0155 (10)0.0168 (11)0.0013 (8)0.0026 (9)0.0005 (8)
C120.0238 (12)0.0210 (11)0.0142 (10)0.0001 (9)0.0020 (9)0.0011 (9)
C90.0201 (11)0.0232 (12)0.0142 (10)0.0015 (9)0.0005 (8)0.0003 (9)
C170.0265 (13)0.0206 (11)0.0188 (11)0.0080 (10)0.0012 (9)0.0026 (9)
C100.0191 (11)0.0226 (12)0.0202 (12)0.0073 (10)0.0025 (9)0.0005 (9)
C140.0209 (11)0.0154 (10)0.0147 (11)0.0034 (9)0.0013 (9)0.0010 (9)
C110.0168 (11)0.0241 (12)0.0193 (12)0.0033 (9)0.0030 (9)0.0054 (10)
C130.0185 (11)0.0168 (10)0.0195 (12)0.0019 (9)0.0013 (9)0.0005 (9)
C190.0299 (13)0.0223 (12)0.0186 (12)0.0020 (10)0.0035 (10)0.0057 (9)
C210.0195 (12)0.0404 (15)0.0283 (13)0.0041 (10)0.0027 (10)0.0092 (11)
C150.0275 (12)0.0248 (12)0.0162 (11)0.0091 (10)0.0018 (10)0.0024 (9)
C200.0340 (13)0.0245 (12)0.0149 (11)0.0018 (10)0.0057 (9)0.0010 (10)
C160.0301 (13)0.0179 (11)0.0255 (12)0.0011 (10)0.0033 (10)0.0009 (10)
Geometric parameters (Å, º) top
O1—H10.96 (3)C9—C101.386 (3)
O1—C11.353 (3)C17—H17A0.9800
F1—C111.357 (2)C17—H17B0.9800
N1—C81.416 (3)C17—H17C0.9800
N1—C71.282 (3)C17—C141.536 (3)
C2—C31.390 (3)C10—H100.9500
C2—C11.408 (3)C10—C111.377 (3)
C2—C141.538 (3)C14—C151.544 (3)
C5—H50.9500C14—C161.542 (3)
C5—C41.381 (3)C13—H130.9500
C5—C61.404 (3)C19—H19A0.9800
C3—H30.9500C19—H19B0.9800
C3—C41.405 (3)C19—H19C0.9800
C4—C181.537 (3)C21—H21A0.9800
C1—C61.411 (3)C21—H21B0.9800
C8—C91.393 (3)C21—H21C0.9800
C8—C131.396 (3)C15—H15A0.9800
C18—C191.528 (3)C15—H15B0.9800
C18—C211.539 (3)C15—H15C0.9800
C18—C201.534 (3)C20—H20A0.9800
C6—C71.453 (3)C20—H20B0.9800
C7—H70.9500C20—H20C0.9800
C12—H120.9500C16—H16A0.9800
C12—C111.375 (3)C16—H16B0.9800
C12—C131.386 (3)C16—H16C0.9800
C9—H90.9500
C1—O1—H1104.0 (15)C11—C10—C9118.8 (2)
C7—N1—C8123.75 (19)C11—C10—H10120.6
C3—C2—C1116.84 (18)C2—C14—C15109.13 (17)
C3—C2—C14122.27 (19)C2—C14—C16110.96 (18)
C1—C2—C14120.85 (18)C17—C14—C2111.58 (18)
C4—C5—H5119.3C17—C14—C15107.52 (18)
C4—C5—C6121.34 (19)C17—C14—C16107.71 (18)
C6—C5—H5119.3C16—C14—C15109.86 (19)
C2—C3—H3117.9F1—C11—C12118.8 (2)
C2—C3—C4124.29 (19)F1—C11—C10118.20 (19)
C4—C3—H3117.9C12—C11—C10123.0 (2)
C5—C4—C3117.27 (19)C8—C13—H13119.4
C5—C4—C18123.26 (19)C12—C13—C8121.2 (2)
C3—C4—C18119.47 (18)C12—C13—H13119.4
O1—C1—C2119.29 (17)C18—C19—H19A109.5
O1—C1—C6120.08 (18)C18—C19—H19B109.5
C2—C1—C6120.60 (18)C18—C19—H19C109.5
C9—C8—N1124.60 (19)H19A—C19—H19B109.5
C9—C8—C13119.29 (19)H19A—C19—H19C109.5
C13—C8—N1116.04 (18)H19B—C19—H19C109.5
C4—C18—C21109.16 (18)C18—C21—H21A109.5
C19—C18—C4111.67 (18)C18—C21—H21B109.5
C19—C18—C21108.09 (19)C18—C21—H21C109.5
C19—C18—C20108.30 (18)H21A—C21—H21B109.5
C20—C18—C4109.90 (17)H21A—C21—H21C109.5
C20—C18—C21109.7 (2)H21B—C21—H21C109.5
C5—C6—C1119.58 (19)C14—C15—H15A109.5
C5—C6—C7119.48 (19)C14—C15—H15B109.5
C1—C6—C7120.89 (19)C14—C15—H15C109.5
N1—C7—C6121.20 (19)H15A—C15—H15B109.5
N1—C7—H7119.4H15A—C15—H15C109.5
C6—C7—H7119.4H15B—C15—H15C109.5
C11—C12—H12121.1C18—C20—H20A109.5
C11—C12—C13117.7 (2)C18—C20—H20B109.5
C13—C12—H12121.1C18—C20—H20C109.5
C8—C9—H9120.0H20A—C20—H20B109.5
C10—C9—C8120.0 (2)H20A—C20—H20C109.5
C10—C9—H9120.0H20B—C20—H20C109.5
H17A—C17—H17B109.5C14—C16—H16A109.5
H17A—C17—H17C109.5C14—C16—H16B109.5
H17B—C17—H17C109.5C14—C16—H16C109.5
C14—C17—H17A109.5H16A—C16—H16B109.5
C14—C17—H17B109.5H16A—C16—H16C109.5
C14—C17—H17C109.5H16B—C16—H16C109.5
C9—C10—H10120.6
O1—C1—C6—C5179.09 (19)C1—C2—C3—C40.8 (3)
O1—C1—C6—C73.5 (3)C1—C2—C14—C17178.77 (19)
N1—C8—C9—C10177.5 (2)C1—C2—C14—C1560.1 (3)
N1—C8—C13—C12177.18 (19)C1—C2—C14—C1661.1 (3)
C2—C3—C4—C51.4 (3)C1—C6—C7—N12.5 (3)
C2—C3—C4—C18179.0 (2)C8—N1—C7—C6178.37 (19)
C2—C1—C6—C53.0 (3)C8—C9—C10—C111.0 (3)
C2—C1—C6—C7174.40 (19)C6—C5—C4—C31.5 (3)
C5—C4—C18—C193.7 (3)C6—C5—C4—C18178.99 (19)
C5—C4—C18—C21115.8 (2)C7—N1—C8—C923.7 (3)
C5—C4—C18—C20123.9 (2)C7—N1—C8—C13159.3 (2)
C5—C6—C7—N1179.83 (19)C9—C8—C13—C120.1 (3)
C3—C2—C1—O1179.04 (18)C9—C10—C11—F1178.1 (2)
C3—C2—C1—C63.0 (3)C9—C10—C11—C120.8 (3)
C3—C2—C14—C170.8 (3)C14—C2—C3—C4177.2 (2)
C3—C2—C14—C15117.8 (2)C14—C2—C1—O12.9 (3)
C3—C2—C14—C16121.0 (2)C14—C2—C1—C6175.04 (19)
C3—C4—C18—C19176.84 (19)C11—C12—C13—C80.1 (3)
C3—C4—C18—C2163.7 (3)C13—C8—C9—C100.7 (3)
C3—C4—C18—C2056.6 (3)C13—C12—C11—F1178.72 (19)
C4—C5—C6—C10.6 (3)C13—C12—C11—C100.3 (3)
C4—C5—C6—C7176.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.96 (3)1.64 (3)2.544 (2)155 (2)
(E)-2,4-Di-tert-butyl-6-{[(4-chlorophenyl)imino]methyl}phenol (2_300K) top
Crystal data top
C21H26ClNOF(000) = 736
Mr = 343.88Dx = 1.168 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.9412 (17) ÅCell parameters from 956 reflections
b = 10.5067 (7) Åθ = 2.8–30.5°
c = 10.3890 (7) ŵ = 0.20 mm1
β = 92.719 (7)°T = 300 K
V = 1956.2 (3) Å3Block, yellow
Z = 40.33 × 0.28 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
1501 reflections with I > 2σ(I)
Detector resolution: 16.1511 pixels mm-1Rint = 0.050
ω scansθmax = 22.0°, θmin = 2.8°
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010), based on expressions derived by Clark & Reid (1995)]
h = 1817
Tmin = 0.947, Tmax = 0.981k = 1011
5532 measured reflectionsl = 1010
2382 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0438P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2382 reflectionsΔρmax = 0.16 e Å3
277 parametersΔρmin = 0.15 e Å3
169 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Occupancies of the disordered tBu carbon atoms refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.13127 (6)0.94077 (11)0.78074 (11)0.0864 (5)
N10.88659 (17)0.7046 (3)0.4603 (3)0.0577 (9)
C20.71192 (19)0.5474 (3)0.2099 (3)0.0417 (9)
C60.7739 (2)0.7231 (4)0.3260 (3)0.0509 (10)
C10.7694 (2)0.5931 (3)0.2934 (3)0.0455 (9)
C50.7198 (2)0.8061 (3)0.2758 (3)0.0539 (11)
H50.7229290.8916630.2981510.065*
C80.94315 (13)0.7639 (2)0.5400 (2)0.0534 (10)
C131.01328 (16)0.7074 (2)0.5444 (2)0.0673 (12)
H131.0211690.6333270.4979250.081*
C121.07161 (11)0.7615 (3)0.6183 (3)0.0687 (12)
H121.1185270.7236740.6212920.082*
C111.05982 (14)0.8721 (3)0.6878 (2)0.0598 (11)
C100.98969 (17)0.9286 (2)0.6834 (2)0.0783 (13)
H100.9818021.0026790.7299320.094*
C90.93136 (12)0.8745 (3)0.6095 (3)0.0774 (14)
H90.8844420.9123340.6065660.093*
C30.6604 (2)0.6373 (3)0.1635 (3)0.0478 (10)
H30.6219410.6091060.1074160.057*
C70.8344 (2)0.7724 (4)0.4090 (3)0.0604 (11)
H70.8351280.8593770.4257920.073*
C40.6619 (2)0.7667 (4)0.1945 (3)0.0478 (10)
C140.7057 (2)0.4067 (3)0.1714 (3)0.0506 (10)
C180.6025 (2)0.8590 (3)0.1398 (3)0.0554 (11)
C150.6986 (2)0.3242 (3)0.2922 (3)0.0698 (13)
H15A0.6528630.3444460.3321460.105*
H15B0.7400110.3405790.3517640.105*
H15C0.6983600.2358950.2683550.105*
C170.6373 (2)0.3794 (4)0.0812 (4)0.0743 (13)
H17A0.6417430.4252960.0020830.111*
H17B0.5929470.4059040.1217790.111*
H17C0.6346000.2897790.0634250.111*
C160.7751 (2)0.3662 (4)0.1004 (3)0.0730 (13)
H16A0.8189650.3805500.1550030.110*
H16B0.7781380.4152510.0229000.110*
H16C0.7715350.2774210.0790190.110*
O10.82124 (15)0.5111 (2)0.3445 (3)0.0639 (8)
H10.853 (2)0.554 (4)0.387 (4)0.077*
C19A0.5902 (11)0.9776 (12)0.2223 (15)0.071 (5)0.348 (3)
H19A0.5826350.9523210.3094810.107*0.348 (3)
H19B0.5471551.0229050.1885550.107*0.348 (3)
H19C0.6332871.0317120.2204150.107*0.348 (3)
C20A0.6171 (10)0.8942 (18)0.0009 (9)0.085 (4)0.348 (3)
H20A0.6540700.9602100.0001020.127*0.348 (3)
H20B0.5716490.9239810.0414910.127*0.348 (3)
H20C0.6346710.8207380.0433770.127*0.348 (3)
C21A0.5261 (5)0.7865 (12)0.1402 (17)0.072 (4)0.348 (3)
H21A0.5250380.7213270.0752850.108*0.348 (3)
H21B0.4860200.8452980.1222980.108*0.348 (3)
H21C0.5205440.7483150.2231230.108*0.348 (3)
C210.5389 (8)0.7991 (13)0.0562 (16)0.092 (4)0.387 (3)
H21D0.5563550.7802350.0276650.139*0.387 (3)
H21E0.4979100.8576530.0480180.139*0.387 (3)
H21F0.5228360.7220100.0959200.139*0.387 (3)
C200.6423 (7)0.9586 (12)0.0563 (14)0.079 (4)0.387 (3)
H20D0.6782311.0047800.1094550.118*0.387 (3)
H20E0.6060771.0167850.0190980.118*0.387 (3)
H20F0.6671690.9158180.0110810.118*0.387 (3)
C190.5693 (9)0.9308 (13)0.2522 (11)0.065 (4)0.387 (3)
H19D0.5436190.8718730.3051250.098*0.387 (3)
H19E0.5348610.9939950.2190360.098*0.387 (3)
H19F0.6086570.9713690.3028110.098*0.387 (3)
C20B0.6363 (10)0.9942 (11)0.134 (2)0.083 (5)0.265 (3)
H20G0.6454381.0262850.2195020.124*0.265 (3)
H20H0.6021031.0495340.0869980.124*0.265 (3)
H20I0.6824980.9907940.0906490.124*0.265 (3)
C19B0.5357 (8)0.861 (2)0.2244 (17)0.078 (5)0.265 (3)
H19G0.5104860.7802080.2182990.118*0.265 (3)
H19H0.5020670.9272050.1961910.118*0.265 (3)
H19I0.5523820.8758140.3122750.118*0.265 (3)
C21B0.5783 (12)0.8217 (18)0.0000 (10)0.067 (5)0.265 (3)
H21G0.6218320.8091340.0489040.100*0.265 (3)
H21H0.5483460.8884470.0385770.100*0.265 (3)
H21I0.5498800.7443570.0006380.100*0.265 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0734 (9)0.0860 (9)0.0969 (9)0.0178 (7)0.0263 (6)0.0001 (7)
N10.054 (2)0.055 (2)0.063 (2)0.0031 (18)0.0124 (17)0.0032 (17)
C20.042 (2)0.043 (2)0.040 (2)0.0002 (19)0.0029 (18)0.0064 (18)
C60.046 (3)0.045 (3)0.060 (2)0.004 (2)0.010 (2)0.001 (2)
C10.045 (2)0.045 (2)0.047 (2)0.010 (2)0.0011 (19)0.013 (2)
C50.059 (3)0.040 (2)0.061 (2)0.005 (2)0.011 (2)0.005 (2)
C80.045 (3)0.059 (3)0.055 (2)0.000 (2)0.009 (2)0.005 (2)
C130.062 (3)0.055 (3)0.083 (3)0.009 (2)0.020 (2)0.009 (2)
C120.046 (3)0.066 (3)0.092 (3)0.009 (2)0.014 (2)0.003 (3)
C110.053 (3)0.062 (3)0.063 (3)0.007 (2)0.014 (2)0.006 (2)
C100.068 (3)0.087 (3)0.078 (3)0.020 (3)0.019 (2)0.028 (3)
C90.057 (3)0.092 (4)0.081 (3)0.021 (3)0.014 (2)0.028 (3)
C30.050 (3)0.053 (3)0.040 (2)0.001 (2)0.0041 (18)0.0018 (19)
C70.063 (3)0.045 (2)0.071 (3)0.004 (2)0.010 (2)0.004 (2)
C40.049 (3)0.048 (3)0.046 (2)0.007 (2)0.0028 (19)0.005 (2)
C140.055 (3)0.042 (2)0.054 (2)0.001 (2)0.002 (2)0.004 (2)
C180.057 (3)0.049 (3)0.059 (2)0.012 (2)0.007 (2)0.001 (2)
C150.091 (4)0.047 (3)0.072 (3)0.010 (2)0.004 (2)0.007 (2)
C170.077 (3)0.060 (3)0.084 (3)0.006 (2)0.017 (2)0.014 (2)
C160.083 (3)0.055 (3)0.081 (3)0.010 (2)0.006 (3)0.009 (2)
O10.058 (2)0.0503 (18)0.081 (2)0.0048 (15)0.0197 (15)0.0022 (15)
C19A0.086 (11)0.065 (9)0.063 (9)0.033 (9)0.003 (7)0.006 (8)
C20A0.105 (10)0.102 (11)0.046 (7)0.048 (8)0.004 (7)0.011 (8)
C21A0.068 (8)0.080 (8)0.067 (9)0.033 (7)0.014 (8)0.004 (8)
C210.102 (9)0.098 (8)0.073 (9)0.032 (8)0.046 (8)0.015 (9)
C200.093 (9)0.106 (10)0.037 (7)0.046 (7)0.014 (7)0.012 (7)
C190.069 (10)0.071 (10)0.058 (7)0.017 (8)0.008 (6)0.015 (7)
C20B0.101 (10)0.079 (9)0.065 (10)0.031 (9)0.020 (9)0.003 (9)
C19B0.083 (10)0.095 (11)0.057 (9)0.039 (9)0.005 (9)0.014 (8)
C21B0.072 (10)0.081 (10)0.046 (8)0.025 (9)0.013 (7)0.015 (8)
Geometric parameters (Å, º) top
Cl1—C111.726 (2)C15—H15A0.9600
N1—C81.422 (3)C15—H15B0.9600
N1—C71.274 (4)C15—H15C0.9600
C2—C11.400 (5)C17—H17A0.9600
C2—C31.392 (4)C17—H17B0.9600
C2—C141.534 (4)C17—H17C0.9600
C6—C11.409 (5)C16—H16A0.9600
C6—C51.388 (4)C16—H16B0.9600
C6—C71.449 (5)C16—H16C0.9600
C1—O11.358 (4)O1—H10.84 (4)
C5—H50.9300C19A—H19A0.9600
C5—C41.370 (4)C19A—H19B0.9600
C8—C131.3900C19A—H19C0.9600
C8—C91.3900C20A—H20A0.9600
C13—H130.9300C20A—H20B0.9600
C13—C121.3900C20A—H20C0.9600
C12—H120.9300C21A—H21A0.9600
C12—C111.3900C21A—H21B0.9600
C11—C101.3900C21A—H21C0.9600
C10—H100.9300C21—H21D0.9600
C10—C91.3900C21—H21E0.9600
C9—H90.9300C21—H21F0.9600
C3—H30.9300C20—H20D0.9600
C3—C41.397 (5)C20—H20E0.9600
C7—H70.9300C20—H20F0.9600
C4—C181.531 (5)C19—H19D0.9600
C14—C151.536 (4)C19—H19E0.9600
C14—C171.534 (5)C19—H19F0.9600
C14—C161.538 (5)C20B—H20G0.9600
C18—C19A1.534 (7)C20B—H20H0.9600
C18—C20A1.524 (7)C20B—H20I0.9600
C18—C21A1.568 (7)C19B—H19G0.9600
C18—C211.535 (7)C19B—H19H0.9600
C18—C201.554 (7)C19B—H19I0.9600
C18—C191.534 (7)C21B—H21G0.9600
C18—C20B1.548 (7)C21B—H21H0.9600
C18—C19B1.520 (7)C21B—H21I0.9600
C18—C21B1.546 (7)
C7—N1—C8119.3 (3)H15B—C15—H15C109.5
C1—C2—C14122.3 (3)C14—C17—H17A109.5
C3—C2—C1116.0 (3)C14—C17—H17B109.5
C3—C2—C14121.7 (3)C14—C17—H17C109.5
C1—C6—C7121.5 (3)H17A—C17—H17B109.5
C5—C6—C1119.1 (3)H17A—C17—H17C109.5
C5—C6—C7119.3 (4)H17B—C17—H17C109.5
C2—C1—C6120.9 (3)C14—C16—H16A109.5
O1—C1—C2119.7 (3)C14—C16—H16B109.5
O1—C1—C6119.4 (3)C14—C16—H16C109.5
C6—C5—H5118.7H16A—C16—H16B109.5
C4—C5—C6122.5 (4)H16A—C16—H16C109.5
C4—C5—H5118.7H16B—C16—H16C109.5
C13—C8—N1116.9 (2)C1—O1—H1108 (3)
C13—C8—C9120.0C18—C19A—H19A109.5
C9—C8—N1123.1 (2)C18—C19A—H19B109.5
C8—C13—H13120.0C18—C19A—H19C109.5
C8—C13—C12120.0H19A—C19A—H19B109.5
C12—C13—H13120.0H19A—C19A—H19C109.5
C13—C12—H12120.0H19B—C19A—H19C109.5
C13—C12—C11120.0C18—C20A—H20A109.5
C11—C12—H12120.0C18—C20A—H20B109.5
C12—C11—Cl1120.85 (19)C18—C20A—H20C109.5
C10—C11—Cl1119.15 (19)H20A—C20A—H20B109.5
C10—C11—C12120.0H20A—C20A—H20C109.5
C11—C10—H10120.0H20B—C20A—H20C109.5
C9—C10—C11120.0C18—C21A—H21A109.5
C9—C10—H10120.0C18—C21A—H21B109.5
C8—C9—H9120.0C18—C21A—H21C109.5
C10—C9—C8120.0H21A—C21A—H21B109.5
C10—C9—H9120.0H21A—C21A—H21C109.5
C2—C3—H3117.4H21B—C21A—H21C109.5
C2—C3—C4125.1 (3)C18—C21—H21D109.5
C4—C3—H3117.4C18—C21—H21E109.5
N1—C7—C6124.3 (4)C18—C21—H21F109.5
N1—C7—H7117.8H21D—C21—H21E109.5
C6—C7—H7117.8H21D—C21—H21F109.5
C5—C4—C3116.2 (3)H21E—C21—H21F109.5
C5—C4—C18122.1 (3)C18—C20—H20D109.5
C3—C4—C18121.6 (3)C18—C20—H20E109.5
C2—C14—C15109.8 (3)C18—C20—H20F109.5
C2—C14—C16109.9 (3)H20D—C20—H20E109.5
C15—C14—C16109.7 (3)H20D—C20—H20F109.5
C17—C14—C2112.7 (3)H20E—C20—H20F109.5
C17—C14—C15107.4 (3)C18—C19—H19D109.5
C17—C14—C16107.3 (3)C18—C19—H19E109.5
C4—C18—C19A115.0 (8)C18—C19—H19F109.5
C4—C18—C21A106.5 (6)H19D—C19—H19E109.5
C4—C18—C21115.9 (6)H19D—C19—H19F109.5
C4—C18—C20107.7 (6)H19E—C19—H19F109.5
C4—C18—C19108.5 (7)C18—C20B—H20G109.5
C4—C18—C20B109.2 (7)C18—C20B—H20H109.5
C4—C18—C21B110.3 (8)C18—C20B—H20I109.5
C19A—C18—C21A104.2 (7)H20G—C20B—H20H109.5
C20A—C18—C4111.0 (6)H20G—C20B—H20I109.5
C20A—C18—C19A111.5 (7)H20H—C20B—H20I109.5
C20A—C18—C21A108.0 (7)C18—C19B—H19G109.5
C21—C18—C20108.0 (6)C18—C19B—H19H109.5
C19—C18—C21109.1 (7)C18—C19B—H19I109.5
C19—C18—C20107.4 (6)H19G—C19B—H19H109.5
C19B—C18—C4110.3 (7)H19G—C19B—H19I109.5
C19B—C18—C20B109.6 (8)H19H—C19B—H19I109.5
C19B—C18—C21B110.7 (8)C18—C21B—H21G109.5
C21B—C18—C20B106.7 (7)C18—C21B—H21H109.5
C14—C15—H15A109.5C18—C21B—H21I109.5
C14—C15—H15B109.5H21G—C21B—H21H109.5
C14—C15—H15C109.5H21G—C21B—H21I109.5
H15A—C15—H15B109.5H21H—C21B—H21I109.5
H15A—C15—H15C109.5
Cl1—C11—C10—C9179.77 (17)C13—C12—C11—Cl1179.76 (18)
N1—C8—C13—C12178.8 (2)C13—C12—C11—C100.0
N1—C8—C9—C10178.7 (2)C12—C11—C10—C90.0
C2—C3—C4—C50.9 (5)C11—C10—C9—C80.0
C2—C3—C4—C18179.5 (3)C9—C8—C13—C120.0
C6—C5—C4—C30.5 (5)C3—C2—C1—C60.6 (5)
C6—C5—C4—C18179.9 (3)C3—C2—C1—O1179.0 (3)
C1—C2—C3—C40.4 (5)C3—C2—C14—C15120.7 (3)
C1—C2—C14—C1559.2 (4)C3—C2—C14—C171.1 (5)
C1—C2—C14—C17178.9 (3)C3—C2—C14—C16118.6 (3)
C1—C2—C14—C1661.5 (4)C3—C4—C18—C19A154.4 (8)
C1—C6—C5—C40.4 (5)C3—C4—C18—C20A77.8 (10)
C1—C6—C7—N11.3 (6)C3—C4—C18—C21A39.5 (8)
C5—C6—C1—C21.0 (5)C3—C4—C18—C213.7 (9)
C5—C6—C1—O1178.6 (3)C3—C4—C18—C20117.3 (7)
C5—C6—C7—N1179.7 (4)C3—C4—C18—C19126.8 (7)
C5—C4—C18—C19A26.0 (9)C3—C4—C18—C20B152.7 (10)
C5—C4—C18—C20A101.7 (10)C3—C4—C18—C19B86.8 (11)
C5—C4—C18—C21A140.9 (7)C3—C4—C18—C21B35.8 (10)
C5—C4—C18—C21176.7 (9)C7—N1—C8—C13150.7 (3)
C5—C4—C18—C2062.3 (8)C7—N1—C8—C928.1 (4)
C5—C4—C18—C1953.6 (8)C7—C6—C1—C2177.9 (3)
C5—C4—C18—C20B26.8 (10)C7—C6—C1—O12.5 (5)
C5—C4—C18—C19B93.6 (11)C7—C6—C5—C4178.5 (3)
C5—C4—C18—C21B143.8 (10)C14—C2—C1—C6179.5 (3)
C8—N1—C7—C6179.9 (3)C14—C2—C1—O11.0 (5)
C8—C13—C12—C110.0C14—C2—C3—C4179.6 (3)
C13—C8—C9—C100.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (4)1.84 (4)2.612 (4)151 (4)
(E)-2,4-Di-tert-butyl-6-{[(4-chlorophenyl)imino]methyl}phenol (2_250K) top
Crystal data top
C21H26ClNOF(000) = 736
Mr = 343.88Dx = 1.181 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.8739 (13) ÅCell parameters from 1038 reflections
b = 10.4846 (7) Åθ = 2.8–30.5°
c = 10.3312 (6) ŵ = 0.20 mm1
β = 92.296 (5)°T = 250 K
V = 1934.5 (2) Å3Block, yellow
Z = 40.33 × 0.28 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
2688 independent reflections
Radiation source: Enhance (Mo) X-ray Source1737 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 16.1511 pixels mm-1θmax = 23.0°, θmin = 2.8°
ω scansh = 1919
Absorption correction: multi-scan
[CrysAlis PRO (Oxford Diffraction, 2010), based on expressions derived by Clark & Reid (1995)]
k = 711
Tmin = 0.651, Tmax = 1.000l = 811
5874 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.0321P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2688 reflectionsΔρmax = 0.16 e Å3
277 parametersΔρmin = 0.19 e Å3
181 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.13193 (6)0.94179 (11)0.78151 (10)0.0691 (4)
N10.88654 (16)0.7052 (3)0.4607 (3)0.0459 (8)
C20.71228 (19)0.5467 (3)0.2106 (3)0.0349 (9)
C60.77403 (19)0.7227 (4)0.3262 (3)0.0418 (9)
C10.76985 (19)0.5921 (3)0.2939 (3)0.0386 (9)
C50.71951 (19)0.8063 (3)0.2757 (3)0.0434 (10)
H50.7225140.8930050.2983500.052*
C80.94377 (11)0.7642 (2)0.5401 (2)0.0432 (10)
C131.01412 (13)0.70754 (19)0.5448 (2)0.0538 (11)
H131.0223300.6323770.4978820.065*
C121.07234 (10)0.7620 (2)0.6190 (2)0.0542 (11)
H121.1199150.7236600.6222220.065*
C111.06020 (11)0.8731 (2)0.6884 (2)0.0464 (10)
C100.98984 (14)0.9298 (2)0.6837 (2)0.0603 (12)
H100.9816361.0050070.7306460.072*
C90.93163 (10)0.8754 (2)0.6095 (2)0.0596 (12)
H90.8840510.9137260.6063060.072*
C30.6605 (2)0.6363 (4)0.1633 (3)0.0405 (9)
H30.6218390.6073660.1062420.049*
C70.8341 (2)0.7737 (4)0.4093 (3)0.0479 (10)
H70.8345310.8618020.4262990.057*
C40.66174 (19)0.7664 (3)0.1944 (3)0.0387 (9)
C140.7063 (2)0.4057 (3)0.1714 (3)0.0420 (9)
C180.6015 (2)0.8594 (3)0.1406 (3)0.0442 (10)
C150.6983 (2)0.3227 (4)0.2931 (3)0.0573 (12)
H15A0.6520230.3439920.3340060.086*
H15B0.7403190.3383260.3534030.086*
H15C0.6975700.2333420.2686180.086*
C170.6382 (2)0.3786 (4)0.0810 (3)0.0601 (12)
H17A0.6423600.4268880.0015360.090*
H17B0.5929130.4035050.1231600.090*
H17C0.6361440.2882380.0610510.090*
C160.7765 (2)0.3644 (4)0.1009 (3)0.0562 (11)
H16A0.8204290.3752230.1581440.084*
H16B0.7816060.4165370.0241310.084*
H16C0.7718770.2755300.0758670.084*
O10.82155 (14)0.5102 (2)0.3454 (2)0.0505 (7)
H10.854 (2)0.560 (3)0.393 (3)0.061*
C19A0.6145 (15)0.9993 (10)0.177 (3)0.071 (5)0.186 (3)
H19A0.6254351.0057220.2698770.107*0.186 (3)
H19B0.5699451.0484480.1545590.107*0.186 (3)
H19C0.6564661.0324800.1309860.107*0.186 (3)
C20A0.5964 (16)0.848 (3)0.0077 (8)0.062 (5)0.186 (3)
H20A0.6427550.8775330.0431300.093*0.186 (3)
H20B0.5550900.8992990.0419140.093*0.186 (3)
H20C0.5881990.7593550.0317620.093*0.186 (3)
C21A0.5258 (8)0.817 (3)0.191 (3)0.072 (5)0.186 (3)
H21A0.5106070.7374440.1491710.108*0.186 (3)
H21B0.4884920.8817580.1720630.108*0.186 (3)
H21C0.5306450.8035030.2840280.108*0.186 (3)
C210.5267 (5)0.7884 (9)0.1091 (14)0.067 (3)0.430 (3)
H21D0.5336280.7278400.0396330.101*0.430 (3)
H21E0.4884070.8496540.0824730.101*0.430 (3)
H21F0.5112350.7433470.1855980.101*0.430 (3)
C200.6277 (7)0.9232 (14)0.0188 (10)0.078 (4)0.430 (3)
H20D0.6739490.9687840.0383040.117*0.430 (3)
H20E0.5897040.9826360.0133680.117*0.430 (3)
H20F0.6360220.8589120.0466400.117*0.430 (3)
C190.5826 (7)0.9595 (11)0.2424 (10)0.058 (3)0.430 (3)
H19D0.5697570.9171140.3219510.086*0.430 (3)
H19E0.5405061.0105080.2105280.086*0.430 (3)
H19F0.6256441.0143510.2592220.086*0.430 (3)
C20B0.6455 (6)0.9763 (10)0.0889 (13)0.070 (4)0.384 (3)
H20G0.6742351.0155770.1598520.106*0.384 (3)
H20H0.6103551.0379860.0515200.106*0.384 (3)
H20I0.6790440.9481260.0232440.106*0.384 (3)
C19B0.5531 (8)0.9061 (16)0.2476 (10)0.067 (4)0.384 (3)
H19G0.5224300.8364180.2770770.100*0.384 (3)
H19H0.5211450.9746290.2151080.100*0.384 (3)
H19I0.5848080.9371310.3192600.100*0.384 (3)
C21B0.5564 (8)0.8076 (12)0.0236 (12)0.076 (4)0.384 (3)
H21G0.5902890.7772560.0406290.114*0.384 (3)
H21H0.5250930.8748640.0136330.114*0.384 (3)
H21I0.5250610.7377190.0506790.114*0.384 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0589 (7)0.0702 (9)0.0765 (7)0.0139 (7)0.0192 (5)0.0017 (6)
N10.0395 (18)0.046 (2)0.0517 (18)0.0014 (18)0.0062 (15)0.0021 (15)
C20.038 (2)0.035 (2)0.0313 (18)0.000 (2)0.0008 (16)0.0022 (16)
C60.044 (2)0.038 (2)0.042 (2)0.002 (2)0.0059 (18)0.0013 (18)
C10.039 (2)0.038 (2)0.039 (2)0.005 (2)0.0005 (17)0.0088 (18)
C50.050 (2)0.031 (2)0.048 (2)0.004 (2)0.0048 (19)0.0024 (17)
C80.038 (2)0.046 (3)0.045 (2)0.000 (2)0.0004 (17)0.0026 (19)
C130.050 (3)0.047 (3)0.064 (2)0.011 (2)0.009 (2)0.002 (2)
C120.037 (2)0.062 (3)0.063 (2)0.007 (2)0.0048 (19)0.001 (2)
C110.044 (2)0.050 (3)0.045 (2)0.002 (2)0.0018 (17)0.0043 (19)
C100.059 (3)0.068 (3)0.053 (2)0.018 (3)0.010 (2)0.018 (2)
C90.041 (2)0.078 (3)0.059 (2)0.015 (2)0.008 (2)0.020 (2)
C30.043 (2)0.045 (2)0.0328 (18)0.001 (2)0.0015 (16)0.0032 (17)
C70.048 (2)0.041 (2)0.054 (2)0.004 (2)0.004 (2)0.0044 (19)
C40.043 (2)0.040 (2)0.0336 (19)0.005 (2)0.0005 (16)0.0008 (17)
C140.047 (2)0.039 (2)0.0393 (19)0.001 (2)0.0009 (17)0.0010 (17)
C180.047 (2)0.045 (2)0.040 (2)0.015 (2)0.0019 (18)0.0025 (19)
C150.077 (3)0.042 (3)0.053 (2)0.008 (2)0.007 (2)0.0074 (19)
C170.071 (3)0.043 (3)0.066 (2)0.007 (2)0.009 (2)0.013 (2)
C160.065 (3)0.047 (3)0.058 (2)0.006 (2)0.009 (2)0.005 (2)
O10.0480 (17)0.0390 (17)0.0633 (17)0.0041 (14)0.0135 (13)0.0005 (13)
C19A0.073 (10)0.093 (11)0.049 (9)0.040 (9)0.004 (8)0.000 (9)
C20A0.061 (11)0.077 (11)0.050 (9)0.038 (10)0.011 (9)0.008 (9)
C21A0.057 (10)0.100 (11)0.060 (10)0.035 (9)0.014 (9)0.008 (10)
C210.052 (6)0.079 (7)0.070 (7)0.027 (6)0.019 (6)0.021 (7)
C200.088 (8)0.108 (9)0.038 (6)0.044 (7)0.011 (6)0.029 (6)
C190.047 (8)0.073 (8)0.053 (6)0.017 (6)0.014 (5)0.012 (6)
C20B0.079 (8)0.085 (8)0.048 (7)0.039 (7)0.016 (6)0.023 (6)
C19B0.047 (9)0.097 (10)0.057 (6)0.029 (8)0.008 (6)0.006 (7)
C21B0.080 (9)0.088 (8)0.058 (7)0.044 (7)0.025 (7)0.019 (7)
Geometric parameters (Å, º) top
Cl1—C111.7285 (18)C15—H15A0.9700
N1—C81.426 (3)C15—H15B0.9700
N1—C71.280 (4)C15—H15C0.9700
C2—C11.398 (4)C17—H17A0.9700
C2—C31.394 (4)C17—H17B0.9700
C2—C141.536 (5)C17—H17C0.9700
C6—C11.411 (5)C16—H16A0.9700
C6—C51.396 (4)C16—H16B0.9700
C6—C71.450 (4)C16—H16C0.9700
C1—O11.354 (4)O1—H10.91 (3)
C5—H50.9400C19A—H19A0.9700
C5—C41.370 (4)C19A—H19B0.9700
C8—C131.3900C19A—H19C0.9700
C8—C91.3900C20A—H20A0.9700
C13—H130.9400C20A—H20B0.9700
C13—C121.3900C20A—H20C0.9700
C12—H120.9400C21A—H21A0.9700
C12—C111.3900C21A—H21B0.9700
C11—C101.3900C21A—H21C0.9700
C10—H100.9400C21—H21D0.9700
C10—C91.3900C21—H21E0.9700
C9—H90.9400C21—H21F0.9700
C3—H30.9400C20—H20D0.9700
C3—C41.401 (5)C20—H20E0.9700
C7—H70.9400C20—H20F0.9700
C4—C181.540 (5)C19—H19D0.9700
C14—C151.541 (4)C19—H19E0.9700
C14—C171.531 (4)C19—H19F0.9700
C14—C161.539 (5)C20B—H20G0.9700
C18—C19A1.531 (8)C20B—H20H0.9700
C18—C20A1.536 (7)C20B—H20I0.9700
C18—C21A1.537 (8)C19B—H19G0.9700
C18—C211.554 (6)C19B—H19H0.9700
C18—C201.515 (6)C19B—H19I0.9700
C18—C191.534 (6)C21B—H21G0.9700
C18—C20B1.561 (7)C21B—H21H0.9700
C18—C19B1.512 (6)C21B—H21I0.9700
C18—C21B1.526 (6)
C7—N1—C8119.5 (3)H15B—C15—H15C109.5
C1—C2—C14122.1 (3)C14—C17—H17A109.5
C3—C2—C1116.7 (3)C14—C17—H17B109.5
C3—C2—C14121.2 (3)C14—C17—H17C109.5
C1—C6—C7121.9 (3)H17A—C17—H17B109.5
C5—C6—C1119.4 (3)H17A—C17—H17C109.5
C5—C6—C7118.6 (3)H17B—C17—H17C109.5
C2—C1—C6120.4 (3)C14—C16—H16A109.5
O1—C1—C2120.0 (3)C14—C16—H16B109.5
O1—C1—C6119.6 (3)C14—C16—H16C109.5
C6—C5—H5118.8H16A—C16—H16B109.5
C4—C5—C6122.4 (3)H16A—C16—H16C109.5
C4—C5—H5118.8H16B—C16—H16C109.5
C13—C8—N1117.5 (2)C1—O1—H1105 (2)
C13—C8—C9120.0C18—C19A—H19A109.5
C9—C8—N1122.5 (2)C18—C19A—H19B109.5
C8—C13—H13120.0C18—C19A—H19C109.5
C8—C13—C12120.0H19A—C19A—H19B109.5
C12—C13—H13120.0H19A—C19A—H19C109.5
C13—C12—H12120.0H19B—C19A—H19C109.5
C11—C12—C13120.0C18—C20A—H20A109.5
C11—C12—H12120.0C18—C20A—H20B109.5
C12—C11—Cl1120.56 (15)C18—C20A—H20C109.5
C10—C11—Cl1119.44 (15)H20A—C20A—H20B109.5
C10—C11—C12120.0H20A—C20A—H20C109.5
C11—C10—H10120.0H20B—C20A—H20C109.5
C11—C10—C9120.0C18—C21A—H21A109.5
C9—C10—H10120.0C18—C21A—H21B109.5
C8—C9—H9120.0C18—C21A—H21C109.5
C10—C9—C8120.0H21A—C21A—H21B109.5
C10—C9—H9120.0H21A—C21A—H21C109.5
C2—C3—H3117.6H21B—C21A—H21C109.5
C2—C3—C4124.8 (3)C18—C21—H21D109.5
C4—C3—H3117.6C18—C21—H21E109.5
N1—C7—C6123.5 (4)C18—C21—H21F109.5
N1—C7—H7118.3H21D—C21—H21E109.5
C6—C7—H7118.3H21D—C21—H21F109.5
C5—C4—C3116.3 (3)H21E—C21—H21F109.5
C5—C4—C18121.8 (3)C18—C20—H20D109.5
C3—C4—C18121.9 (3)C18—C20—H20E109.5
C2—C14—C15109.7 (3)C18—C20—H20F109.5
C2—C14—C16110.3 (3)H20D—C20—H20E109.5
C17—C14—C2112.6 (3)H20D—C20—H20F109.5
C17—C14—C15107.2 (3)H20E—C20—H20F109.5
C17—C14—C16107.6 (3)C18—C19—H19D109.5
C16—C14—C15109.4 (3)C18—C19—H19E109.5
C4—C18—C21110.8 (5)C18—C19—H19F109.5
C4—C18—C20B105.5 (5)H19D—C19—H19E109.5
C19A—C18—C4114.9 (9)H19D—C19—H19F109.5
C19A—C18—C20A109.0 (9)H19E—C19—H19F109.5
C19A—C18—C21A108.8 (9)C18—C20B—H20G109.5
C20A—C18—C4108.8 (10)C18—C20B—H20H109.5
C20A—C18—C21A107.3 (8)C18—C20B—H20I109.5
C21A—C18—C4107.7 (9)H20G—C20B—H20H109.5
C20—C18—C4110.2 (5)H20G—C20B—H20I109.5
C20—C18—C21109.2 (5)H20H—C20B—H20I109.5
C20—C18—C19110.6 (6)C18—C19B—H19G109.5
C19—C18—C4110.9 (5)C18—C19B—H19H109.5
C19—C18—C21105.1 (6)C18—C19B—H19I109.5
C19B—C18—C4110.7 (6)H19G—C19B—H19H109.5
C19B—C18—C20B107.8 (6)H19G—C19B—H19I109.5
C19B—C18—C21B113.2 (6)H19H—C19B—H19I109.5
C21B—C18—C4113.6 (5)C18—C21B—H21G109.5
C21B—C18—C20B105.4 (6)C18—C21B—H21H109.5
C14—C15—H15A109.5C18—C21B—H21I109.5
C14—C15—H15B109.5H21G—C21B—H21H109.5
C14—C15—H15C109.5H21G—C21B—H21I109.5
H15A—C15—H15B109.5H21H—C21B—H21I109.5
H15A—C15—H15C109.5
Cl1—C11—C10—C9179.81 (17)C13—C12—C11—Cl1179.81 (17)
N1—C8—C13—C12179.0 (2)C13—C12—C11—C100.0
N1—C8—C9—C10179.0 (2)C12—C11—C10—C90.0
C2—C3—C4—C51.2 (5)C11—C10—C9—C80.0
C2—C3—C4—C18178.6 (3)C9—C8—C13—C120.0
C6—C5—C4—C30.5 (5)C3—C2—C1—C60.3 (5)
C6—C5—C4—C18179.4 (3)C3—C2—C1—O1179.0 (3)
C1—C2—C3—C40.8 (5)C3—C2—C14—C15120.7 (3)
C1—C2—C14—C1560.0 (4)C3—C2—C14—C171.4 (4)
C1—C2—C14—C17179.3 (3)C3—C2—C14—C16118.8 (3)
C1—C2—C14—C1660.5 (4)C3—C4—C18—C19A176.1 (13)
C1—C6—C5—C40.6 (5)C3—C4—C18—C20A53.6 (13)
C1—C6—C7—N11.1 (6)C3—C4—C18—C21A62.4 (13)
C5—C6—C1—C21.0 (5)C3—C4—C18—C2126.7 (7)
C5—C6—C1—O1178.3 (3)C3—C4—C18—C2094.2 (8)
C5—C6—C7—N1179.7 (3)C3—C4—C18—C19143.0 (6)
C5—C4—C18—C19A4.0 (13)C3—C4—C18—C20B132.1 (6)
C5—C4—C18—C20A126.5 (13)C3—C4—C18—C19B111.5 (8)
C5—C4—C18—C21A117.4 (13)C3—C4—C18—C21B17.1 (9)
C5—C4—C18—C21153.1 (6)C7—N1—C8—C13150.8 (3)
C5—C4—C18—C2085.9 (8)C7—N1—C8—C928.2 (4)
C5—C4—C18—C1936.8 (7)C7—C6—C1—C2178.2 (3)
C5—C4—C18—C20B48.1 (7)C7—C6—C1—O12.5 (5)
C5—C4—C18—C19B68.3 (8)C7—C6—C5—C4178.7 (3)
C5—C4—C18—C21B163.0 (8)C14—C2—C1—C6179.1 (3)
C8—N1—C7—C6179.3 (3)C14—C2—C1—O11.7 (5)
C8—C13—C12—C110.0C14—C2—C3—C4179.8 (3)
C13—C8—C9—C100.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.91 (3)1.76 (4)2.615 (4)155 (3)
(E)-2,4-Di-tert-butyl-6-{[(4-chlorophenyl)imino]methyl}phenol (2_200K) top
Crystal data top
C21H26ClNOF(000) = 736
Mr = 343.88Dx = 1.193 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.8132 (12) ÅCell parameters from 3727 reflections
b = 10.4564 (6) Åθ = 2.8–32.7°
c = 10.2814 (6) ŵ = 0.21 mm1
β = 91.965 (5)°T = 200 K
V = 1913.9 (2) Å3Block, yellow
Z = 40.33 × 0.28 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
2833 independent reflections
Radiation source: Enhance (Mo) X-ray Source2216 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 16.1511 pixels mm-1θmax = 23.5°, θmin = 2.8°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.947, Tmax = 1.000l = 1111
11973 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0449P)2 + 1.0995P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2833 reflectionsΔρmax = 0.26 e Å3
277 parametersΔρmin = 0.23 e Å3
163 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Occupancies of the disordered tBu carbon atoms refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.13257 (4)0.94230 (7)0.78211 (7)0.0522 (3)
N10.88679 (12)0.7051 (2)0.4613 (2)0.0366 (6)
C20.71237 (14)0.5467 (2)0.2096 (2)0.0279 (6)
C60.77395 (14)0.7224 (2)0.3267 (2)0.0320 (6)
C10.76975 (14)0.5920 (2)0.2943 (2)0.0298 (6)
C50.71934 (15)0.8066 (2)0.2762 (2)0.0355 (7)
H50.7223720.8944240.2993160.043*
C80.94401 (8)0.76410 (16)0.54074 (15)0.0336 (6)
C131.01456 (9)0.70715 (13)0.54523 (16)0.0397 (7)
H131.0229170.6308900.4976330.048*
C121.07287 (7)0.76177 (16)0.61938 (17)0.0407 (7)
H121.1210890.7228390.6224540.049*
C111.06064 (8)0.87334 (16)0.68903 (15)0.0362 (7)
C100.99009 (10)0.93030 (14)0.68453 (16)0.0449 (7)
H100.9817351.0065570.7321320.054*
C90.93178 (7)0.87568 (16)0.61039 (17)0.0451 (8)
H90.8835620.9146100.6073130.054*
C30.66019 (14)0.6359 (2)0.1628 (2)0.0313 (6)
H30.6209540.6064070.1055600.038*
C70.83424 (15)0.7737 (3)0.4096 (2)0.0383 (7)
H70.8347620.8630130.4263780.046*
C40.66142 (14)0.7664 (2)0.1943 (2)0.0307 (6)
C140.70657 (15)0.4046 (2)0.1712 (2)0.0332 (6)
C180.60133 (15)0.8594 (2)0.1404 (2)0.0367 (7)
C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)
H15A0.6508910.3439820.3342740.066*
H15B0.7403160.3382510.3543450.066*
H15C0.6973590.2316020.2685410.066*
C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)
H17A0.6440000.4256860.0015600.070*
H17B0.5926810.4034780.1211750.070*
H17C0.6366480.2857610.0597650.070*
C160.77756 (16)0.3643 (3)0.0999 (3)0.0428 (7)
H16A0.8219720.3779030.1571110.064*
H16B0.7818990.4158480.0208500.064*
H16C0.7739420.2736710.0763220.064*
O10.82194 (11)0.50987 (17)0.34582 (18)0.0402 (5)
H10.8546 (16)0.558 (3)0.393 (3)0.048*
C19A0.5841 (6)0.9688 (8)0.2335 (9)0.056 (2)0.397 (3)
H19A0.5781960.9345410.3212710.084*0.397 (3)
H19B0.5374771.0113300.2041440.084*0.397 (3)
H19C0.6254561.0305470.2346490.084*0.397 (3)
C20A0.6207 (5)0.9049 (9)0.0084 (6)0.0584 (17)0.397 (3)
H20A0.6682990.9519780.0140290.088*0.397 (3)
H20B0.5808670.9613180.0260600.088*0.397 (3)
H20C0.6257930.8313090.0497330.088*0.397 (3)
C21A0.5242 (4)0.7860 (7)0.1286 (9)0.0549 (18)0.397 (3)
H21A0.5284050.7150120.0670220.082*0.397 (3)
H21B0.4847660.8448510.0973090.082*0.397 (3)
H21C0.5114890.7524890.2140620.082*0.397 (3)
C210.5428 (6)0.7975 (9)0.0490 (11)0.059 (2)0.352 (3)
H21D0.5678940.7574030.0239630.089*0.352 (3)
H21E0.5077260.8628520.0157340.089*0.352 (3)
H21F0.5151840.7323020.0963810.089*0.352 (3)
C200.6425 (5)0.9631 (9)0.0597 (10)0.0515 (19)0.352 (3)
H20D0.6798511.0070130.1158570.077*0.352 (3)
H20E0.6058411.0252850.0250900.077*0.352 (3)
H20F0.6677250.9219870.0125720.077*0.352 (3)
C190.5651 (7)0.9280 (11)0.2518 (9)0.052 (2)0.352 (3)
H19D0.5395010.8657240.3059420.078*0.352 (3)
H19E0.5286180.9903670.2169560.078*0.352 (3)
H19F0.6038810.9724150.3045590.078*0.352 (3)
C20B0.6386 (7)0.9930 (8)0.1258 (13)0.058 (2)0.251 (3)
H20G0.6536611.0259700.2119760.086*0.251 (3)
H20H0.6026261.0519800.0835680.086*0.251 (3)
H20I0.6829660.9851010.0725600.086*0.251 (3)
C19B0.5392 (6)0.8693 (14)0.2343 (11)0.056 (2)0.251 (3)
H19G0.5126830.7873520.2382680.085*0.251 (3)
H19H0.5039380.9363040.2053440.085*0.251 (3)
H19I0.5602310.8908570.3208950.085*0.251 (3)
C21B0.5742 (8)0.8229 (13)0.0027 (8)0.052 (2)0.251 (3)
H21G0.6175960.8110440.0521230.078*0.251 (3)
H21H0.5421800.8912350.0337170.078*0.251 (3)
H21I0.5454010.7431860.0055360.078*0.251 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0446 (5)0.0534 (5)0.0575 (5)0.0118 (4)0.0160 (3)0.0012 (4)
N10.0321 (13)0.0390 (13)0.0384 (12)0.0005 (11)0.0057 (10)0.0001 (10)
C20.0293 (15)0.0303 (14)0.0241 (12)0.0015 (12)0.0004 (11)0.0034 (11)
C60.0318 (15)0.0323 (14)0.0317 (13)0.0003 (12)0.0022 (11)0.0006 (12)
C10.0280 (14)0.0319 (14)0.0294 (13)0.0044 (12)0.0004 (11)0.0068 (11)
C50.0398 (17)0.0264 (14)0.0400 (15)0.0036 (13)0.0049 (13)0.0008 (12)
C80.0290 (15)0.0388 (15)0.0327 (14)0.0008 (13)0.0024 (11)0.0000 (12)
C130.0360 (17)0.0376 (15)0.0448 (16)0.0061 (14)0.0072 (13)0.0049 (13)
C120.0292 (16)0.0444 (17)0.0483 (16)0.0078 (14)0.0039 (13)0.0035 (14)
C110.0334 (16)0.0408 (16)0.0339 (14)0.0063 (13)0.0039 (12)0.0043 (13)
C100.0424 (18)0.0496 (18)0.0421 (16)0.0099 (15)0.0080 (13)0.0145 (14)
C90.0328 (17)0.0578 (19)0.0444 (16)0.0137 (15)0.0052 (13)0.0134 (15)
C30.0307 (15)0.0372 (15)0.0257 (13)0.0004 (12)0.0018 (11)0.0005 (11)
C70.0397 (17)0.0320 (14)0.0429 (16)0.0021 (13)0.0043 (13)0.0009 (13)
C40.0325 (15)0.0322 (14)0.0273 (13)0.0044 (12)0.0021 (11)0.0013 (11)
C140.0362 (16)0.0298 (14)0.0336 (14)0.0008 (12)0.0005 (12)0.0004 (12)
C180.0394 (17)0.0371 (15)0.0333 (14)0.0111 (13)0.0036 (12)0.0019 (12)
C150.055 (2)0.0340 (15)0.0423 (16)0.0049 (15)0.0023 (14)0.0032 (13)
C170.0493 (19)0.0377 (16)0.0519 (17)0.0046 (15)0.0081 (14)0.0083 (14)
C160.0474 (18)0.0367 (15)0.0444 (16)0.0057 (14)0.0038 (14)0.0038 (13)
O10.0377 (12)0.0338 (10)0.0482 (11)0.0038 (9)0.0120 (9)0.0007 (9)
C19A0.055 (4)0.063 (4)0.049 (3)0.028 (4)0.005 (3)0.001 (4)
C20A0.062 (4)0.071 (4)0.042 (3)0.030 (3)0.006 (3)0.008 (3)
C21A0.052 (4)0.059 (4)0.053 (4)0.022 (3)0.012 (3)0.001 (3)
C210.063 (4)0.065 (4)0.049 (4)0.028 (4)0.022 (4)0.003 (4)
C200.058 (4)0.067 (4)0.030 (4)0.031 (3)0.006 (3)0.012 (3)
C190.048 (5)0.064 (5)0.044 (3)0.024 (4)0.003 (3)0.007 (4)
C20B0.060 (4)0.064 (4)0.048 (4)0.026 (4)0.009 (3)0.007 (4)
C19B0.054 (5)0.067 (5)0.048 (4)0.026 (4)0.002 (4)0.005 (4)
C21B0.056 (4)0.062 (4)0.038 (4)0.028 (4)0.007 (3)0.004 (4)
Geometric parameters (Å, º) top
Cl1—C111.7302 (13)C15—H15A0.9800
N1—C81.425 (2)C15—H15B0.9800
N1—C71.280 (3)C15—H15C0.9800
C2—C11.402 (3)C17—H17A0.9800
C2—C31.391 (3)C17—H17B0.9800
C2—C141.540 (3)C17—H17C0.9800
C6—C11.405 (3)C16—H16A0.9800
C6—C51.398 (3)C16—H16B0.9800
C6—C71.450 (4)C16—H16C0.9800
C1—O11.360 (3)O1—H10.90 (3)
C5—H50.9500C19A—H19A0.9800
C5—C41.375 (3)C19A—H19B0.9800
C8—C131.3900C19A—H19C0.9800
C8—C91.3900C20A—H20A0.9800
C13—H130.9500C20A—H20B0.9800
C13—C121.3900C20A—H20C0.9800
C12—H120.9500C21A—H21A0.9800
C12—C111.3900C21A—H21B0.9800
C11—C101.3900C21A—H21C0.9800
C10—H100.9500C21—H21D0.9800
C10—C91.3900C21—H21E0.9800
C9—H90.9500C21—H21F0.9800
C3—H30.9500C20—H20D0.9800
C3—C41.402 (4)C20—H20E0.9800
C7—H70.9500C20—H20F0.9800
C4—C181.535 (3)C19—H19D0.9800
C14—C151.533 (4)C19—H19E0.9800
C14—C171.532 (4)C19—H19F0.9800
C14—C161.542 (4)C20B—H20G0.9800
C18—C19A1.530 (6)C20B—H20H0.9800
C18—C20A1.490 (6)C20B—H20I0.9800
C18—C21A1.574 (6)C19B—H19G0.9800
C18—C211.524 (6)C19B—H19H0.9800
C18—C201.564 (6)C19B—H19I0.9800
C18—C191.515 (6)C21B—H21G0.9800
C18—C20B1.556 (7)C21B—H21H0.9800
C18—C19B1.498 (7)C21B—H21I0.9800
C18—C21B1.528 (6)
C7—N1—C8119.6 (2)H15B—C15—H15C109.5
C1—C2—C14121.8 (2)C14—C17—H17A109.5
C3—C2—C1116.9 (2)C14—C17—H17B109.5
C3—C2—C14121.4 (2)C14—C17—H17C109.5
C1—C6—C7122.0 (2)H17A—C17—H17B109.5
C5—C6—C1119.5 (2)H17A—C17—H17C109.5
C5—C6—C7118.5 (2)H17B—C17—H17C109.5
C2—C1—C6120.5 (2)C14—C16—H16A109.5
O1—C1—C2120.2 (2)C14—C16—H16B109.5
O1—C1—C6119.4 (2)C14—C16—H16C109.5
C6—C5—H5118.9H16A—C16—H16B109.5
C4—C5—C6122.2 (2)H16A—C16—H16C109.5
C4—C5—H5118.9H16B—C16—H16C109.5
C13—C8—N1117.49 (14)C1—O1—H1106.1 (18)
C13—C8—C9120.0C18—C19A—H19A109.5
C9—C8—N1122.50 (14)C18—C19A—H19B109.5
C8—C13—H13120.0C18—C19A—H19C109.5
C8—C13—C12120.0H19A—C19A—H19B109.5
C12—C13—H13120.0H19A—C19A—H19C109.5
C13—C12—H12120.0H19B—C19A—H19C109.5
C11—C12—C13120.0C18—C20A—H20A109.5
C11—C12—H12120.0C18—C20A—H20B109.5
C12—C11—Cl1120.57 (10)C18—C20A—H20C109.5
C12—C11—C10120.0H20A—C20A—H20B109.5
C10—C11—Cl1119.43 (10)H20A—C20A—H20C109.5
C11—C10—H10120.0H20B—C20A—H20C109.5
C9—C10—C11120.0C18—C21A—H21A109.5
C9—C10—H10120.0C18—C21A—H21B109.5
C8—C9—H9120.0C18—C21A—H21C109.5
C10—C9—C8120.0H21A—C21A—H21B109.5
C10—C9—H9120.0H21A—C21A—H21C109.5
C2—C3—H3117.7H21B—C21A—H21C109.5
C2—C3—C4124.6 (2)C18—C21—H21D109.5
C4—C3—H3117.7C18—C21—H21E109.5
N1—C7—C6123.6 (2)C18—C21—H21F109.5
N1—C7—H7118.2H21D—C21—H21E109.5
C6—C7—H7118.2H21D—C21—H21F109.5
C5—C4—C3116.3 (2)H21E—C21—H21F109.5
C5—C4—C18121.8 (2)C18—C20—H20D109.5
C3—C4—C18121.8 (2)C18—C20—H20E109.5
C2—C14—C16109.7 (2)C18—C20—H20F109.5
C15—C14—C2109.9 (2)H20D—C20—H20E109.5
C15—C14—C16110.0 (2)H20D—C20—H20F109.5
C17—C14—C2112.4 (2)H20E—C20—H20F109.5
C17—C14—C15107.5 (2)C18—C19—H19D109.5
C17—C14—C16107.3 (2)C18—C19—H19E109.5
C4—C18—C21A108.4 (3)C18—C19—H19F109.5
C4—C18—C20107.3 (4)H19D—C19—H19E109.5
C4—C18—C20B108.0 (5)H19D—C19—H19F109.5
C19A—C18—C4113.6 (5)H19E—C19—H19F109.5
C19A—C18—C21A102.6 (5)C18—C20B—H20G109.5
C20A—C18—C4110.5 (4)C18—C20B—H20H109.5
C20A—C18—C19A112.9 (5)C18—C20B—H20I109.5
C20A—C18—C21A108.3 (5)H20G—C20B—H20H109.5
C21—C18—C4114.1 (4)H20G—C20B—H20I109.5
C21—C18—C20106.9 (5)H20H—C20B—H20I109.5
C19—C18—C4109.7 (5)C18—C19B—H19G109.5
C19—C18—C21111.6 (6)C18—C19B—H19H109.5
C19—C18—C20107.0 (5)C18—C19B—H19I109.5
C19B—C18—C4109.4 (5)H19G—C19B—H19H109.5
C19B—C18—C20B109.1 (6)H19G—C19B—H19I109.5
C19B—C18—C21B113.4 (7)H19H—C19B—H19I109.5
C21B—C18—C4111.8 (5)C18—C21B—H21G109.5
C21B—C18—C20B104.9 (6)C18—C21B—H21H109.5
C14—C15—H15A109.5C18—C21B—H21I109.5
C14—C15—H15B109.5H21G—C21B—H21H109.5
C14—C15—H15C109.5H21G—C21B—H21I109.5
H15A—C15—H15B109.5H21H—C21B—H21I109.5
H15A—C15—H15C109.5
Cl1—C11—C10—C9179.83 (13)C13—C12—C11—Cl1179.83 (13)
N1—C8—C13—C12178.92 (17)C13—C12—C11—C100.0
N1—C8—C9—C10178.86 (18)C12—C11—C10—C90.0
C2—C3—C4—C50.7 (4)C11—C10—C9—C80.0
C2—C3—C4—C18179.2 (2)C9—C8—C13—C120.0
C6—C5—C4—C30.5 (4)C3—C2—C1—C61.3 (3)
C6—C5—C4—C18179.4 (2)C3—C2—C1—O1178.8 (2)
C1—C2—C3—C40.2 (4)C3—C2—C14—C15119.8 (3)
C1—C2—C14—C1559.5 (3)C3—C2—C14—C170.0 (3)
C1—C2—C14—C17179.2 (2)C3—C2—C14—C16119.2 (3)
C1—C2—C14—C1661.5 (3)C3—C4—C18—C19A147.8 (5)
C1—C6—C5—C40.6 (4)C3—C4—C18—C20A84.1 (5)
C1—C6—C7—N11.5 (4)C3—C4—C18—C21A34.5 (4)
C5—C6—C1—C21.5 (4)C3—C4—C18—C211.3 (6)
C5—C6—C1—O1178.6 (2)C3—C4—C18—C20119.5 (5)
C5—C6—C7—N1179.6 (2)C3—C4—C18—C19124.6 (5)
C5—C4—C18—C19A32.1 (5)C3—C4—C18—C20B148.9 (6)
C5—C4—C18—C20A96.0 (5)C3—C4—C18—C19B92.5 (7)
C5—C4—C18—C21A145.4 (4)C3—C4—C18—C21B34.0 (7)
C5—C4—C18—C21178.7 (6)C7—N1—C8—C13150.8 (2)
C5—C4—C18—C2060.5 (5)C7—N1—C8—C928.1 (3)
C5—C4—C18—C1955.3 (6)C7—C6—C1—C2177.3 (2)
C5—C4—C18—C20B31.2 (6)C7—C6—C1—O12.6 (4)
C5—C4—C18—C19B87.4 (7)C7—C6—C5—C4178.3 (2)
C5—C4—C18—C21B146.1 (7)C14—C2—C1—C6179.4 (2)
C8—N1—C7—C6179.6 (2)C14—C2—C1—O10.5 (3)
C8—C13—C12—C110.0C14—C2—C3—C4179.4 (2)
C13—C8—C9—C100.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.90 (3)1.78 (3)2.611 (3)153 (3)
(E)-2,4-Di-tert-butyl-6-{[(4-chlorophenyl)imino]methyl}phenol (2_150K) top
Crystal data top
C21H26ClNOF(000) = 736
Mr = 343.88Dx = 1.202 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.7326 (13) ÅCell parameters from 1441 reflections
b = 10.4696 (7) Åθ = 2.8–30.5°
c = 10.2385 (7) ŵ = 0.21 mm1
β = 91.536 (6)°T = 150 K
V = 1900.1 (2) Å3Block, yellow
Z = 40.33 × 0.28 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
3481 independent reflections
Radiation source: Enhance (Mo) X-ray Source2376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 16.1511 pixels mm-1θmax = 25.4°, θmin = 2.8°
ω scansh = 2117
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 812
Tmin = 0.795, Tmax = 1.000l = 1211
8155 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.2028P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3481 reflectionsΔρmax = 0.25 e Å3
289 parametersΔρmin = 0.30 e Å3
151 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Occupancies of the disordered tBu carbon atoms refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.13334 (4)0.94171 (8)0.78231 (7)0.0418 (3)
N10.88685 (13)0.7046 (2)0.4618 (2)0.0297 (6)
C20.71247 (15)0.5465 (3)0.2086 (2)0.0245 (6)
C60.77422 (15)0.7228 (3)0.3264 (3)0.0280 (7)
C10.76983 (15)0.5921 (3)0.2944 (2)0.0250 (6)
C50.71949 (16)0.8067 (3)0.2757 (3)0.0302 (7)
H50.7223190.8944990.2986930.036*
C80.94438 (15)0.7641 (3)0.5403 (2)0.0287 (7)
C131.01462 (16)0.7066 (3)0.5473 (3)0.0321 (7)
H131.0228080.6292000.5014490.038*
C121.07347 (16)0.7610 (3)0.6210 (3)0.0321 (7)
H121.1217970.7218100.6247550.039*
C111.06059 (16)0.8723 (3)0.6883 (3)0.0297 (7)
C100.99071 (17)0.9303 (3)0.6841 (3)0.0351 (8)
H100.9826261.0072160.7308920.042*
C90.93248 (17)0.8753 (3)0.6110 (3)0.0363 (8)
H90.8839670.9138520.6092260.044*
C30.66052 (15)0.6364 (3)0.1612 (2)0.0272 (7)
H30.6216350.6073620.1028770.033*
C70.83423 (16)0.7736 (3)0.4093 (3)0.0317 (7)
H70.8348880.8628560.4258390.038*
C40.66156 (15)0.7661 (3)0.1933 (2)0.0270 (7)
C140.70711 (16)0.4052 (3)0.1698 (3)0.0287 (7)
C180.60129 (16)0.8594 (3)0.1399 (2)0.0321 (7)
C150.69702 (17)0.3223 (3)0.2924 (3)0.0363 (8)
H15A0.6490410.3436700.3323800.054*
H15B0.7386380.3386860.3550510.054*
H15C0.6969700.2318920.2676680.054*
C170.63941 (17)0.3789 (3)0.0769 (3)0.0403 (8)
H17A0.6449860.4278800.0038390.060*
H17B0.5927700.4044570.1189770.060*
H17C0.6372760.2875270.0562580.060*
C160.77834 (17)0.3638 (3)0.0987 (3)0.0354 (8)
H16A0.8227290.3767400.1562860.053*
H16B0.7833950.4148920.0192860.053*
H16C0.7743050.2731990.0753450.053*
O10.82193 (11)0.50931 (19)0.34592 (18)0.0328 (5)
H10.8557 (16)0.557 (3)0.395 (3)0.039*
C19A0.5825 (6)0.9664 (8)0.2365 (8)0.043 (2)0.407 (3)
H19A0.5676730.9286960.3196040.064*0.407 (3)
H19B0.5407701.0179910.2003530.064*0.407 (3)
H19C0.6268961.0206810.2511440.064*0.407 (3)
C20A0.6231 (5)0.9095 (9)0.0092 (6)0.0491 (17)0.407 (3)
H20A0.6644810.9708600.0206270.074*0.407 (3)
H20B0.5795880.9520410.0328960.074*0.407 (3)
H20C0.6393930.8385440.0456380.074*0.407 (3)
C21A0.5240 (4)0.7858 (7)0.1221 (9)0.0483 (18)0.407 (3)
H21A0.5299820.7153280.0602920.072*0.407 (3)
H21B0.4851590.8446770.0884490.072*0.407 (3)
H21C0.5088870.7517490.2066570.072*0.407 (3)
C210.5479 (6)0.8008 (11)0.0366 (10)0.051 (2)0.355 (3)
H21D0.5770460.7699070.0369240.076*0.355 (3)
H21E0.5117480.8655970.0056050.076*0.355 (3)
H21F0.5205280.7292610.0750350.076*0.355 (3)
C200.6437 (5)0.9698 (9)0.0682 (9)0.044 (2)0.355 (3)
H20D0.6715691.0218300.1327660.067*0.355 (3)
H20E0.6068901.0234800.0207270.067*0.355 (3)
H20F0.6789520.9330120.0065420.067*0.355 (3)
C190.5599 (6)0.9184 (11)0.2518 (8)0.041 (3)0.355 (3)
H19D0.5334870.8514890.2993480.062*0.355 (3)
H19E0.5233000.9809350.2176420.062*0.355 (3)
H19F0.5961640.9611660.3110720.062*0.355 (3)
C20B0.6394 (8)0.9925 (10)0.1248 (14)0.047 (2)0.238 (3)
H20G0.6567701.0234170.2108140.071*0.238 (3)
H20H0.6028621.0529810.0866290.071*0.238 (3)
H20I0.6825730.9847620.0675360.071*0.238 (3)
C19B0.5385 (7)0.8741 (16)0.2359 (12)0.044 (2)0.238 (3)
H19G0.5084640.7955800.2370520.066*0.238 (3)
H19H0.5062340.9460000.2094260.066*0.238 (3)
H19I0.5602800.8901260.3233410.066*0.238 (3)
C21B0.5727 (9)0.8205 (16)0.0033 (9)0.046 (2)0.238 (3)
H21G0.6154100.8152010.0553210.069*0.238 (3)
H21H0.5366540.8843260.0299490.069*0.238 (3)
H21I0.5478920.7370870.0077740.069*0.238 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0364 (5)0.0420 (5)0.0462 (5)0.0084 (4)0.0123 (3)0.0002 (4)
N10.0267 (14)0.0293 (15)0.0330 (13)0.0019 (12)0.0032 (10)0.0010 (11)
C20.0247 (15)0.0264 (17)0.0224 (14)0.0003 (13)0.0026 (11)0.0019 (12)
C60.0260 (16)0.0272 (18)0.0308 (15)0.0000 (13)0.0021 (12)0.0010 (13)
C10.0231 (15)0.0256 (17)0.0264 (15)0.0018 (13)0.0013 (11)0.0039 (12)
C50.0353 (18)0.0204 (17)0.0347 (16)0.0010 (13)0.0046 (13)0.0009 (13)
C80.0268 (16)0.0319 (18)0.0271 (15)0.0007 (14)0.0040 (12)0.0013 (13)
C130.0320 (17)0.0276 (18)0.0364 (17)0.0075 (14)0.0033 (13)0.0021 (13)
C120.0259 (16)0.0330 (19)0.0373 (17)0.0049 (14)0.0037 (13)0.0020 (14)
C110.0271 (17)0.0342 (19)0.0275 (15)0.0046 (14)0.0050 (12)0.0029 (13)
C100.0332 (18)0.0371 (19)0.0350 (17)0.0079 (15)0.0027 (13)0.0107 (14)
C90.0278 (17)0.044 (2)0.0372 (17)0.0088 (15)0.0041 (13)0.0064 (15)
C30.0281 (16)0.0328 (18)0.0204 (14)0.0010 (13)0.0041 (11)0.0032 (12)
C70.0325 (18)0.0258 (17)0.0366 (17)0.0002 (14)0.0032 (13)0.0006 (13)
C40.0266 (16)0.0297 (18)0.0247 (15)0.0031 (13)0.0013 (11)0.0010 (12)
C140.0285 (17)0.0258 (17)0.0317 (16)0.0004 (13)0.0021 (12)0.0018 (13)
C180.0361 (18)0.0294 (18)0.0304 (16)0.0097 (14)0.0037 (13)0.0012 (13)
C150.044 (2)0.0284 (18)0.0362 (17)0.0061 (15)0.0008 (14)0.0018 (14)
C170.043 (2)0.033 (2)0.0442 (19)0.0035 (16)0.0077 (14)0.0060 (15)
C160.0400 (19)0.0301 (18)0.0360 (17)0.0042 (15)0.0003 (13)0.0038 (14)
O10.0302 (12)0.0266 (12)0.0410 (12)0.0040 (10)0.0103 (9)0.0000 (9)
C19A0.036 (4)0.053 (5)0.038 (3)0.018 (4)0.000 (3)0.002 (4)
C20A0.051 (4)0.060 (4)0.036 (4)0.028 (3)0.003 (3)0.008 (3)
C21A0.041 (4)0.052 (4)0.051 (4)0.022 (3)0.012 (3)0.002 (3)
C210.051 (4)0.056 (4)0.043 (4)0.028 (4)0.017 (3)0.001 (4)
C200.049 (4)0.059 (5)0.026 (5)0.027 (4)0.007 (4)0.016 (4)
C190.031 (5)0.055 (6)0.039 (4)0.018 (4)0.003 (4)0.003 (4)
C20B0.048 (4)0.055 (5)0.039 (5)0.022 (4)0.005 (4)0.007 (4)
C19B0.037 (5)0.053 (5)0.042 (4)0.019 (4)0.004 (4)0.000 (4)
C21B0.044 (5)0.054 (4)0.041 (4)0.028 (4)0.011 (4)0.004 (4)
Geometric parameters (Å, º) top
Cl1—C111.747 (3)C15—H15A0.9800
N1—C81.425 (3)C15—H15B0.9800
N1—C71.287 (3)C15—H15C0.9800
C2—C11.409 (3)C17—H17A0.9800
C2—C31.395 (4)C17—H17B0.9800
C2—C141.535 (4)C17—H17C0.9800
C6—C11.409 (4)C16—H16A0.9800
C6—C51.398 (4)C16—H16B0.9800
C6—C71.444 (4)C16—H16C0.9800
C1—O11.363 (3)O1—H10.92 (3)
C5—H50.9500C19A—H19A0.9800
C5—C41.379 (4)C19A—H19B0.9800
C8—C131.383 (4)C19A—H19C0.9800
C8—C91.390 (4)C20A—H20A0.9800
C13—H130.9500C20A—H20B0.9800
C13—C121.393 (4)C20A—H20C0.9800
C12—H120.9500C21A—H21A0.9800
C12—C111.376 (4)C21A—H21B0.9800
C11—C101.379 (4)C21A—H21C0.9800
C10—H100.9500C21—H21D0.9800
C10—C91.384 (4)C21—H21E0.9800
C9—H90.9500C21—H21F0.9800
C3—H30.9500C20—H20D0.9800
C3—C41.396 (4)C20—H20E0.9800
C7—H70.9500C20—H20F0.9800
C4—C181.538 (4)C19—H19D0.9800
C14—C151.540 (4)C19—H19E0.9800
C14—C171.537 (4)C19—H19F0.9800
C14—C161.537 (4)C20B—H20G0.9800
C18—C19A1.537 (6)C20B—H20H0.9800
C18—C20A1.497 (6)C20B—H20I0.9800
C18—C21A1.579 (6)C19B—H19G0.9800
C18—C211.529 (6)C19B—H19H0.9800
C18—C201.571 (6)C19B—H19I0.9800
C18—C191.509 (6)C21B—H21G0.9800
C18—C20B1.558 (7)C21B—H21H0.9800
C18—C19B1.512 (7)C21B—H21I0.9800
C18—C21B1.529 (7)
C7—N1—C8119.4 (2)H15B—C15—H15C109.5
C1—C2—C14121.8 (2)C14—C17—H17A109.5
C3—C2—C1116.6 (3)C14—C17—H17B109.5
C3—C2—C14121.6 (2)C14—C17—H17C109.5
C1—C6—C7122.0 (2)H17A—C17—H17B109.5
C5—C6—C1119.3 (2)H17A—C17—H17C109.5
C5—C6—C7118.7 (3)H17B—C17—H17C109.5
C6—C1—C2120.5 (2)C14—C16—H16A109.5
O1—C1—C2119.8 (2)C14—C16—H16B109.5
O1—C1—C6119.7 (2)C14—C16—H16C109.5
C6—C5—H5118.9H16A—C16—H16B109.5
C4—C5—C6122.1 (3)H16A—C16—H16C109.5
C4—C5—H5118.9H16B—C16—H16C109.5
C13—C8—N1118.0 (3)C1—O1—H1107.0 (18)
C13—C8—C9119.1 (3)C18—C19A—H19A109.5
C9—C8—N1122.9 (3)C18—C19A—H19B109.5
C8—C13—H13119.6C18—C19A—H19C109.5
C8—C13—C12120.7 (3)H19A—C19A—H19B109.5
C12—C13—H13119.6H19A—C19A—H19C109.5
C13—C12—H12120.5H19B—C19A—H19C109.5
C11—C12—C13119.0 (3)C18—C20A—H20A109.5
C11—C12—H12120.5C18—C20A—H20B109.5
C12—C11—Cl1119.9 (2)C18—C20A—H20C109.5
C12—C11—C10121.2 (3)H20A—C20A—H20B109.5
C10—C11—Cl1118.9 (2)H20A—C20A—H20C109.5
C11—C10—H10120.3H20B—C20A—H20C109.5
C11—C10—C9119.4 (3)C18—C21A—H21A109.5
C9—C10—H10120.3C18—C21A—H21B109.5
C8—C9—H9119.7C18—C21A—H21C109.5
C10—C9—C8120.6 (3)H21A—C21A—H21B109.5
C10—C9—H9119.7H21A—C21A—H21C109.5
C2—C3—H3117.6H21B—C21A—H21C109.5
C2—C3—C4124.7 (2)C18—C21—H21D109.5
C4—C3—H3117.6C18—C21—H21E109.5
N1—C7—C6123.6 (3)C18—C21—H21F109.5
N1—C7—H7118.2H21D—C21—H21E109.5
C6—C7—H7118.2H21D—C21—H21F109.5
C5—C4—C3116.7 (3)H21E—C21—H21F109.5
C5—C4—C18121.4 (3)C18—C20—H20D109.5
C3—C4—C18122.0 (2)C18—C20—H20E109.5
C2—C14—C15109.9 (2)C18—C20—H20F109.5
C2—C14—C17112.0 (2)H20D—C20—H20E109.5
C2—C14—C16110.4 (2)H20D—C20—H20F109.5
C17—C14—C15107.3 (2)H20E—C20—H20F109.5
C17—C14—C16107.1 (2)C18—C19—H19D109.5
C16—C14—C15110.0 (2)C18—C19—H19E109.5
C4—C18—C21A108.9 (4)C18—C19—H19F109.5
C4—C18—C20107.3 (4)H19D—C19—H19E109.5
C4—C18—C20B107.7 (6)H19D—C19—H19F109.5
C19A—C18—C4113.3 (4)H19E—C19—H19F109.5
C19A—C18—C21A103.1 (5)C18—C20B—H20G109.5
C20A—C18—C4110.3 (4)C18—C20B—H20H109.5
C20A—C18—C19A112.7 (5)C18—C20B—H20I109.5
C20A—C18—C21A108.2 (4)H20G—C20B—H20H109.5
C21—C18—C4113.7 (5)H20G—C20B—H20I109.5
C21—C18—C20105.5 (5)H20H—C20B—H20I109.5
C19—C18—C4109.7 (5)C18—C19B—H19G109.5
C19—C18—C21112.6 (6)C18—C19B—H19H109.5
C19—C18—C20107.6 (5)C18—C19B—H19I109.5
C19B—C18—C4110.5 (7)H19G—C19B—H19H109.5
C19B—C18—C20B107.6 (7)H19G—C19B—H19I109.5
C19B—C18—C21B113.0 (7)H19H—C19B—H19I109.5
C21B—C18—C4111.4 (7)C18—C21B—H21G109.5
C21B—C18—C20B106.4 (7)C18—C21B—H21H109.5
C14—C15—H15A109.5C18—C21B—H21I109.5
C14—C15—H15B109.5H21G—C21B—H21H109.5
C14—C15—H15C109.5H21G—C21B—H21I109.5
H15A—C15—H15B109.5H21H—C21B—H21I109.5
H15A—C15—H15C109.5
Cl1—C11—C10—C9179.3 (2)C13—C12—C11—Cl1179.5 (2)
N1—C8—C13—C12179.2 (2)C13—C12—C11—C100.1 (4)
N1—C8—C9—C10179.0 (3)C12—C11—C10—C90.1 (5)
C2—C3—C4—C51.5 (4)C11—C10—C9—C81.3 (5)
C2—C3—C4—C18178.5 (2)C9—C8—C13—C121.9 (4)
C6—C5—C4—C30.8 (4)C3—C2—C1—C61.5 (4)
C6—C5—C4—C18179.2 (3)C3—C2—C1—O1179.1 (2)
C1—C2—C3—C40.3 (4)C3—C2—C14—C15119.6 (3)
C1—C2—C14—C1560.1 (3)C3—C2—C14—C170.4 (4)
C1—C2—C14—C17179.3 (2)C3—C2—C14—C16118.9 (3)
C1—C2—C14—C1661.4 (3)C3—C4—C18—C19A146.3 (5)
C1—C6—C5—C41.0 (4)C3—C4—C18—C20A86.3 (5)
C1—C6—C7—N11.4 (5)C3—C4—C18—C21A32.3 (5)
C5—C6—C1—C22.1 (4)C3—C4—C18—C217.6 (6)
C5—C6—C1—O1178.5 (2)C3—C4—C18—C20123.9 (5)
C5—C6—C7—N1179.3 (3)C3—C4—C18—C19119.6 (5)
C5—C4—C18—C19A33.6 (5)C3—C4—C18—C20B148.3 (6)
C5—C4—C18—C20A93.7 (5)C3—C4—C18—C19B94.4 (7)
C5—C4—C18—C21A147.7 (4)C3—C4—C18—C21B32.0 (7)
C5—C4—C18—C21172.5 (6)C7—N1—C8—C13151.7 (3)
C5—C4—C18—C2056.2 (5)C7—N1—C8—C929.4 (4)
C5—C4—C18—C1960.4 (6)C7—C6—C1—C2177.1 (3)
C5—C4—C18—C20B31.7 (6)C7—C6—C1—O12.2 (4)
C5—C4—C18—C19B85.6 (7)C7—C6—C5—C4178.3 (3)
C5—C4—C18—C21B148.0 (7)C14—C2—C1—C6178.8 (3)
C8—N1—C7—C6178.9 (2)C14—C2—C1—O10.6 (4)
C8—C13—C12—C110.8 (4)C14—C2—C3—C4179.4 (3)
C13—C8—C9—C102.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.92 (3)1.77 (3)2.615 (3)151 (3)
(E)-2,4-Di-tert-butyl-6-{[(4-chlorophenyl)imino]methyl}phenol (2_120K) top
Crystal data top
C21H26ClNOF(000) = 736
Mr = 343.88Dx = 1.215 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.3623 (8) ÅCell parameters from 3057 reflections
b = 10.6691 (4) Åθ = 2.8–29.4°
c = 10.1512 (6) ŵ = 0.21 mm1
β = 90.123 (5)°T = 120 K
V = 1880.41 (15) Å3Block, yellow
Z = 40.35 × 0.31 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
3860 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 16.1511 pixels mm-1θmax = 26.4°, θmin = 2.8°
ω scansh = 2121
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 1213
Tmin = 0.846, Tmax = 1.000l = 1212
14119 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.0974P)2 + 0.0284P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3860 reflectionsΔρmax = 0.72 e Å3
227 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.13720 (4)0.42872 (7)0.21972 (7)0.0291 (2)
O10.81756 (11)0.01140 (18)0.6549 (2)0.0234 (5)
N10.88643 (13)0.2000 (2)0.5364 (2)0.0221 (5)
C10.76870 (15)0.0957 (2)0.7100 (3)0.0190 (6)
C20.71226 (15)0.0563 (2)0.8000 (2)0.0176 (6)
C30.66347 (15)0.1482 (2)0.8507 (2)0.0181 (6)
H30.6250470.1225810.9114480.022*
C40.66710 (15)0.2756 (2)0.8182 (2)0.0185 (6)
C50.72423 (16)0.3103 (2)0.7315 (3)0.0207 (6)
H50.7288880.3960750.7076990.025*
C60.77554 (15)0.2236 (2)0.6774 (3)0.0206 (6)
C70.83633 (16)0.2707 (3)0.5927 (3)0.0222 (6)
H70.8392410.3584790.5780400.027*
C80.94437 (16)0.2567 (3)0.4578 (3)0.0220 (6)
C90.93356 (16)0.3698 (3)0.3908 (3)0.0259 (7)
H90.8851280.4109930.3952570.031*
C100.99246 (17)0.4225 (3)0.3180 (3)0.0263 (7)
H100.9847870.4994500.2728530.032*
C111.06281 (16)0.3616 (3)0.3118 (3)0.0228 (6)
C121.07459 (15)0.2483 (3)0.3757 (3)0.0237 (6)
H121.1228880.2069200.3695490.028*
C131.01569 (16)0.1963 (3)0.4480 (3)0.0232 (6)
H131.0235430.1186410.4917740.028*
C140.70465 (16)0.0826 (2)0.8414 (3)0.0202 (6)
C150.68718 (17)0.1644 (2)0.7200 (3)0.0250 (6)
H15A0.6382210.1380410.6805340.037*
H15B0.6836190.2524430.7467840.037*
H15C0.7285890.1547810.6552910.037*
C160.77948 (17)0.1277 (3)0.9081 (3)0.0248 (6)
H16A0.8228180.1161170.8475940.037*
H16B0.7747090.2166400.9306080.037*
H16C0.7885120.0789120.9884700.037*
C170.63909 (17)0.1029 (3)0.9408 (3)0.0256 (6)
H17A0.6495050.0543481.0207990.038*
H17B0.6357160.1921370.9630890.038*
H17C0.5902700.0753040.9018220.038*
C180.60941 (15)0.3719 (2)0.8713 (3)0.0190 (6)
C190.65006 (19)0.4970 (3)0.9009 (3)0.0372 (8)
H19A0.6927350.4824840.9623500.056*
H19B0.6132540.5555660.9402910.056*
H19C0.6701020.5325430.8187860.056*
C200.54766 (18)0.3952 (3)0.7656 (3)0.0349 (8)
H20A0.5722390.4254020.6847900.052*
H20B0.5110590.4581940.7973300.052*
H20C0.5202590.3167870.7471900.052*
C210.57028 (19)0.3278 (3)0.9979 (3)0.0338 (8)
H21A0.5384600.2541030.9789360.051*
H21B0.5377000.3951731.0324900.051*
H21C0.6095910.3059341.0633670.051*
H10.848 (2)0.056 (3)0.607 (4)0.055 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0211 (4)0.0345 (5)0.0318 (4)0.0069 (3)0.0043 (3)0.0002 (3)
O10.0179 (11)0.0238 (11)0.0283 (11)0.0021 (8)0.0017 (9)0.0006 (8)
N10.0149 (12)0.0279 (13)0.0236 (12)0.0010 (9)0.0006 (10)0.0004 (10)
C10.0133 (13)0.0232 (14)0.0205 (13)0.0009 (11)0.0057 (11)0.0049 (11)
C20.0137 (13)0.0211 (14)0.0181 (13)0.0005 (10)0.0076 (11)0.0006 (10)
C30.0135 (13)0.0250 (15)0.0158 (13)0.0021 (11)0.0039 (10)0.0001 (10)
C40.0155 (13)0.0223 (14)0.0178 (13)0.0006 (10)0.0066 (11)0.0018 (10)
C50.0226 (15)0.0180 (14)0.0213 (14)0.0004 (11)0.0030 (12)0.0013 (11)
C60.0159 (13)0.0248 (15)0.0209 (14)0.0018 (11)0.0011 (11)0.0001 (11)
C70.0210 (14)0.0208 (14)0.0247 (14)0.0016 (11)0.0030 (12)0.0005 (11)
C80.0208 (14)0.0255 (15)0.0196 (13)0.0037 (12)0.0022 (11)0.0014 (11)
C90.0187 (15)0.0339 (17)0.0252 (15)0.0071 (12)0.0025 (12)0.0032 (12)
C100.0230 (16)0.0296 (16)0.0261 (15)0.0035 (12)0.0027 (12)0.0060 (12)
C110.0202 (15)0.0260 (15)0.0221 (14)0.0053 (11)0.0016 (12)0.0042 (11)
C120.0152 (14)0.0279 (15)0.0279 (15)0.0015 (11)0.0021 (12)0.0020 (12)
C130.0211 (15)0.0232 (14)0.0253 (15)0.0037 (11)0.0030 (12)0.0005 (11)
C140.0205 (14)0.0189 (14)0.0213 (14)0.0003 (11)0.0047 (11)0.0000 (10)
C150.0291 (16)0.0202 (15)0.0255 (15)0.0030 (12)0.0046 (13)0.0003 (11)
C160.0244 (15)0.0229 (15)0.0272 (15)0.0029 (12)0.0057 (12)0.0014 (11)
C170.0249 (16)0.0249 (15)0.0270 (15)0.0001 (12)0.0039 (13)0.0048 (12)
C180.0160 (14)0.0221 (14)0.0188 (13)0.0040 (11)0.0026 (11)0.0002 (10)
C190.0349 (19)0.0291 (17)0.048 (2)0.0036 (14)0.0013 (16)0.0103 (14)
C200.0297 (18)0.047 (2)0.0276 (16)0.0168 (14)0.0075 (14)0.0077 (14)
C210.0357 (19)0.0346 (18)0.0313 (17)0.0117 (14)0.0083 (15)0.0015 (13)
Geometric parameters (Å, º) top
Cl1—C111.750 (3)C13—H130.9500
O1—C11.357 (3)C14—C151.540 (4)
O1—H10.86 (4)C14—C161.541 (4)
N1—C71.286 (3)C14—C171.538 (4)
N1—C81.421 (3)C15—H15A0.9800
C1—C21.406 (4)C15—H15B0.9800
C1—C61.409 (4)C15—H15C0.9800
C2—C31.395 (4)C16—H16A0.9800
C2—C141.545 (4)C16—H16B0.9800
C3—H30.9500C16—H16C0.9800
C3—C41.400 (4)C17—H17A0.9800
C4—C51.378 (4)C17—H17B0.9800
C4—C181.534 (3)C17—H17C0.9800
C5—H50.9500C18—C191.539 (4)
C5—C61.398 (4)C18—C201.535 (4)
C6—C71.453 (4)C18—C211.529 (4)
C7—H70.9500C19—H19A0.9800
C8—C91.397 (4)C19—H19B0.9800
C8—C131.400 (4)C19—H19C0.9800
C9—H90.9500C20—H20A0.9800
C9—C101.382 (4)C20—H20B0.9800
C10—H100.9500C20—H20C0.9800
C10—C111.385 (4)C21—H21A0.9800
C11—C121.386 (4)C21—H21B0.9800
C12—H120.9500C21—H21C0.9800
C12—C131.377 (4)
C1—O1—H1104 (2)C17—C14—C15107.5 (2)
C7—N1—C8118.7 (2)C17—C14—C16107.0 (2)
O1—C1—C2120.5 (2)C14—C15—H15A109.5
O1—C1—C6119.5 (2)C14—C15—H15B109.5
C2—C1—C6120.1 (2)C14—C15—H15C109.5
C1—C2—C14121.6 (2)H15A—C15—H15B109.5
C3—C2—C1117.0 (2)H15A—C15—H15C109.5
C3—C2—C14121.4 (2)H15B—C15—H15C109.5
C2—C3—H3117.7C14—C16—H16A109.5
C2—C3—C4124.7 (2)C14—C16—H16B109.5
C4—C3—H3117.7C14—C16—H16C109.5
C3—C4—C18122.6 (2)H16A—C16—H16B109.5
C5—C4—C3116.3 (2)H16A—C16—H16C109.5
C5—C4—C18121.1 (2)H16B—C16—H16C109.5
C4—C5—H5118.9C14—C17—H17A109.5
C4—C5—C6122.2 (2)C14—C17—H17B109.5
C6—C5—H5118.9C14—C17—H17C109.5
C1—C6—C7122.4 (2)H17A—C17—H17B109.5
C5—C6—C1119.7 (2)H17A—C17—H17C109.5
C5—C6—C7117.9 (2)H17B—C17—H17C109.5
N1—C7—C6123.6 (3)C4—C18—C19110.5 (2)
N1—C7—H7118.2C4—C18—C20108.6 (2)
C6—C7—H7118.2C20—C18—C19108.4 (2)
C9—C8—N1123.2 (2)C21—C18—C4112.4 (2)
C9—C8—C13118.7 (2)C21—C18—C19107.9 (2)
C13—C8—N1118.1 (2)C21—C18—C20109.0 (2)
C8—C9—H9119.6C18—C19—H19A109.5
C10—C9—C8120.8 (3)C18—C19—H19B109.5
C10—C9—H9119.6C18—C19—H19C109.5
C9—C10—H10120.4H19A—C19—H19B109.5
C9—C10—C11119.2 (3)H19A—C19—H19C109.5
C11—C10—H10120.4H19B—C19—H19C109.5
C10—C11—Cl1119.0 (2)C18—C20—H20A109.5
C10—C11—C12121.1 (2)C18—C20—H20B109.5
C12—C11—Cl1119.9 (2)C18—C20—H20C109.5
C11—C12—H12120.3H20A—C20—H20B109.5
C13—C12—C11119.4 (3)H20A—C20—H20C109.5
C13—C12—H12120.3H20B—C20—H20C109.5
C8—C13—H13119.7C18—C21—H21A109.5
C12—C13—C8120.7 (3)C18—C21—H21B109.5
C12—C13—H13119.7C18—C21—H21C109.5
C15—C14—C2110.0 (2)H21A—C21—H21B109.5
C15—C14—C16109.8 (2)H21A—C21—H21C109.5
C16—C14—C2110.3 (2)H21B—C21—H21C109.5
C17—C14—C2112.2 (2)
Cl1—C11—C12—C13179.9 (2)C3—C4—C18—C2122.2 (4)
O1—C1—C2—C3179.0 (2)C4—C5—C6—C11.0 (4)
O1—C1—C2—C141.1 (4)C4—C5—C6—C7176.7 (3)
O1—C1—C6—C5178.5 (2)C5—C4—C18—C1939.5 (3)
O1—C1—C6—C73.9 (4)C5—C4—C18—C2079.2 (3)
N1—C8—C9—C10178.5 (3)C5—C4—C18—C21160.1 (3)
N1—C8—C13—C12178.6 (2)C5—C6—C7—N1179.3 (3)
C1—C2—C3—C40.1 (4)C6—C1—C2—C31.8 (4)
C1—C2—C14—C1560.5 (3)C6—C1—C2—C14178.1 (2)
C1—C2—C14—C1660.8 (3)C7—N1—C8—C929.0 (4)
C1—C2—C14—C17179.9 (2)C7—N1—C8—C13150.7 (3)
C1—C6—C7—N13.0 (4)C8—N1—C7—C6178.6 (2)
C2—C1—C6—C52.3 (4)C8—C9—C10—C110.1 (4)
C2—C1—C6—C7175.3 (3)C9—C8—C13—C121.1 (4)
C2—C3—C4—C51.0 (4)C9—C10—C11—Cl1180.0 (2)
C2—C3—C4—C18176.8 (2)C9—C10—C11—C120.9 (4)
C3—C2—C14—C15119.6 (3)C10—C11—C12—C130.9 (4)
C3—C2—C14—C16119.1 (3)C11—C12—C13—C80.1 (4)
C3—C2—C14—C170.0 (3)C13—C8—C9—C101.2 (4)
C3—C4—C5—C60.6 (4)C14—C2—C3—C4179.7 (2)
C3—C4—C18—C19142.8 (3)C18—C4—C5—C6177.3 (2)
C3—C4—C18—C2098.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (4)1.82 (4)2.633 (3)157 (4)
(E)-2,4-Di-tert-butyl-6-{[(4-chlorophenyl)imino]methyl}phenol (2_100K) top
Crystal data top
C21H26ClNOF(000) = 736
Mr = 343.88Dx = 1.222 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.3011 (11) ÅCell parameters from 2408 reflections
b = 10.6780 (7) Åθ = 3.0–28.5°
c = 10.1200 (6) ŵ = 0.21 mm1
β = 90.252 (6)°T = 100 K
V = 1869.6 (2) Å3Block, yellow
Z = 40.35 × 0.31 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
3830 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
Detector resolution: 16.1511 pixels mm-1θmax = 26.4°, θmin = 2.8°
ω scansh = 2121
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 1312
Tmin = 0.435, Tmax = 1.000l = 1212
13865 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.071H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.0777P)2 + 0.1484P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3830 reflectionsΔρmax = 0.78 e Å3
227 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.13773 (4)0.42791 (8)0.21945 (7)0.0256 (2)
O10.81741 (11)0.0118 (2)0.6546 (2)0.0204 (5)
N10.88628 (13)0.1997 (2)0.5360 (2)0.0188 (5)
C10.76828 (15)0.0953 (3)0.7102 (3)0.0166 (6)
C20.71225 (15)0.0567 (3)0.8006 (3)0.0158 (6)
C30.66361 (15)0.1488 (3)0.8519 (3)0.0174 (6)
H30.6252210.1233190.9130720.021*
C40.66743 (15)0.2770 (3)0.8192 (3)0.0169 (6)
C50.72457 (15)0.3112 (3)0.7318 (3)0.0185 (6)
H50.7293760.3968070.7077480.022*
C60.77587 (15)0.2237 (3)0.6773 (3)0.0182 (6)
C70.83659 (15)0.2709 (3)0.5925 (3)0.0202 (6)
H70.8397450.3586490.5780400.024*
C80.94457 (16)0.2562 (3)0.4575 (3)0.0207 (7)
C90.93401 (16)0.3697 (3)0.3906 (3)0.0219 (7)
H90.8855550.4112410.3955040.026*
C100.99279 (16)0.4219 (3)0.3179 (3)0.0230 (7)
H100.9851640.4989360.2727780.028*
C111.06341 (16)0.3605 (3)0.3115 (3)0.0195 (6)
C121.07512 (16)0.2469 (3)0.3751 (3)0.0207 (7)
H121.1234840.2051690.3690270.025*
C131.01552 (16)0.1952 (3)0.4473 (3)0.0210 (7)
H131.0229820.1171430.4906310.025*
C140.70433 (16)0.0810 (3)0.8423 (3)0.0200 (6)
C150.68658 (17)0.1637 (3)0.7208 (3)0.0231 (7)
H15A0.6374980.1374230.6808360.035*
H15B0.6828330.2514980.7483510.035*
H15C0.7281510.1548090.6559750.035*
C160.77979 (17)0.1272 (3)0.9085 (3)0.0229 (7)
H16A0.8230930.1156080.8476550.034*
H16B0.7748320.2162730.9304650.034*
H16C0.7892820.0791740.9894840.034*
C170.63903 (17)0.1017 (3)0.9424 (3)0.0246 (7)
H17A0.6489400.0511911.0215840.037*
H17B0.6368940.1904530.9668030.037*
H17C0.5896100.0766280.9028220.037*
C180.60929 (15)0.3727 (3)0.8717 (3)0.0177 (6)
C190.64974 (18)0.4978 (3)0.9001 (3)0.0286 (7)
H19A0.6923560.4843230.9625750.043*
H19B0.6125820.5567690.9382210.043*
H19C0.6701050.5323570.8175250.043*
C200.54720 (17)0.3955 (3)0.7653 (3)0.0264 (7)
H20A0.5718820.4247360.6839400.040*
H20B0.5107200.4590640.7964480.040*
H20C0.5194260.3172460.7475870.040*
C210.57033 (18)0.3288 (3)0.9980 (3)0.0278 (8)
H21A0.5388920.2544850.9791500.042*
H21B0.5371770.3956701.0321120.042*
H21C0.6098370.3078421.0641060.042*
H10.850 (2)0.056 (4)0.597 (3)0.041 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0244 (4)0.0243 (5)0.0281 (4)0.0057 (3)0.0030 (3)0.0002 (3)
O10.0221 (11)0.0134 (12)0.0257 (11)0.0022 (8)0.0037 (9)0.0002 (9)
N10.0183 (12)0.0200 (15)0.0179 (12)0.0003 (10)0.0002 (10)0.0008 (10)
C10.0157 (13)0.0139 (16)0.0202 (14)0.0001 (11)0.0065 (11)0.0030 (12)
C20.0179 (14)0.0112 (16)0.0182 (13)0.0017 (11)0.0079 (11)0.0008 (11)
C30.0180 (14)0.0178 (17)0.0163 (13)0.0034 (11)0.0017 (11)0.0013 (11)
C40.0177 (14)0.0158 (17)0.0171 (14)0.0008 (11)0.0057 (11)0.0004 (11)
C50.0238 (15)0.0127 (16)0.0189 (14)0.0001 (12)0.0032 (12)0.0007 (11)
C60.0196 (14)0.0153 (16)0.0196 (14)0.0013 (12)0.0037 (12)0.0008 (12)
C70.0230 (15)0.0164 (17)0.0212 (14)0.0010 (12)0.0031 (12)0.0023 (12)
C80.0226 (15)0.0212 (18)0.0183 (14)0.0033 (12)0.0034 (12)0.0025 (12)
C90.0215 (15)0.0241 (18)0.0202 (14)0.0048 (12)0.0033 (12)0.0007 (12)
C100.0247 (15)0.0205 (18)0.0236 (15)0.0022 (13)0.0025 (12)0.0072 (13)
C110.0215 (15)0.0198 (18)0.0172 (14)0.0026 (12)0.0013 (11)0.0011 (12)
C120.0187 (15)0.0208 (18)0.0227 (15)0.0026 (12)0.0014 (12)0.0023 (12)
C130.0254 (15)0.0149 (17)0.0228 (15)0.0023 (12)0.0024 (12)0.0010 (12)
C140.0231 (15)0.0165 (17)0.0204 (14)0.0009 (12)0.0026 (12)0.0010 (12)
C150.0280 (16)0.0146 (17)0.0267 (16)0.0018 (13)0.0044 (13)0.0001 (12)
C160.0277 (16)0.0180 (18)0.0229 (15)0.0032 (13)0.0052 (13)0.0005 (12)
C170.0299 (17)0.0188 (18)0.0253 (16)0.0020 (13)0.0005 (13)0.0039 (13)
C180.0207 (14)0.0149 (16)0.0173 (13)0.0022 (12)0.0002 (11)0.0015 (11)
C190.0321 (17)0.0182 (19)0.0355 (18)0.0023 (14)0.0012 (14)0.0068 (14)
C200.0267 (16)0.026 (2)0.0264 (15)0.0121 (14)0.0051 (13)0.0048 (14)
C210.0372 (18)0.0204 (19)0.0260 (16)0.0111 (14)0.0042 (14)0.0005 (13)
Geometric parameters (Å, º) top
Cl1—C111.746 (3)C13—H130.9500
O1—C11.356 (3)C14—C151.544 (4)
O1—H10.94 (4)C14—C161.546 (4)
N1—C71.284 (4)C14—C171.537 (4)
N1—C81.421 (4)C15—H15A0.9800
C1—C21.399 (4)C15—H15B0.9800
C1—C61.417 (4)C15—H15C0.9800
C2—C31.395 (4)C16—H16A0.9800
C2—C141.537 (4)C16—H16B0.9800
C3—H30.9500C16—H16C0.9800
C3—C41.409 (4)C17—H17A0.9800
C4—C51.378 (4)C17—H17B0.9800
C4—C181.531 (4)C17—H17C0.9800
C5—H50.9500C18—C191.535 (4)
C5—C61.404 (4)C18—C201.537 (4)
C6—C71.450 (4)C18—C211.522 (4)
C7—H70.9500C19—H19A0.9800
C8—C91.399 (4)C19—H19B0.9800
C8—C131.394 (4)C19—H19C0.9800
C9—H90.9500C20—H20A0.9800
C9—C101.376 (4)C20—H20B0.9800
C10—H100.9500C20—H20C0.9800
C10—C111.389 (4)C21—H21A0.9800
C11—C121.388 (4)C21—H21B0.9800
C12—H120.9500C21—H21C0.9800
C12—C131.382 (4)
C1—O1—H1108 (2)C17—C14—C15107.4 (2)
C7—N1—C8118.4 (3)C17—C14—C16106.9 (2)
O1—C1—C2121.0 (3)C14—C15—H15A109.5
O1—C1—C6118.7 (2)C14—C15—H15B109.5
C2—C1—C6120.3 (3)C14—C15—H15C109.5
C1—C2—C14121.6 (2)H15A—C15—H15B109.5
C3—C2—C1117.2 (3)H15A—C15—H15C109.5
C3—C2—C14121.2 (2)H15B—C15—H15C109.5
C2—C3—H3117.7C14—C16—H16A109.5
C2—C3—C4124.6 (3)C14—C16—H16B109.5
C4—C3—H3117.7C14—C16—H16C109.5
C3—C4—C18122.4 (2)H16A—C16—H16B109.5
C5—C4—C3116.2 (3)H16A—C16—H16C109.5
C5—C4—C18121.3 (3)H16B—C16—H16C109.5
C4—C5—H5118.9C14—C17—H17A109.5
C4—C5—C6122.2 (3)C14—C17—H17B109.5
C6—C5—H5118.9C14—C17—H17C109.5
C1—C6—C7122.9 (3)H17A—C17—H17B109.5
C5—C6—C1119.5 (3)H17A—C17—H17C109.5
C5—C6—C7117.5 (3)H17B—C17—H17C109.5
N1—C7—C6123.1 (3)C4—C18—C19110.3 (2)
N1—C7—H7118.5C4—C18—C20108.7 (2)
C6—C7—H7118.5C19—C18—C20108.0 (3)
C9—C8—N1123.1 (3)C21—C18—C4112.3 (2)
C13—C8—N1118.0 (3)C21—C18—C19108.3 (2)
C13—C8—C9118.8 (3)C21—C18—C20109.1 (2)
C8—C9—H9119.5C18—C19—H19A109.5
C10—C9—C8120.9 (3)C18—C19—H19B109.5
C10—C9—H9119.5C18—C19—H19C109.5
C9—C10—H10120.5H19A—C19—H19B109.5
C9—C10—C11119.1 (3)H19A—C19—H19C109.5
C11—C10—H10120.5H19B—C19—H19C109.5
C10—C11—Cl1118.7 (2)C18—C20—H20A109.5
C12—C11—Cl1120.1 (2)C18—C20—H20B109.5
C12—C11—C10121.2 (3)C18—C20—H20C109.5
C11—C12—H12120.4H20A—C20—H20B109.5
C13—C12—C11119.1 (3)H20A—C20—H20C109.5
C13—C12—H12120.4H20B—C20—H20C109.5
C8—C13—H13119.6C18—C21—H21A109.5
C12—C13—C8120.8 (3)C18—C21—H21B109.5
C12—C13—H13119.6C18—C21—H21C109.5
C2—C14—C15110.3 (2)H21A—C21—H21B109.5
C2—C14—C16110.4 (2)H21A—C21—H21C109.5
C2—C14—C17112.6 (2)H21B—C21—H21C109.5
C15—C14—C16109.1 (2)
Cl1—C11—C12—C13180.0 (2)C3—C4—C18—C2122.7 (4)
O1—C1—C2—C3179.3 (2)C4—C5—C6—C11.4 (4)
O1—C1—C2—C140.7 (4)C4—C5—C6—C7176.5 (2)
O1—C1—C6—C5178.7 (2)C5—C4—C18—C1939.5 (3)
O1—C1—C6—C73.5 (4)C5—C4—C18—C2078.8 (3)
N1—C8—C9—C10178.7 (3)C5—C4—C18—C21160.4 (3)
N1—C8—C13—C12178.4 (2)C5—C6—C7—N1179.2 (2)
C1—C2—C3—C40.3 (4)C6—C1—C2—C32.2 (4)
C1—C2—C14—C1560.0 (3)C6—C1—C2—C14177.8 (2)
C1—C2—C14—C1660.6 (3)C7—N1—C8—C929.0 (4)
C1—C2—C14—C17180.0 (2)C7—N1—C8—C13150.8 (3)
C1—C6—C7—N13.0 (4)C8—N1—C7—C6178.5 (2)
C2—C1—C6—C52.7 (4)C8—C9—C10—C110.0 (4)
C2—C1—C6—C7175.0 (2)C9—C8—C13—C121.4 (4)
C2—C3—C4—C51.0 (4)C9—C10—C11—Cl1179.8 (2)
C2—C3—C4—C18176.0 (2)C9—C10—C11—C121.1 (5)
C3—C2—C14—C15120.0 (3)C10—C11—C12—C130.8 (4)
C3—C2—C14—C16119.3 (3)C11—C12—C13—C80.5 (4)
C3—C2—C14—C170.0 (3)C13—C8—C9—C101.2 (4)
C3—C4—C5—C60.5 (4)C14—C2—C3—C4179.7 (2)
C3—C4—C18—C19143.6 (3)C18—C4—C5—C6176.6 (2)
C3—C4—C18—C2098.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.94 (4)1.77 (4)2.626 (3)150 (3)
(E)-6-{[(4-Bromophenyl)imino]methyl}-2,4-di-tert-butylphenol (3_300K) top
Crystal data top
C21H26BrNOF(000) = 808
Mr = 388.34Dx = 1.305 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.0356 (7) ÅCell parameters from 5921 reflections
b = 10.5891 (3) Åθ = 3.8–26.3°
c = 10.3641 (3) ŵ = 2.09 mm1
β = 92.894 (3)°T = 300 K
V = 1976.82 (11) Å3Needle, yellow
Z = 40.3 × 0.05 × 0.05 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
3195 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2444 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.3620 pixels mm-1θmax = 24.4°, θmin = 2.9°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1212
Tmin = 0.744, Tmax = 1.000l = 912
13771 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0477P)2 + 1.8801P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3195 reflectionsΔρmax = 0.35 e Å3
278 parametersΔρmin = 0.42 e Å3
181 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Occupancies of the disordered tBu carbon atoms refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.13439 (2)0.44494 (4)0.28958 (4)0.0747 (2)
O10.18011 (15)0.0118 (2)0.1572 (3)0.0579 (7)
N10.11610 (16)0.2045 (3)0.0400 (3)0.0537 (8)
C10.23225 (19)0.0925 (3)0.2067 (3)0.0430 (8)
C20.28963 (19)0.0485 (3)0.2917 (3)0.0420 (8)
C30.34106 (19)0.1369 (3)0.3377 (3)0.0431 (8)
H30.3792010.1087490.3942930.052*
C40.34003 (19)0.2656 (3)0.3056 (3)0.0435 (8)
C50.2828 (2)0.3041 (3)0.2226 (3)0.0500 (9)
H50.2801440.3886020.1982560.060*
C60.22857 (19)0.2213 (3)0.1737 (3)0.0457 (8)
C70.1689 (2)0.2713 (3)0.0889 (4)0.0552 (9)
H70.1694790.3570120.0693920.066*
C80.05915 (11)0.2622 (2)0.0400 (2)0.0508 (9)
C90.07093 (11)0.3723 (2)0.1091 (3)0.0766 (13)
H90.1175990.4098470.1055200.092*
C100.01295 (14)0.4263 (2)0.1834 (3)0.0785 (14)
H100.0208350.4999220.2295910.094*
C110.05680 (11)0.3701 (2)0.1887 (2)0.0548 (9)
C120.06858 (10)0.2600 (2)0.1196 (3)0.0639 (11)
H120.1152490.2224550.1231430.077*
C130.01060 (13)0.20604 (19)0.0453 (2)0.0632 (11)
H130.0184860.1323770.0009300.076*
C140.2953 (2)0.0918 (3)0.3314 (3)0.0497 (9)
C150.3636 (2)0.1180 (4)0.4203 (4)0.0711 (12)
H15A0.3609020.0689670.4978570.107*
H15B0.4075730.0953150.3771560.107*
H15C0.3653850.2061360.4418810.107*
C160.3015 (3)0.1740 (3)0.2096 (4)0.0660 (11)
H16A0.3457580.1518210.1671790.099*
H16B0.2589640.1597940.1519160.099*
H16C0.3035510.2614140.2339010.099*
C170.2266 (2)0.1294 (4)0.4035 (4)0.0664 (11)
H17A0.1828020.1149080.3490230.100*
H17B0.2243290.0795980.4806150.100*
H17C0.2296470.2172210.4261020.100*
C180.39918 (19)0.3570 (3)0.3597 (3)0.0522 (9)
C190.4482 (9)0.4004 (17)0.2535 (11)0.081 (4)0.355 (3)
H19A0.4180640.4390750.1854640.121*0.355 (3)
H19B0.4737130.3289620.2198220.121*0.355 (3)
H19C0.4837690.4604420.2879980.121*0.355 (3)
C200.4448 (9)0.3044 (13)0.4756 (13)0.082 (4)0.355 (3)
H20A0.4765340.2380760.4474040.123*0.355 (3)
H20B0.4120780.2713510.5375240.123*0.355 (3)
H20C0.4746010.3705390.5147000.123*0.355 (3)
C210.3571 (7)0.4742 (11)0.4100 (17)0.079 (4)0.355 (3)
H21A0.3198720.4469790.4668230.118*0.355 (3)
H21B0.3339620.5189540.3381680.118*0.355 (3)
H21C0.3916440.5290290.4560360.118*0.355 (3)
C19A0.4187 (7)0.4572 (10)0.2595 (10)0.062 (3)0.438 (3)
H19D0.3768800.5121250.2430620.094*0.438 (3)
H19E0.4308230.4163430.1806230.094*0.438 (3)
H19F0.4604440.5058220.2921820.094*0.438 (3)
C21A0.3737 (7)0.4203 (14)0.4805 (11)0.090 (4)0.438 (3)
H21D0.3630480.3571730.5433640.134*0.438 (3)
H21E0.3297550.4688080.4596800.134*0.438 (3)
H21F0.4121780.4751300.5150610.134*0.438 (3)
C20A0.4737 (5)0.2868 (9)0.3916 (16)0.082 (3)0.438 (3)
H20D0.4883420.2420910.3164390.123*0.438 (3)
H20E0.4672910.2280130.4606510.123*0.438 (3)
H20F0.5113710.3470290.4173690.123*0.438 (3)
C21B0.3838 (14)0.4944 (10)0.322 (3)0.080 (5)0.206 (3)
H21G0.3489440.5300000.3790380.120*0.206 (3)
H21H0.3634540.4980020.2347970.120*0.206 (3)
H21I0.4292440.5416500.3289910.120*0.206 (3)
C19B0.4740 (8)0.315 (2)0.310 (3)0.083 (5)0.206 (3)
H19G0.4717090.3163580.2176250.125*0.206 (3)
H19H0.4847190.2302110.3396870.125*0.206 (3)
H19I0.5124290.3705500.3428800.125*0.206 (3)
C20B0.4044 (15)0.347 (2)0.5076 (8)0.069 (5)0.206 (3)
H20G0.4084590.2602550.5326200.103*0.206 (3)
H20H0.3606820.3832890.5419450.103*0.206 (3)
H20I0.4473990.3925690.5408960.103*0.206 (3)
H10.151 (3)0.055 (4)0.111 (5)0.082 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0643 (3)0.0739 (3)0.0832 (3)0.0135 (2)0.0217 (2)0.0037 (2)
O10.0565 (17)0.0467 (14)0.0685 (18)0.0075 (13)0.0172 (14)0.0028 (13)
N10.0446 (18)0.0564 (17)0.0586 (19)0.0014 (14)0.0115 (15)0.0028 (14)
C10.040 (2)0.0430 (18)0.0458 (19)0.0038 (15)0.0031 (15)0.0078 (15)
C20.049 (2)0.0384 (17)0.0389 (17)0.0003 (15)0.0021 (15)0.0060 (14)
C30.042 (2)0.0489 (19)0.0374 (17)0.0006 (15)0.0033 (14)0.0016 (15)
C40.047 (2)0.0424 (18)0.0409 (18)0.0037 (15)0.0032 (15)0.0016 (14)
C50.052 (2)0.0377 (18)0.059 (2)0.0018 (15)0.0071 (18)0.0008 (15)
C60.041 (2)0.0441 (18)0.051 (2)0.0022 (15)0.0058 (16)0.0030 (15)
C70.053 (2)0.0462 (19)0.064 (2)0.0031 (17)0.0114 (19)0.0031 (17)
C80.044 (2)0.055 (2)0.052 (2)0.0030 (17)0.0072 (16)0.0024 (17)
C90.054 (3)0.097 (3)0.077 (3)0.025 (2)0.014 (2)0.031 (3)
C100.064 (3)0.085 (3)0.084 (3)0.020 (2)0.022 (2)0.034 (2)
C110.049 (2)0.060 (2)0.054 (2)0.0020 (18)0.0057 (17)0.0001 (18)
C120.042 (2)0.068 (2)0.080 (3)0.0089 (18)0.013 (2)0.005 (2)
C130.054 (3)0.054 (2)0.080 (3)0.0094 (18)0.014 (2)0.0076 (19)
C140.057 (2)0.0407 (18)0.052 (2)0.0003 (16)0.0017 (17)0.0005 (15)
C150.082 (3)0.051 (2)0.079 (3)0.006 (2)0.019 (2)0.012 (2)
C160.087 (3)0.047 (2)0.064 (3)0.008 (2)0.002 (2)0.0078 (18)
C170.079 (3)0.052 (2)0.069 (3)0.008 (2)0.009 (2)0.0049 (19)
C180.055 (2)0.051 (2)0.049 (2)0.0173 (17)0.0085 (17)0.0019 (16)
C190.073 (9)0.095 (9)0.073 (7)0.041 (7)0.000 (7)0.007 (7)
C200.091 (9)0.093 (8)0.059 (7)0.048 (7)0.031 (7)0.011 (7)
C210.089 (8)0.073 (7)0.074 (8)0.035 (6)0.004 (7)0.034 (7)
C19A0.063 (7)0.068 (7)0.057 (5)0.023 (5)0.012 (5)0.007 (5)
C21A0.099 (8)0.112 (9)0.058 (6)0.056 (7)0.010 (6)0.026 (6)
C20A0.069 (6)0.082 (6)0.092 (8)0.034 (5)0.033 (6)0.017 (7)
C21B0.093 (10)0.078 (9)0.067 (10)0.047 (9)0.012 (9)0.002 (9)
C19B0.075 (9)0.104 (10)0.072 (10)0.046 (9)0.011 (9)0.013 (9)
C20B0.071 (11)0.075 (10)0.059 (9)0.040 (9)0.005 (8)0.021 (8)
Geometric parameters (Å, º) top
Br1—C111.8794 (16)C17—H17C0.9600
O1—C11.353 (4)C18—C191.517 (7)
O1—H10.83 (5)C18—C201.527 (7)
N1—C71.272 (5)C18—C211.558 (7)
N1—C81.425 (3)C18—C19A1.538 (6)
C1—C21.404 (5)C18—C21A1.512 (7)
C1—C61.406 (4)C18—C20A1.557 (7)
C2—C31.386 (4)C18—C21B1.528 (8)
C2—C141.543 (4)C18—C19B1.535 (8)
C3—H30.9300C18—C20B1.535 (8)
C3—C41.403 (4)C19—H19A0.9600
C4—C51.372 (5)C19—H19B0.9600
C4—C181.526 (4)C19—H19C0.9600
C5—H50.9300C20—H20A0.9600
C5—C61.390 (5)C20—H20B0.9600
C6—C71.454 (5)C20—H20C0.9600
C7—H70.9300C21—H21A0.9600
C8—C91.3900C21—H21B0.9600
C8—C131.3900C21—H21C0.9600
C9—H90.9300C19A—H19D0.9600
C9—C101.3900C19A—H19E0.9600
C10—H100.9300C19A—H19F0.9600
C10—C111.3900C21A—H21D0.9600
C11—C121.3900C21A—H21E0.9600
C12—H120.9300C21A—H21F0.9600
C12—C131.3900C20A—H20D0.9600
C13—H130.9300C20A—H20E0.9600
C14—C151.527 (5)C20A—H20F0.9600
C14—C161.541 (5)C21B—H21G0.9600
C14—C171.532 (5)C21B—H21H0.9600
C15—H15A0.9600C21B—H21I0.9600
C15—H15B0.9600C19B—H19G0.9600
C15—H15C0.9600C19B—H19H0.9600
C16—H16A0.9600C19B—H19I0.9600
C16—H16B0.9600C20B—H20G0.9600
C16—H16C0.9600C20B—H20H0.9600
C17—H17A0.9600C20B—H20I0.9600
C17—H17B0.9600
C1—O1—H1106 (3)C4—C18—C21B113.3 (8)
C7—N1—C8119.8 (3)C4—C18—C19B107.6 (9)
O1—C1—C2120.3 (3)C4—C18—C20B109.4 (8)
O1—C1—C6119.8 (3)C19—C18—C4110.3 (6)
C2—C1—C6119.9 (3)C19—C18—C20111.7 (7)
C1—C2—C14121.6 (3)C19—C18—C21108.3 (7)
C3—C2—C1116.8 (3)C20—C18—C21106.2 (7)
C3—C2—C14121.6 (3)C19A—C18—C20A104.4 (6)
C2—C3—H3117.5C21A—C18—C4110.5 (5)
C2—C3—C4125.0 (3)C21A—C18—C19A110.0 (6)
C4—C3—H3117.5C21A—C18—C20A109.3 (6)
C3—C4—C18121.9 (3)C21B—C18—C19B110.2 (9)
C5—C4—C3116.0 (3)C21B—C18—C20B108.6 (8)
C5—C4—C18122.1 (3)C19B—C18—C20B107.6 (8)
C4—C5—H5118.9C18—C19—H19A109.5
C4—C5—C6122.3 (3)C18—C19—H19B109.5
C6—C5—H5118.9C18—C19—H19C109.5
C1—C6—C7121.6 (3)H19A—C19—H19B109.5
C5—C6—C1120.0 (3)H19A—C19—H19C109.5
C5—C6—C7118.4 (3)H19B—C19—H19C109.5
N1—C7—C6123.7 (3)C18—C20—H20A109.5
N1—C7—H7118.1C18—C20—H20B109.5
C6—C7—H7118.1C18—C20—H20C109.5
C9—C8—N1122.33 (19)H20A—C20—H20B109.5
C9—C8—C13120.0H20A—C20—H20C109.5
C13—C8—N1117.65 (19)H20B—C20—H20C109.5
C8—C9—H9120.0C18—C21—H21A109.5
C8—C9—C10120.0C18—C21—H21B109.5
C10—C9—H9120.0C18—C21—H21C109.5
C9—C10—H10120.0H21A—C21—H21B109.5
C9—C10—C11120.0H21A—C21—H21C109.5
C11—C10—H10120.0H21B—C21—H21C109.5
C10—C11—Br1119.25 (13)C18—C19A—H19D109.5
C12—C11—Br1120.75 (13)C18—C19A—H19E109.5
C12—C11—C10120.0C18—C19A—H19F109.5
C11—C12—H12120.0H19D—C19A—H19E109.5
C11—C12—C13120.0H19D—C19A—H19F109.5
C13—C12—H12120.0H19E—C19A—H19F109.5
C8—C13—H13120.0C18—C21A—H21D109.5
C12—C13—C8120.0C18—C21A—H21E109.5
C12—C13—H13120.0C18—C21A—H21F109.5
C15—C14—C2112.1 (3)H21D—C21A—H21E109.5
C15—C14—C16107.6 (3)H21D—C21A—H21F109.5
C15—C14—C17107.8 (3)H21E—C21A—H21F109.5
C16—C14—C2109.4 (3)C18—C20A—H20D109.5
C17—C14—C2109.6 (3)C18—C20A—H20E109.5
C17—C14—C16110.3 (3)C18—C20A—H20F109.5
C14—C15—H15A109.5H20D—C20A—H20E109.5
C14—C15—H15B109.5H20D—C20A—H20F109.5
C14—C15—H15C109.5H20E—C20A—H20F109.5
H15A—C15—H15B109.5C18—C21B—H21G109.5
H15A—C15—H15C109.5C18—C21B—H21H109.5
H15B—C15—H15C109.5C18—C21B—H21I109.5
C14—C16—H16A109.5H21G—C21B—H21H109.5
C14—C16—H16B109.5H21G—C21B—H21I109.5
C14—C16—H16C109.5H21H—C21B—H21I109.5
H16A—C16—H16B109.5C18—C19B—H19G109.5
H16A—C16—H16C109.5C18—C19B—H19H109.5
H16B—C16—H16C109.5C18—C19B—H19I109.5
C14—C17—H17A109.5H19G—C19B—H19H109.5
C14—C17—H17B109.5H19G—C19B—H19I109.5
C14—C17—H17C109.5H19H—C19B—H19I109.5
H17A—C17—H17B109.5C18—C20B—H20G109.5
H17A—C17—H17C109.5C18—C20B—H20H109.5
H17B—C17—H17C109.5C18—C20B—H20I109.5
C4—C18—C20113.4 (5)H20G—C20B—H20H109.5
C4—C18—C21106.6 (5)H20G—C20B—H20I109.5
C4—C18—C19A111.6 (5)H20H—C20B—H20I109.5
C4—C18—C20A110.8 (5)
Br1—C11—C12—C13179.89 (19)C3—C4—C18—C20B53.5 (12)
O1—C1—C2—C3179.7 (3)C4—C5—C6—C11.5 (5)
O1—C1—C2—C140.0 (5)C4—C5—C6—C7178.5 (3)
O1—C1—C6—C5178.9 (3)C5—C4—C18—C1969.2 (9)
O1—C1—C6—C71.2 (5)C5—C4—C18—C20164.6 (9)
N1—C8—C9—C10178.5 (3)C5—C4—C18—C2148.1 (8)
N1—C8—C13—C12178.6 (2)C5—C4—C18—C19A36.4 (7)
C1—C2—C3—C40.2 (5)C5—C4—C18—C21A86.4 (8)
C1—C2—C14—C15177.9 (3)C5—C4—C18—C20A152.3 (7)
C1—C2—C14—C1658.6 (4)C5—C4—C18—C21B5.3 (13)
C1—C2—C14—C1762.4 (4)C5—C4—C18—C19B116.9 (13)
C1—C6—C7—N10.8 (6)C5—C4—C18—C20B126.6 (12)
C2—C1—C6—C51.7 (5)C5—C6—C7—N1179.2 (4)
C2—C1—C6—C7178.3 (3)C6—C1—C2—C30.9 (5)
C2—C3—C4—C50.4 (5)C6—C1—C2—C14179.4 (3)
C2—C3—C4—C18179.5 (3)C7—N1—C8—C926.1 (4)
C3—C2—C14—C151.8 (5)C7—N1—C8—C13152.5 (3)
C3—C2—C14—C16121.1 (4)C8—N1—C7—C6178.7 (3)
C3—C2—C14—C17117.9 (4)C8—C9—C10—C110.0
C3—C4—C5—C60.4 (5)C9—C8—C13—C120.0
C3—C4—C18—C19110.7 (9)C9—C10—C11—Br1179.89 (19)
C3—C4—C18—C2015.5 (10)C9—C10—C11—C120.0
C3—C4—C18—C21132.0 (8)C10—C11—C12—C130.0
C3—C4—C18—C19A143.6 (6)C11—C12—C13—C80.0
C3—C4—C18—C21A93.6 (8)C13—C8—C9—C100.0
C3—C4—C18—C20A27.7 (7)C14—C2—C3—C4179.5 (3)
C3—C4—C18—C21B174.8 (13)C18—C4—C5—C6179.6 (3)
C3—C4—C18—C19B63.1 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.83 (5)1.84 (5)2.614 (4)154 (5)
(E)-6-{[(4-Bromophenyl)imino]methyl}-2,4-di-tert-butylphenol (3_250K) top
Crystal data top
C21H26BrNOF(000) = 808
Mr = 388.34Dx = 1.320 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.9642 (4) ÅCell parameters from 8503 reflections
b = 10.5593 (2) Åθ = 3.0–26.0°
c = 10.3153 (2) ŵ = 2.11 mm1
β = 92.535 (2)°T = 250 K
V = 1954.79 (8) Å3Needle, yellow
Z = 40.3 × 0.05 × 0.05 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
4650 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3079 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.048
Detector resolution: 10.3620 pixels mm-1θmax = 27.9°, θmin = 3.0°
ω and π scansh = 2323
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 913
Tmin = 0.690, Tmax = 1.000l = 1313
29546 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.040P)2 + 1.096P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4650 reflectionsΔρmax = 0.33 e Å3
278 parametersΔρmin = 0.36 e Å3
181 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Occupancies of the disordered tBu carbon atoms refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.13496 (2)0.44592 (3)0.28979 (3)0.05979 (13)
O10.17999 (10)0.01102 (17)0.15632 (19)0.0470 (4)
N10.11606 (11)0.2045 (2)0.0395 (2)0.0437 (5)
C10.23214 (13)0.0919 (2)0.2068 (2)0.0364 (5)
C20.28965 (13)0.0477 (2)0.2919 (2)0.0340 (5)
C30.34126 (13)0.1364 (2)0.3379 (2)0.0364 (5)
H30.3796780.1077820.3955000.044*
C40.34063 (13)0.2651 (2)0.3054 (2)0.0372 (5)
C50.28305 (13)0.3045 (2)0.2223 (2)0.0409 (6)
H50.2803420.3902990.1980770.049*
C60.22876 (13)0.2212 (2)0.1730 (2)0.0383 (5)
C70.16905 (14)0.2716 (2)0.0888 (2)0.0455 (6)
H70.1694820.3586420.0695650.055*
C80.05918 (7)0.26234 (15)0.04062 (16)0.0416 (6)
C90.07099 (7)0.37306 (17)0.10964 (19)0.0597 (8)
H90.1182930.4112700.1062260.072*
C100.01284 (9)0.42728 (15)0.18370 (18)0.0599 (8)
H100.0208220.5021600.2303790.072*
C110.05712 (8)0.37079 (15)0.18875 (16)0.0423 (6)
C120.06893 (7)0.26007 (15)0.11973 (18)0.0506 (7)
H120.1162340.2218610.1231440.061*
C130.01078 (9)0.20584 (13)0.04566 (17)0.0516 (7)
H130.0187630.1309680.0010110.062*
C140.29481 (14)0.0928 (2)0.3315 (2)0.0405 (6)
C150.36308 (16)0.1194 (3)0.4214 (3)0.0569 (7)
H15A0.3598100.0701530.5003280.085*
H15B0.4078990.0960850.3780320.085*
H15C0.3647940.2088290.4428040.085*
C160.30185 (17)0.1755 (2)0.2097 (3)0.0534 (7)
H16A0.3472670.1536610.1673720.080*
H16B0.2593020.1608600.1503840.080*
H16C0.3034070.2640800.2345740.080*
C170.22552 (16)0.1310 (3)0.4038 (3)0.0541 (7)
H17A0.1812990.1164780.3483620.081*
H17B0.2227510.0808010.4821140.081*
H17C0.2286480.2200860.4264790.081*
C180.40010 (14)0.3568 (2)0.3593 (2)0.0436 (6)
C190.4486 (6)0.3982 (12)0.2532 (8)0.069 (3)0.386 (3)
H19A0.4182790.4382770.1847900.104*0.386 (3)
H19B0.4737080.3251360.2185010.104*0.386 (3)
H19C0.4854120.4580750.2875710.104*0.386 (3)
C200.4426 (7)0.3056 (10)0.4780 (10)0.077 (3)0.386 (3)
H20A0.4729320.2343150.4533190.116*0.386 (3)
H20B0.4077160.2783110.5414530.116*0.386 (3)
H20C0.4745000.3715390.5154150.116*0.386 (3)
C210.3573 (5)0.4760 (8)0.4080 (13)0.075 (3)0.386 (3)
H21A0.3187680.4492140.4649800.113*0.386 (3)
H21B0.3348130.5208240.3342020.113*0.386 (3)
H21C0.3919880.5315900.4550700.113*0.386 (3)
C19A0.4199 (5)0.4574 (7)0.2594 (7)0.0543 (19)0.463 (3)
H19D0.3777810.5137520.2439430.081*0.463 (3)
H19E0.4317890.4163350.1787710.081*0.463 (3)
H19F0.4625930.5057420.2921920.081*0.463 (3)
C21A0.3752 (5)0.4193 (11)0.4800 (8)0.084 (3)0.463 (3)
H21D0.3652340.3551960.5443540.126*0.463 (3)
H21E0.3302510.4675930.4601850.126*0.463 (3)
H21F0.4141050.4755470.5138680.126*0.463 (3)
C20A0.4755 (4)0.2863 (7)0.3895 (12)0.076 (2)0.463 (3)
H20D0.4891170.2387280.3136550.113*0.463 (3)
H20E0.4699010.2286920.4616980.113*0.463 (3)
H20F0.5141260.3476200.4118210.113*0.463 (3)
C21B0.3856 (14)0.4933 (10)0.318 (3)0.071 (5)0.151 (3)
H21G0.3393290.5222070.3532660.107*0.151 (3)
H21H0.3819790.4983960.2243380.107*0.151 (3)
H21I0.4262860.5464090.3511300.107*0.151 (3)
C19B0.4755 (7)0.312 (2)0.313 (3)0.075 (5)0.151 (3)
H19G0.4742170.3118910.2186830.112*0.151 (3)
H19H0.4858710.2277260.3450640.112*0.151 (3)
H19I0.5142750.3697400.3451240.112*0.151 (3)
C20B0.4040 (16)0.349 (3)0.5075 (7)0.070 (5)0.151 (3)
H20G0.4118320.2623140.5343730.104*0.151 (3)
H20H0.3575890.3802160.5405830.104*0.151 (3)
H20I0.4449100.4013180.5415080.104*0.151 (3)
H10.1498 (19)0.055 (3)0.112 (3)0.071 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05142 (18)0.05850 (19)0.0676 (2)0.01114 (13)0.01808 (14)0.00286 (15)
O10.0448 (10)0.0370 (9)0.0577 (12)0.0065 (8)0.0160 (9)0.0026 (9)
N10.0388 (11)0.0437 (12)0.0475 (12)0.0004 (9)0.0092 (9)0.0021 (10)
C10.0342 (12)0.0359 (12)0.0387 (13)0.0041 (10)0.0015 (10)0.0065 (10)
C20.0375 (12)0.0332 (12)0.0314 (11)0.0008 (10)0.0015 (9)0.0042 (10)
C30.0366 (12)0.0397 (13)0.0323 (12)0.0000 (10)0.0042 (10)0.0006 (10)
C40.0406 (13)0.0365 (12)0.0340 (12)0.0054 (10)0.0044 (10)0.0035 (10)
C50.0446 (14)0.0309 (12)0.0463 (14)0.0028 (10)0.0086 (11)0.0017 (10)
C60.0374 (12)0.0346 (12)0.0422 (14)0.0015 (10)0.0069 (10)0.0033 (10)
C70.0477 (15)0.0362 (13)0.0515 (16)0.0015 (11)0.0106 (12)0.0043 (11)
C80.0366 (13)0.0432 (14)0.0443 (14)0.0013 (11)0.0076 (11)0.0021 (11)
C90.0399 (15)0.075 (2)0.0626 (18)0.0172 (14)0.0110 (13)0.0220 (16)
C100.0523 (17)0.0634 (18)0.0623 (18)0.0147 (14)0.0159 (14)0.0260 (15)
C110.0397 (13)0.0445 (14)0.0422 (14)0.0018 (11)0.0047 (11)0.0030 (11)
C120.0357 (13)0.0524 (16)0.0627 (18)0.0057 (12)0.0084 (12)0.0023 (13)
C130.0468 (15)0.0446 (15)0.0620 (18)0.0061 (12)0.0131 (13)0.0075 (13)
C140.0463 (14)0.0335 (12)0.0412 (14)0.0006 (11)0.0030 (11)0.0004 (10)
C150.0627 (18)0.0414 (15)0.0649 (19)0.0038 (13)0.0163 (15)0.0113 (13)
C160.0692 (19)0.0375 (14)0.0534 (17)0.0063 (13)0.0024 (14)0.0044 (12)
C170.0650 (18)0.0431 (15)0.0544 (17)0.0053 (13)0.0061 (14)0.0041 (13)
C180.0476 (14)0.0432 (14)0.0392 (14)0.0143 (11)0.0086 (11)0.0020 (11)
C190.059 (6)0.090 (7)0.059 (5)0.033 (5)0.006 (4)0.007 (5)
C200.080 (6)0.085 (6)0.062 (5)0.051 (5)0.040 (5)0.019 (5)
C210.077 (6)0.067 (6)0.080 (6)0.022 (5)0.005 (5)0.040 (5)
C19A0.052 (5)0.059 (5)0.052 (4)0.020 (3)0.001 (3)0.002 (4)
C21A0.084 (6)0.116 (8)0.053 (5)0.056 (5)0.015 (4)0.037 (5)
C20A0.051 (4)0.066 (4)0.106 (7)0.025 (3)0.033 (4)0.021 (5)
C21B0.075 (9)0.073 (9)0.063 (9)0.043 (8)0.018 (8)0.003 (8)
C19B0.064 (9)0.090 (9)0.070 (10)0.039 (8)0.007 (9)0.012 (9)
C20B0.069 (10)0.069 (10)0.070 (9)0.037 (9)0.008 (9)0.019 (8)
Geometric parameters (Å, º) top
Br1—C111.8821 (11)C17—H17C0.9700
O1—C11.354 (3)C18—C191.494 (6)
O1—H10.84 (3)C18—C201.514 (6)
N1—C71.275 (3)C18—C211.569 (6)
N1—C81.423 (2)C18—C19A1.533 (5)
C1—C21.405 (3)C18—C21A1.495 (5)
C1—C61.410 (3)C18—C20A1.564 (5)
C2—C31.386 (3)C18—C21B1.522 (7)
C2—C141.541 (3)C18—C19B1.531 (7)
C3—H30.9400C18—C20B1.529 (7)
C3—C41.401 (3)C19—H19A0.9700
C4—C51.378 (3)C19—H19B0.9700
C4—C181.528 (3)C19—H19C0.9700
C5—H50.9400C20—H20A0.9700
C5—C61.393 (3)C20—H20B0.9700
C6—C71.451 (3)C20—H20C0.9700
C7—H70.9400C21—H21A0.9700
C8—C91.3900C21—H21B0.9700
C8—C131.3900C21—H21C0.9700
C9—H90.9400C19A—H19D0.9700
C9—C101.3900C19A—H19E0.9700
C10—H100.9400C19A—H19F0.9700
C10—C111.3900C21A—H21D0.9700
C11—C121.3900C21A—H21E0.9700
C12—H120.9400C21A—H21F0.9700
C12—C131.3900C20A—H20D0.9700
C13—H130.9400C20A—H20E0.9700
C14—C151.530 (3)C20A—H20F0.9700
C14—C161.540 (4)C21B—H21G0.9700
C14—C171.533 (4)C21B—H21H0.9700
C15—H15A0.9700C21B—H21I0.9700
C15—H15B0.9700C19B—H19G0.9700
C15—H15C0.9700C19B—H19H0.9700
C16—H16A0.9700C19B—H19I0.9700
C16—H16B0.9700C20B—H20G0.9700
C16—H16C0.9700C20B—H20H0.9700
C17—H17A0.9700C20B—H20I0.9700
C17—H17B0.9700
C1—O1—H1106 (2)C4—C18—C20B109.4 (9)
C7—N1—C8119.8 (2)C19—C18—C4109.9 (4)
O1—C1—C2120.5 (2)C19—C18—C20114.0 (5)
O1—C1—C6119.6 (2)C19—C18—C21108.0 (6)
C2—C1—C6119.9 (2)C20—C18—C4112.8 (4)
C1—C2—C14121.3 (2)C20—C18—C21105.3 (5)
C3—C2—C1116.9 (2)C19A—C18—C20A103.9 (4)
C3—C2—C14121.8 (2)C21A—C18—C4110.7 (3)
C2—C3—H3117.5C21A—C18—C19A109.9 (5)
C2—C3—C4125.1 (2)C21A—C18—C20A109.4 (5)
C4—C3—H3117.5C21B—C18—C4113.0 (8)
C3—C4—C18122.0 (2)C21B—C18—C19B110.2 (9)
C5—C4—C3116.1 (2)C21B—C18—C20B109.0 (8)
C5—C4—C18121.9 (2)C20B—C18—C19B107.2 (8)
C4—C5—H5119.0C18—C19—H19A109.5
C4—C5—C6122.0 (2)C18—C19—H19B109.5
C6—C5—H5119.0C18—C19—H19C109.5
C1—C6—C7121.7 (2)H19A—C19—H19B109.5
C5—C6—C1120.0 (2)H19A—C19—H19C109.5
C5—C6—C7118.3 (2)H19B—C19—H19C109.5
N1—C7—C6123.6 (2)C18—C20—H20A109.5
N1—C7—H7118.2C18—C20—H20B109.5
C6—C7—H7118.2C18—C20—H20C109.5
C9—C8—N1122.45 (13)H20A—C20—H20B109.5
C9—C8—C13120.0H20A—C20—H20C109.5
C13—C8—N1117.53 (13)H20B—C20—H20C109.5
C8—C9—H9120.0C18—C21—H21A109.5
C8—C9—C10120.0C18—C21—H21B109.5
C10—C9—H9120.0C18—C21—H21C109.5
C9—C10—H10120.0H21A—C21—H21B109.5
C11—C10—C9120.0H21A—C21—H21C109.5
C11—C10—H10120.0H21B—C21—H21C109.5
C10—C11—Br1119.22 (9)C18—C19A—H19D109.5
C10—C11—C12120.0C18—C19A—H19E109.5
C12—C11—Br1120.78 (9)C18—C19A—H19F109.5
C11—C12—H12120.0H19D—C19A—H19E109.5
C13—C12—C11120.0H19D—C19A—H19F109.5
C13—C12—H12120.0H19E—C19A—H19F109.5
C8—C13—H13120.0C18—C21A—H21D109.5
C12—C13—C8120.0C18—C21A—H21E109.5
C12—C13—H13120.0C18—C21A—H21F109.5
C15—C14—C2112.0 (2)H21D—C21A—H21E109.5
C15—C14—C16107.3 (2)H21D—C21A—H21F109.5
C15—C14—C17107.7 (2)H21E—C21A—H21F109.5
C16—C14—C2109.6 (2)C18—C20A—H20D109.5
C17—C14—C2110.0 (2)C18—C20A—H20E109.5
C17—C14—C16110.2 (2)C18—C20A—H20F109.5
C14—C15—H15A109.5H20D—C20A—H20E109.5
C14—C15—H15B109.5H20D—C20A—H20F109.5
C14—C15—H15C109.5H20E—C20A—H20F109.5
H15A—C15—H15B109.5C18—C21B—H21G109.5
H15A—C15—H15C109.5C18—C21B—H21H109.5
H15B—C15—H15C109.5C18—C21B—H21I109.5
C14—C16—H16A109.5H21G—C21B—H21H109.5
C14—C16—H16B109.5H21G—C21B—H21I109.5
C14—C16—H16C109.5H21H—C21B—H21I109.5
H16A—C16—H16B109.5C18—C19B—H19G109.5
H16A—C16—H16C109.5C18—C19B—H19H109.5
H16B—C16—H16C109.5C18—C19B—H19I109.5
C14—C17—H17A109.5H19G—C19B—H19H109.5
C14—C17—H17B109.5H19G—C19B—H19I109.5
C14—C17—H17C109.5H19H—C19B—H19I109.5
H17A—C17—H17B109.5C18—C20B—H20G109.5
H17A—C17—H17C109.5C18—C20B—H20H109.5
H17B—C17—H17C109.5C18—C20B—H20I109.5
C4—C18—C21106.3 (4)H20G—C20B—H20H109.5
C4—C18—C19A111.9 (3)H20G—C20B—H20I109.5
C4—C18—C20A110.8 (3)H20H—C20B—H20I109.5
C4—C18—C19B107.8 (9)
Br1—C11—C12—C13179.96 (13)C3—C4—C18—C20B54.6 (13)
O1—C1—C2—C3179.2 (2)C4—C5—C6—C10.7 (4)
O1—C1—C2—C140.7 (3)C4—C5—C6—C7178.4 (2)
O1—C1—C6—C5178.6 (2)C5—C4—C18—C1969.7 (6)
O1—C1—C6—C72.3 (4)C5—C4—C18—C20161.9 (7)
N1—C8—C9—C10178.29 (18)C5—C4—C18—C2147.0 (6)
N1—C8—C13—C12178.37 (17)C5—C4—C18—C19A36.3 (5)
C1—C2—C3—C40.5 (4)C5—C4—C18—C21A86.7 (7)
C1—C2—C14—C15178.3 (2)C5—C4—C18—C20A151.7 (5)
C1—C2—C14—C1659.3 (3)C5—C4—C18—C21B3.6 (13)
C1—C2—C14—C1762.0 (3)C5—C4—C18—C19B118.5 (13)
C1—C6—C7—N10.1 (4)C5—C4—C18—C20B125.2 (13)
C2—C1—C6—C51.0 (4)C5—C6—C7—N1179.2 (3)
C2—C1—C6—C7178.0 (2)C6—C1—C2—C30.4 (3)
C2—C3—C4—C50.9 (4)C6—C1—C2—C14179.7 (2)
C2—C3—C4—C18179.4 (2)C7—N1—C8—C925.9 (3)
C3—C2—C14—C151.6 (3)C7—N1—C8—C13152.4 (2)
C3—C2—C14—C16120.6 (2)C8—N1—C7—C6179.1 (2)
C3—C2—C14—C17118.1 (2)C8—C9—C10—C110.0
C3—C4—C5—C60.2 (4)C9—C8—C13—C120.0
C3—C4—C18—C19110.6 (6)C9—C10—C11—Br1179.96 (13)
C3—C4—C18—C2017.8 (7)C9—C10—C11—C120.0
C3—C4—C18—C21132.7 (6)C10—C11—C12—C130.0
C3—C4—C18—C19A144.0 (5)C11—C12—C13—C80.0
C3—C4—C18—C21A93.0 (6)C13—C8—C9—C100.0
C3—C4—C18—C20A28.6 (6)C14—C2—C3—C4179.4 (2)
C3—C4—C18—C21B176.2 (13)C18—C4—C5—C6180.0 (2)
C3—C4—C18—C19B61.8 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (3)1.83 (3)2.612 (3)154 (3)
(E)-6-{[(4-Bromophenyl)imino]methyl}-2,4-di-tert-butylphenol (3_200K) top
Crystal data top
C21H26BrNOF(000) = 808
Mr = 388.34Dx = 1.332 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.8944 (4) ÅCell parameters from 9913 reflections
b = 10.54749 (18) Åθ = 3.0–31.3°
c = 10.2693 (2) ŵ = 2.13 mm1
β = 92.1529 (18)°T = 200 K
V = 1936.88 (6) Å3Needle, yellow
Z = 40.3 × 0.05 × 0.05 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
4612 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3377 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.043
Detector resolution: 10.3620 pixels mm-1θmax = 27.9°, θmin = 3.0°
ω and π scansh = 2323
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 913
Tmin = 0.660, Tmax = 1.000l = 1313
29301 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0313P)2 + 1.206P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4612 reflectionsΔρmax = 0.37 e Å3
290 parametersΔρmin = 0.31 e Å3
175 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Occupancies of the disordered tBu carbon atoms refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.13556 (2)0.44640 (2)0.28995 (2)0.04650 (10)
O10.17988 (9)0.01054 (15)0.15601 (16)0.0379 (4)
N10.11607 (10)0.20409 (17)0.03889 (18)0.0354 (4)
C10.23210 (11)0.09160 (19)0.2063 (2)0.0287 (4)
C20.28944 (11)0.04716 (18)0.29217 (19)0.0274 (4)
C30.34128 (11)0.13600 (19)0.33857 (19)0.0291 (4)
H30.3795900.1074160.3964630.035*
C40.34078 (11)0.26462 (19)0.3057 (2)0.0304 (4)
C50.28338 (12)0.3045 (2)0.2222 (2)0.0333 (5)
H50.2808580.3903400.1979990.040*
C60.22893 (11)0.22103 (19)0.1727 (2)0.0312 (5)
C70.16915 (12)0.2718 (2)0.0883 (2)0.0365 (5)
H70.1695410.3589740.0691460.044*
C80.05886 (11)0.2631 (2)0.0404 (2)0.0330 (5)
C90.07038 (13)0.3723 (2)0.1112 (2)0.0464 (6)
H90.1181080.4096120.1098930.056*
C100.01246 (14)0.4272 (2)0.1839 (2)0.0467 (6)
H100.0203020.5025490.2302380.056*
C110.05682 (12)0.3704 (2)0.1877 (2)0.0331 (5)
C120.06943 (12)0.2601 (2)0.1206 (2)0.0392 (5)
H120.1168410.2215780.1244180.047*
C130.01093 (12)0.2067 (2)0.0474 (2)0.0399 (5)
H130.0188180.1309380.0016870.048*
C140.29444 (12)0.09343 (19)0.3321 (2)0.0318 (5)
C150.36238 (14)0.1201 (2)0.4229 (2)0.0450 (6)
H15A0.3588050.0702170.5017430.068*
H15B0.4076930.0974670.3793970.068*
H15C0.3637090.2094880.4449880.068*
C160.30236 (14)0.1762 (2)0.2099 (2)0.0426 (6)
H16A0.3483260.1544860.1679730.064*
H16B0.2601230.1613630.1498400.064*
H16C0.3036150.2648930.2348420.064*
C170.22445 (14)0.1320 (2)0.4042 (2)0.0422 (5)
H17A0.1803750.1179000.3482240.063*
H17B0.2210440.0814720.4827080.063*
H17C0.2276580.2210520.4274020.063*
C180.40043 (12)0.3569 (2)0.3594 (2)0.0359 (5)
C190.4494 (4)0.3964 (9)0.2530 (6)0.060 (2)0.432 (3)
H19A0.4192240.4345540.1830930.090*0.432 (3)
H19B0.4751820.3227690.2201510.090*0.432 (3)
H19C0.4858060.4575030.2864180.090*0.432 (3)
C200.4421 (5)0.3068 (7)0.4791 (7)0.067 (2)0.432 (3)
H20A0.4708730.2327560.4559850.100*0.432 (3)
H20B0.4066580.2837780.5442080.100*0.432 (3)
H20C0.4755980.3718050.5139830.100*0.432 (3)
C210.3577 (4)0.4777 (6)0.4080 (10)0.068 (2)0.432 (3)
H21A0.3202730.4520440.4687040.101*0.432 (3)
H21B0.3334710.5201760.3340440.101*0.432 (3)
H21C0.3929800.5350390.4511710.101*0.432 (3)
C19A0.4210 (4)0.4572 (6)0.2589 (6)0.0447 (16)0.458 (3)
H19D0.3787880.5134690.2425840.067*0.458 (3)
H19E0.4336330.4158000.1782870.067*0.458 (3)
H19F0.4635730.5058650.2921260.067*0.458 (3)
C21A0.3759 (5)0.4188 (10)0.4805 (7)0.073 (3)0.458 (3)
H21D0.3656670.3544210.5449600.110*0.458 (3)
H21E0.3309540.4677190.4614650.110*0.458 (3)
H21F0.4151640.4745210.5143270.110*0.458 (3)
C20A0.4763 (3)0.2850 (6)0.3889 (10)0.065 (2)0.458 (3)
H20D0.4901750.2383370.3120730.097*0.458 (3)
H20E0.4702600.2264150.4605670.097*0.458 (3)
H20F0.5151450.3458680.4122150.097*0.458 (3)
C21B0.3904 (16)0.4917 (12)0.309 (3)0.062 (5)0.110 (3)
H21G0.3439130.5261150.3397400.093*0.110 (3)
H21H0.3890100.4913380.2148260.093*0.110 (3)
H21I0.4318660.5435540.3415130.093*0.110 (3)
C19B0.4768 (9)0.306 (3)0.322 (3)0.061 (5)0.110 (3)
H19G0.4745750.2804740.2311220.091*0.110 (3)
H19H0.4899190.2331590.3760590.091*0.110 (3)
H19I0.5143100.3714530.3350790.091*0.110 (3)
C20B0.3986 (19)0.356 (3)0.5076 (8)0.064 (6)0.110 (3)
H20G0.4058180.2703240.5394200.096*0.110 (3)
H20H0.3505450.3876700.5342740.096*0.110 (3)
H20I0.4381050.4101580.5434790.096*0.110 (3)
H10.1506 (16)0.053 (3)0.111 (3)0.057 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04069 (14)0.04521 (15)0.05239 (16)0.00871 (11)0.01424 (10)0.00238 (11)
O10.0360 (9)0.0294 (8)0.0470 (10)0.0040 (7)0.0140 (7)0.0028 (7)
N10.0320 (9)0.0352 (10)0.0384 (10)0.0016 (8)0.0078 (8)0.0019 (8)
C10.0268 (10)0.0290 (10)0.0300 (11)0.0029 (8)0.0013 (8)0.0059 (8)
C20.0304 (10)0.0269 (10)0.0251 (10)0.0010 (8)0.0014 (8)0.0031 (8)
C30.0293 (10)0.0316 (11)0.0260 (10)0.0003 (8)0.0033 (8)0.0002 (8)
C40.0321 (11)0.0298 (11)0.0289 (11)0.0053 (9)0.0037 (8)0.0025 (9)
C50.0368 (12)0.0252 (10)0.0371 (12)0.0026 (9)0.0071 (9)0.0010 (9)
C60.0309 (11)0.0291 (10)0.0332 (11)0.0023 (9)0.0054 (9)0.0033 (9)
C70.0391 (12)0.0294 (11)0.0404 (13)0.0025 (9)0.0086 (10)0.0038 (9)
C80.0309 (11)0.0351 (11)0.0324 (11)0.0022 (9)0.0068 (9)0.0019 (9)
C90.0314 (12)0.0574 (16)0.0494 (15)0.0131 (11)0.0088 (10)0.0163 (12)
C100.0435 (13)0.0501 (14)0.0457 (14)0.0115 (11)0.0103 (11)0.0199 (11)
C110.0313 (11)0.0355 (12)0.0322 (11)0.0031 (9)0.0043 (9)0.0018 (9)
C120.0278 (11)0.0398 (12)0.0494 (14)0.0036 (9)0.0061 (10)0.0015 (11)
C130.0389 (13)0.0331 (12)0.0470 (14)0.0043 (10)0.0098 (10)0.0046 (10)
C140.0364 (11)0.0262 (10)0.0325 (11)0.0003 (9)0.0016 (9)0.0003 (9)
C150.0496 (14)0.0324 (12)0.0520 (15)0.0026 (11)0.0128 (11)0.0088 (11)
C160.0553 (15)0.0298 (11)0.0428 (13)0.0051 (11)0.0016 (11)0.0052 (10)
C170.0512 (14)0.0336 (12)0.0421 (13)0.0040 (10)0.0047 (11)0.0037 (10)
C180.0400 (12)0.0354 (11)0.0317 (11)0.0123 (10)0.0075 (9)0.0023 (9)
C190.050 (5)0.083 (6)0.049 (4)0.031 (4)0.006 (3)0.009 (4)
C200.080 (5)0.069 (5)0.049 (4)0.044 (4)0.036 (4)0.015 (4)
C210.065 (4)0.055 (4)0.082 (5)0.020 (4)0.005 (4)0.036 (4)
C19A0.042 (4)0.050 (4)0.042 (3)0.019 (3)0.000 (3)0.004 (3)
C21A0.074 (5)0.101 (7)0.046 (4)0.052 (5)0.016 (4)0.035 (4)
C20A0.040 (3)0.053 (4)0.098 (6)0.021 (3)0.034 (4)0.021 (4)
C21B0.064 (10)0.066 (9)0.055 (9)0.038 (8)0.010 (8)0.002 (9)
C19B0.054 (9)0.071 (9)0.058 (10)0.032 (8)0.008 (9)0.008 (9)
C20B0.070 (11)0.065 (12)0.056 (10)0.037 (10)0.001 (10)0.037 (9)
Geometric parameters (Å, º) top
Br1—C111.902 (2)C17—H17C0.9700
O1—C11.355 (2)C18—C191.485 (5)
O1—H10.82 (3)C18—C201.509 (5)
N1—C71.278 (3)C18—C211.576 (5)
N1—C81.427 (3)C18—C19A1.533 (5)
C1—C21.408 (3)C18—C21A1.486 (5)
C1—C61.409 (3)C18—C20A1.574 (5)
C2—C31.390 (3)C18—C21B1.520 (7)
C2—C141.540 (3)C18—C19B1.531 (7)
C3—H30.9400C18—C20B1.524 (7)
C3—C41.398 (3)C19—H19A0.9700
C4—C51.378 (3)C19—H19B0.9700
C4—C181.532 (3)C19—H19C0.9700
C5—H50.9400C20—H20A0.9700
C5—C61.395 (3)C20—H20B0.9700
C6—C71.454 (3)C20—H20C0.9700
C7—H70.9400C21—H21A0.9700
C8—C91.382 (3)C21—H21B0.9700
C8—C131.383 (3)C21—H21C0.9700
C9—H90.9400C19A—H19D0.9700
C9—C101.381 (3)C19A—H19E0.9700
C10—H100.9400C19A—H19F0.9700
C10—C111.376 (3)C21A—H21D0.9700
C11—C121.376 (3)C21A—H21E0.9700
C12—H120.9400C21A—H21F0.9700
C12—C131.385 (3)C20A—H20D0.9700
C13—H130.9400C20A—H20E0.9700
C14—C151.530 (3)C20A—H20F0.9700
C14—C161.540 (3)C21B—H21G0.9700
C14—C171.534 (3)C21B—H21H0.9700
C15—H15A0.9700C21B—H21I0.9700
C15—H15B0.9700C19B—H19G0.9700
C15—H15C0.9700C19B—H19H0.9700
C16—H16A0.9700C19B—H19I0.9700
C16—H16B0.9700C20B—H20G0.9700
C16—H16C0.9700C20B—H20H0.9700
C17—H17A0.9700C20B—H20I0.9700
C17—H17B0.9700
C1—O1—H1106 (2)C19—C18—C20114.2 (5)
C7—N1—C8119.31 (19)C19—C18—C21108.3 (5)
O1—C1—C2120.32 (18)C20—C18—C4112.8 (3)
O1—C1—C6119.82 (18)C20—C18—C21104.8 (4)
C2—C1—C6119.86 (18)C19A—C18—C20A103.6 (4)
C1—C2—C14121.40 (17)C21A—C18—C4110.9 (3)
C3—C2—C1116.84 (18)C21A—C18—C19A110.3 (4)
C3—C2—C14121.75 (18)C21A—C18—C20A109.3 (5)
C2—C3—H3117.5C21B—C18—C4113.6 (9)
C2—C3—C4124.96 (19)C21B—C18—C19B109.8 (9)
C4—C3—H3117.5C21B—C18—C20B109.6 (9)
C3—C4—C18122.10 (18)C19B—C18—C4107.6 (11)
C5—C4—C3116.36 (18)C20B—C18—C4108.4 (12)
C5—C4—C18121.54 (18)C20B—C18—C19B107.6 (9)
C4—C5—H5119.1C18—C19—H19A109.5
C4—C5—C6121.90 (19)C18—C19—H19B109.5
C6—C5—H5119.1C18—C19—H19C109.5
C1—C6—C7121.69 (18)H19A—C19—H19B109.5
C5—C6—C1120.07 (19)H19A—C19—H19C109.5
C5—C6—C7118.24 (19)H19B—C19—H19C109.5
N1—C7—C6123.4 (2)C18—C20—H20A109.5
N1—C7—H7118.3C18—C20—H20B109.5
C6—C7—H7118.3C18—C20—H20C109.5
C9—C8—N1123.07 (19)H20A—C20—H20B109.5
C9—C8—C13118.9 (2)H20A—C20—H20C109.5
C13—C8—N1118.0 (2)H20B—C20—H20C109.5
C8—C9—H9119.7C18—C21—H21A109.5
C10—C9—C8120.6 (2)C18—C21—H21B109.5
C10—C9—H9119.7C18—C21—H21C109.5
C9—C10—H10120.3H21A—C21—H21B109.5
C11—C10—C9119.4 (2)H21A—C21—H21C109.5
C11—C10—H10120.3H21B—C21—H21C109.5
C10—C11—Br1118.72 (17)C18—C19A—H19D109.5
C12—C11—Br1120.06 (16)C18—C19A—H19E109.5
C12—C11—C10121.2 (2)C18—C19A—H19F109.5
C11—C12—H12120.6H19D—C19A—H19E109.5
C11—C12—C13118.7 (2)H19D—C19A—H19F109.5
C13—C12—H12120.6H19E—C19A—H19F109.5
C8—C13—C12121.1 (2)C18—C21A—H21D109.5
C8—C13—H13119.5C18—C21A—H21E109.5
C12—C13—H13119.5C18—C21A—H21F109.5
C15—C14—C2112.09 (17)H21D—C21A—H21E109.5
C15—C14—C16107.28 (19)H21D—C21A—H21F109.5
C15—C14—C17107.55 (19)H21E—C21A—H21F109.5
C16—C14—C2109.58 (17)C18—C20A—H20D109.5
C17—C14—C2110.09 (17)C18—C20A—H20E109.5
C17—C14—C16110.19 (18)C18—C20A—H20F109.5
C14—C15—H15A109.5H20D—C20A—H20E109.5
C14—C15—H15B109.5H20D—C20A—H20F109.5
C14—C15—H15C109.5H20E—C20A—H20F109.5
H15A—C15—H15B109.5C18—C21B—H21G109.5
H15A—C15—H15C109.5C18—C21B—H21H109.5
H15B—C15—H15C109.5C18—C21B—H21I109.5
C14—C16—H16A109.5H21G—C21B—H21H109.5
C14—C16—H16B109.5H21G—C21B—H21I109.5
C14—C16—H16C109.5H21H—C21B—H21I109.5
H16A—C16—H16B109.5C18—C19B—H19G109.5
H16A—C16—H16C109.5C18—C19B—H19H109.5
H16B—C16—H16C109.5C18—C19B—H19I109.5
C14—C17—H17A109.5H19G—C19B—H19H109.5
C14—C17—H17B109.5H19G—C19B—H19I109.5
C14—C17—H17C109.5H19H—C19B—H19I109.5
H17A—C17—H17B109.5C18—C20B—H20G109.5
H17A—C17—H17C109.5C18—C20B—H20H109.5
H17B—C17—H17C109.5C18—C20B—H20I109.5
C4—C18—C21106.7 (3)H20G—C20B—H20H109.5
C4—C18—C19A112.2 (3)H20G—C20B—H20I109.5
C4—C18—C20A110.3 (3)H20H—C20B—H20I109.5
C19—C18—C4109.6 (3)
Br1—C11—C12—C13179.74 (17)C3—C4—C18—C20B59.0 (14)
O1—C1—C2—C3179.38 (18)C4—C5—C6—C10.8 (3)
O1—C1—C2—C140.4 (3)C4—C5—C6—C7178.2 (2)
O1—C1—C6—C5178.8 (2)C5—C4—C18—C1970.2 (5)
O1—C1—C6—C72.2 (3)C5—C4—C18—C20161.3 (5)
N1—C8—C9—C10178.3 (2)C5—C4—C18—C2146.8 (5)
N1—C8—C13—C12178.8 (2)C5—C4—C18—C19A36.5 (4)
C1—C2—C3—C40.5 (3)C5—C4—C18—C21A87.4 (6)
C1—C2—C14—C15178.41 (19)C5—C4—C18—C20A151.4 (4)
C1—C2—C14—C1659.4 (3)C5—C4—C18—C21B1.3 (14)
C1—C2—C14—C1761.9 (2)C5—C4—C18—C19B123.2 (13)
C1—C6—C7—N10.2 (4)C5—C4—C18—C20B120.8 (14)
C2—C1—C6—C51.4 (3)C5—C6—C7—N1179.2 (2)
C2—C1—C6—C7177.67 (19)C6—C1—C2—C30.7 (3)
C2—C3—C4—C51.0 (3)C6—C1—C2—C14179.51 (19)
C2—C3—C4—C18179.23 (19)C7—N1—C8—C927.6 (3)
C3—C2—C14—C151.3 (3)C7—N1—C8—C13153.2 (2)
C3—C2—C14—C16120.3 (2)C8—N1—C7—C6178.5 (2)
C3—C2—C14—C17118.3 (2)C8—C9—C10—C111.5 (4)
C3—C4—C5—C60.3 (3)C9—C8—C13—C121.9 (4)
C3—C4—C18—C19110.0 (5)C9—C10—C11—Br1179.26 (19)
C3—C4—C18—C2018.4 (5)C9—C10—C11—C120.1 (4)
C3—C4—C18—C21133.0 (4)C10—C11—C12—C130.6 (4)
C3—C4—C18—C19A143.7 (4)C11—C12—C13—C80.5 (4)
C3—C4—C18—C21A92.4 (5)C13—C8—C9—C102.4 (4)
C3—C4—C18—C20A28.8 (5)C14—C2—C3—C4179.3 (2)
C3—C4—C18—C21B178.9 (13)C18—C4—C5—C6179.9 (2)
C3—C4—C18—C19B57.0 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82 (3)1.85 (3)2.611 (2)153 (3)
(E)-6-{[(4-Bromophenyl)imino]methyl}-2,4-di-tert-butylphenol (3_150K) top
Crystal data top
C21H26BrNOF(000) = 808
Mr = 388.34Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.8028 (3) ÅCell parameters from 11397 reflections
b = 10.55679 (16) Åθ = 3.0–31.4°
c = 10.21910 (18) ŵ = 2.15 mm1
β = 91.6950 (16)°T = 150 K
V = 1919.74 (6) Å3Needle, yellow
Z = 40.3 × 0.05 × 0.05 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
4570 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3604 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.3620 pixels mm-1θmax = 27.9°, θmin = 3.0°
ω and π scansh = 2323
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 913
Tmin = 0.660, Tmax = 1.000l = 1313
28980 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0278P)2 + 1.2083P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4570 reflectionsΔρmax = 0.45 e Å3
258 parametersΔρmin = 0.36 e Å3
67 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Occupancies of the disordered tBu carbon atoms refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.13644 (2)0.44578 (2)0.29000 (2)0.03480 (8)
O10.18011 (8)0.01007 (13)0.15556 (14)0.0295 (3)
N10.11607 (9)0.20340 (15)0.03813 (16)0.0277 (4)
C10.23231 (10)0.09145 (17)0.20655 (18)0.0230 (4)
C20.28925 (10)0.04754 (16)0.29343 (17)0.0217 (4)
C30.34096 (10)0.13632 (17)0.34049 (17)0.0232 (4)
H30.3793820.1076620.3998300.028*
C40.34061 (10)0.26494 (17)0.30686 (18)0.0247 (4)
C50.28326 (11)0.30457 (17)0.22279 (19)0.0271 (4)
H50.2806560.3913100.1983180.032*
C60.22892 (10)0.22080 (17)0.17262 (18)0.0247 (4)
C70.16923 (11)0.27128 (18)0.08793 (19)0.0291 (4)
H70.1696240.3592680.0684510.035*
C80.05884 (10)0.26217 (18)0.04112 (18)0.0261 (4)
C90.07027 (11)0.3727 (2)0.1113 (2)0.0353 (5)
H90.1185090.4112340.1092020.042*
C100.01216 (12)0.4273 (2)0.1843 (2)0.0350 (5)
H100.0200810.5034800.2313930.042*
C110.05743 (10)0.36977 (18)0.18789 (18)0.0259 (4)
C120.07008 (11)0.25848 (19)0.1214 (2)0.0298 (4)
H120.1180980.2191780.1257270.036*
C130.01139 (11)0.20496 (19)0.0481 (2)0.0305 (4)
H130.0193700.1281410.0021710.037*
C140.29426 (11)0.09316 (17)0.33386 (18)0.0249 (4)
C150.36176 (12)0.11911 (19)0.4261 (2)0.0350 (5)
H15A0.3569280.0694180.5064120.052*
H15B0.4081070.0950730.3830360.052*
H15C0.3634760.2094800.4479380.052*
C160.30344 (12)0.17599 (18)0.2111 (2)0.0333 (5)
H16A0.3505750.1541390.1694030.050*
H16B0.2611650.1609900.1495060.050*
H16C0.3044310.2655140.2365230.050*
C170.22318 (12)0.13215 (19)0.4055 (2)0.0324 (4)
H17A0.1789290.1185330.3478830.049*
H17B0.2187750.0808730.4848290.049*
H17C0.2265100.2219110.4294180.049*
C180.40013 (11)0.35767 (18)0.36040 (18)0.0291 (4)
C190.4498 (3)0.3960 (7)0.2547 (5)0.0518 (15)0.535 (6)
H19A0.4197300.4348480.1835500.078*0.535 (6)
H19B0.4758170.3213280.2215530.078*0.535 (6)
H19C0.4867960.4572670.2887350.078*0.535 (6)
C200.4414 (3)0.3089 (5)0.4809 (5)0.060 (2)0.535 (6)
H20A0.4759160.3742830.5147320.091*0.535 (6)
H20B0.4700910.2330450.4584590.091*0.535 (6)
H20C0.4052190.2875850.5477930.091*0.535 (6)
C210.3570 (3)0.4798 (5)0.4092 (7)0.0605 (17)0.535 (6)
H21A0.3188370.4545940.4712260.091*0.535 (6)
H21B0.3327040.5224620.3340070.091*0.535 (6)
H21C0.3928980.5377450.4523830.091*0.535 (6)
C19A0.4198 (4)0.4608 (6)0.2615 (5)0.0440 (15)0.465 (6)
H19D0.3774740.5197080.2509930.066*0.465 (6)
H19E0.4299300.4215590.1768860.066*0.465 (6)
H19F0.4644240.5069860.2932420.066*0.465 (6)
C21A0.3786 (4)0.4101 (8)0.4865 (6)0.066 (2)0.465 (6)
H21D0.4196220.4626120.5225760.099*0.465 (6)
H21E0.3684310.3408140.5472620.099*0.465 (6)
H21F0.3333240.4620710.4740670.099*0.465 (6)
C20A0.4783 (3)0.2852 (5)0.3802 (8)0.057 (2)0.465 (6)
H20D0.5178750.3463250.4033870.086*0.465 (6)
H20E0.4906720.2420110.2986990.086*0.465 (6)
H20F0.4742320.2226980.4505170.086*0.465 (6)
H10.1492 (12)0.054 (2)0.109 (2)0.058 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03124 (12)0.03363 (12)0.03882 (13)0.00648 (9)0.01060 (8)0.00195 (9)
O10.0294 (7)0.0224 (7)0.0360 (8)0.0032 (6)0.0114 (6)0.0015 (6)
N10.0259 (8)0.0276 (8)0.0293 (9)0.0015 (7)0.0061 (7)0.0015 (7)
C10.0223 (9)0.0227 (9)0.0240 (9)0.0020 (7)0.0004 (7)0.0043 (7)
C20.0243 (9)0.0209 (8)0.0200 (8)0.0004 (7)0.0014 (7)0.0023 (7)
C30.0244 (9)0.0241 (9)0.0209 (9)0.0003 (7)0.0024 (7)0.0011 (7)
C40.0268 (9)0.0245 (9)0.0226 (9)0.0037 (8)0.0030 (7)0.0013 (7)
C50.0320 (10)0.0195 (9)0.0293 (10)0.0012 (8)0.0053 (8)0.0004 (7)
C60.0243 (9)0.0238 (9)0.0256 (9)0.0029 (7)0.0050 (7)0.0027 (7)
C70.0325 (10)0.0226 (9)0.0319 (10)0.0030 (8)0.0070 (8)0.0039 (8)
C80.0254 (9)0.0274 (10)0.0253 (9)0.0021 (8)0.0048 (8)0.0015 (8)
C90.0250 (10)0.0437 (12)0.0370 (11)0.0105 (9)0.0057 (9)0.0103 (10)
C100.0334 (11)0.0368 (11)0.0343 (11)0.0071 (9)0.0072 (9)0.0133 (9)
C110.0263 (9)0.0265 (9)0.0246 (9)0.0034 (8)0.0034 (7)0.0027 (8)
C120.0225 (9)0.0304 (10)0.0361 (11)0.0032 (8)0.0036 (8)0.0007 (8)
C130.0313 (10)0.0253 (10)0.0344 (11)0.0018 (8)0.0067 (8)0.0024 (8)
C140.0285 (10)0.0203 (8)0.0257 (9)0.0005 (8)0.0019 (8)0.0004 (7)
C150.0379 (11)0.0258 (10)0.0407 (12)0.0024 (9)0.0101 (9)0.0074 (9)
C160.0440 (12)0.0227 (9)0.0331 (11)0.0039 (9)0.0016 (9)0.0034 (8)
C170.0381 (11)0.0265 (10)0.0326 (11)0.0037 (9)0.0032 (9)0.0024 (8)
C180.0333 (10)0.0283 (10)0.0254 (10)0.0108 (8)0.0066 (8)0.0021 (8)
C190.045 (3)0.071 (4)0.039 (3)0.031 (3)0.006 (2)0.005 (3)
C200.072 (4)0.057 (3)0.050 (3)0.042 (3)0.039 (3)0.020 (3)
C210.051 (3)0.045 (3)0.085 (4)0.014 (2)0.004 (3)0.038 (3)
C19A0.044 (3)0.042 (3)0.046 (3)0.019 (3)0.010 (3)0.001 (3)
C21A0.059 (4)0.093 (5)0.045 (3)0.046 (4)0.012 (3)0.034 (4)
C20A0.031 (3)0.039 (3)0.100 (5)0.015 (2)0.025 (3)0.010 (3)
Geometric parameters (Å, º) top
Br1—C111.9039 (18)C15—H15C0.9800
O1—C11.358 (2)C16—H16A0.9800
O1—H10.855 (10)C16—H16B0.9800
N1—C71.280 (2)C16—H16C0.9800
N1—C81.425 (2)C17—H17A0.9800
C1—C21.406 (2)C17—H17B0.9800
C1—C61.410 (3)C17—H17C0.9800
C2—C31.390 (2)C18—C191.472 (4)
C2—C141.544 (2)C18—C201.506 (4)
C3—H30.9500C18—C211.588 (4)
C3—C41.401 (3)C18—C19A1.533 (5)
C4—C51.380 (3)C18—C21A1.464 (5)
C4—C181.532 (2)C18—C20A1.595 (4)
C5—H50.9500C19—H19A0.9800
C5—C61.397 (3)C19—H19B0.9800
C6—C71.452 (2)C19—H19C0.9800
C7—H70.9500C20—H20A0.9800
C8—C91.388 (3)C20—H20B0.9800
C8—C131.388 (3)C20—H20C0.9800
C9—H90.9500C21—H21A0.9800
C9—C101.383 (3)C21—H21B0.9800
C10—H100.9500C21—H21C0.9800
C10—C111.379 (3)C19A—H19D0.9800
C11—C121.379 (3)C19A—H19E0.9800
C12—H120.9500C19A—H19F0.9800
C12—C131.388 (3)C21A—H21D0.9800
C13—H130.9500C21A—H21E0.9800
C14—C151.530 (3)C21A—H21F0.9800
C14—C161.541 (3)C20A—H20D0.9800
C14—C171.537 (3)C20A—H20E0.9800
C15—H15A0.9800C20A—H20F0.9800
C15—H15B0.9800
C1—O1—H1107.2 (18)H16A—C16—H16C109.5
C7—N1—C8119.33 (17)H16B—C16—H16C109.5
O1—C1—C2120.40 (16)C14—C17—H17A109.5
O1—C1—C6119.64 (16)C14—C17—H17B109.5
C2—C1—C6119.96 (16)C14—C17—H17C109.5
C1—C2—C14121.40 (15)H17A—C17—H17B109.5
C3—C2—C1117.00 (16)H17A—C17—H17C109.5
C3—C2—C14121.59 (16)H17B—C17—H17C109.5
C2—C3—H3117.6C4—C18—C21107.2 (2)
C2—C3—C4124.81 (17)C4—C18—C19A112.8 (2)
C4—C3—H3117.6C4—C18—C20A109.3 (2)
C3—C4—C18122.27 (16)C19—C18—C4109.7 (2)
C5—C4—C3116.40 (16)C19—C18—C20113.8 (3)
C5—C4—C18121.33 (16)C19—C18—C21108.3 (4)
C4—C5—H5119.1C20—C18—C4112.9 (2)
C4—C5—C6121.89 (17)C20—C18—C21104.5 (3)
C6—C5—H5119.1C19A—C18—C20A102.1 (3)
C1—C6—C7121.83 (16)C21A—C18—C4111.1 (3)
C5—C6—C1119.92 (16)C21A—C18—C19A112.5 (4)
C5—C6—C7118.24 (17)C21A—C18—C20A108.7 (4)
N1—C7—C6123.42 (18)C18—C19—H19A109.5
N1—C7—H7118.3C18—C19—H19B109.5
C6—C7—H7118.3C18—C19—H19C109.5
C9—C8—N1123.13 (17)H19A—C19—H19B109.5
C9—C8—C13118.99 (17)H19A—C19—H19C109.5
C13—C8—N1117.89 (17)H19B—C19—H19C109.5
C8—C9—H9119.7C18—C20—H20A109.5
C10—C9—C8120.68 (18)C18—C20—H20B109.5
C10—C9—H9119.7C18—C20—H20C109.5
C9—C10—H10120.4H20A—C20—H20B109.5
C11—C10—C9119.19 (19)H20A—C20—H20C109.5
C11—C10—H10120.4H20B—C20—H20C109.5
C10—C11—Br1118.52 (15)C18—C21—H21A109.5
C12—C11—Br1120.01 (14)C18—C21—H21B109.5
C12—C11—C10121.45 (18)C18—C21—H21C109.5
C11—C12—H12120.6H21A—C21—H21B109.5
C11—C12—C13118.77 (18)H21A—C21—H21C109.5
C13—C12—H12120.6H21B—C21—H21C109.5
C8—C13—H13119.6C18—C19A—H19D109.5
C12—C13—C8120.89 (18)C18—C19A—H19E109.5
C12—C13—H13119.6C18—C19A—H19F109.5
C15—C14—C2112.05 (15)H19D—C19A—H19E109.5
C15—C14—C16107.42 (16)H19D—C19A—H19F109.5
C15—C14—C17107.54 (16)H19E—C19A—H19F109.5
C16—C14—C2109.56 (15)C18—C21A—H21D109.5
C17—C14—C2110.08 (15)C18—C21A—H21E109.5
C17—C14—C16110.13 (16)C18—C21A—H21F109.5
C14—C15—H15A109.5H21D—C21A—H21E109.5
C14—C15—H15B109.5H21D—C21A—H21F109.5
C14—C15—H15C109.5H21E—C21A—H21F109.5
H15A—C15—H15B109.5C18—C20A—H20D109.5
H15A—C15—H15C109.5C18—C20A—H20E109.5
H15B—C15—H15C109.5C18—C20A—H20F109.5
C14—C16—H16A109.5H20D—C20A—H20E109.5
C14—C16—H16B109.5H20D—C20A—H20F109.5
C14—C16—H16C109.5H20E—C20A—H20F109.5
H16A—C16—H16B109.5
Br1—C11—C12—C13179.77 (15)C3—C4—C18—C20A32.9 (4)
O1—C1—C2—C3179.43 (16)C4—C5—C6—C10.7 (3)
O1—C1—C2—C140.2 (3)C4—C5—C6—C7178.15 (18)
O1—C1—C6—C5178.80 (17)C5—C4—C18—C1970.7 (4)
O1—C1—C6—C72.4 (3)C5—C4—C18—C20161.2 (3)
N1—C8—C9—C10178.48 (19)C5—C4—C18—C2146.7 (4)
N1—C8—C13—C12178.72 (18)C5—C4—C18—C19A34.6 (4)
C1—C2—C3—C40.5 (3)C5—C4—C18—C21A92.7 (4)
C1—C2—C14—C15178.53 (17)C5—C4—C18—C20A147.4 (3)
C1—C2—C14—C1659.4 (2)C5—C6—C7—N1179.02 (19)
C1—C2—C14—C1761.8 (2)C6—C1—C2—C31.0 (3)
C1—C6—C7—N10.2 (3)C6—C1—C2—C14179.39 (17)
C2—C1—C6—C51.6 (3)C7—N1—C8—C927.0 (3)
C2—C1—C6—C7177.22 (17)C7—N1—C8—C13153.34 (19)
C2—C3—C4—C51.4 (3)C8—N1—C7—C6178.35 (17)
C2—C3—C4—C18178.92 (17)C8—C9—C10—C110.7 (3)
C3—C2—C14—C151.1 (2)C9—C8—C13—C121.6 (3)
C3—C2—C14—C16120.19 (19)C9—C10—C11—Br1179.53 (16)
C3—C2—C14—C17118.56 (19)C9—C10—C11—C120.7 (3)
C3—C4—C5—C60.7 (3)C10—C11—C12—C130.9 (3)
C3—C4—C18—C19109.7 (4)C11—C12—C13—C80.2 (3)
C3—C4—C18—C2018.5 (4)C13—C8—C9—C101.8 (3)
C3—C4—C18—C21133.0 (3)C14—C2—C3—C4179.08 (17)
C3—C4—C18—C19A145.7 (4)C18—C4—C5—C6179.59 (18)
C3—C4—C18—C21A86.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (1)1.83 (2)2.612 (2)152 (3)
(E)-6-{[(4-Bromophenyl)imino]methyl}-2,4-di-tert-butylphenol (3_120K) top
Crystal data top
C21H26BrNOF(000) = 808
Mr = 388.34Dx = 1.357 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.5364 (3) ÅCell parameters from 19498 reflections
b = 10.65933 (19) Åθ = 3.0–33.7°
c = 10.1718 (2) ŵ = 2.17 mm1
β = 90.6047 (16)°T = 120 K
V = 1901.26 (6) Å3Needle, yellow
Z = 40.3 × 0.05 × 0.05 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
4509 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3697 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.045
Detector resolution: 10.3620 pixels mm-1θmax = 27.9°, θmin = 3.0°
ω and π scansh = 2323
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1014
Tmin = 0.683, Tmax = 1.000l = 1313
44888 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0272P)2 + 1.846P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4509 reflectionsΔρmax = 0.47 e Å3
258 parametersΔρmin = 0.42 e Å3
103 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Occupancies of the disordered tBu carbon atoms refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.13844 (2)0.43829 (2)0.28813 (2)0.02634 (7)
O10.18335 (8)0.01013 (13)0.15526 (14)0.0234 (3)
N10.11721 (9)0.19964 (16)0.03565 (16)0.0216 (4)
C10.23349 (11)0.09331 (18)0.20854 (19)0.0189 (4)
C20.28966 (11)0.05260 (18)0.29902 (18)0.0176 (4)
C30.33929 (11)0.14357 (18)0.34904 (18)0.0184 (4)
H30.3772260.1173530.4104910.022*
C40.33707 (11)0.27097 (18)0.31492 (18)0.0191 (4)
C50.28065 (11)0.30691 (18)0.22702 (19)0.0202 (4)
H50.2771740.3925200.2017050.024*
C60.22861 (11)0.22112 (19)0.17431 (19)0.0198 (4)
C70.16847 (11)0.26895 (19)0.0887 (2)0.0223 (4)
H70.1671540.3564740.0712660.027*
C80.05922 (11)0.25697 (19)0.04310 (19)0.0205 (4)
C90.07049 (12)0.3685 (2)0.1113 (2)0.0269 (5)
H90.1190130.4081200.1082530.032*
C100.01170 (12)0.4224 (2)0.1835 (2)0.0268 (5)
H100.0194260.4990100.2291470.032*
C110.05848 (11)0.36318 (19)0.18819 (19)0.0201 (4)
C120.07077 (11)0.25090 (19)0.1236 (2)0.0226 (4)
H120.1190820.2107560.1284120.027*
C130.01115 (11)0.19778 (19)0.0515 (2)0.0237 (4)
H130.0186870.1201710.0076230.028*
C140.29587 (11)0.08585 (18)0.34107 (19)0.0199 (4)
C150.36147 (12)0.1077 (2)0.4390 (2)0.0268 (5)
H15A0.3524590.0590680.5190600.040*
H15B0.4095600.0809710.3995330.040*
H15C0.3643850.1971170.4609500.040*
C160.31050 (13)0.16864 (19)0.2197 (2)0.0273 (5)
H16A0.3592360.1450970.1803940.041*
H16B0.2692740.1565190.1551420.041*
H16C0.3122910.2569480.2463560.041*
C170.22224 (12)0.1278 (2)0.4088 (2)0.0256 (4)
H17A0.1789830.1176980.3479270.038*
H17B0.2140400.0764140.4872330.038*
H17C0.2267380.2161880.4343690.038*
C180.39480 (11)0.36655 (18)0.36816 (18)0.0220 (4)
C190.45276 (15)0.3956 (3)0.2635 (2)0.0325 (7)0.866 (4)
H19A0.4267050.4299330.1858010.049*0.866 (4)
H19B0.4796780.3185070.2394770.049*0.866 (4)
H19C0.4894860.4571890.2975040.049*0.866 (4)
C200.43448 (16)0.3215 (3)0.4933 (3)0.0357 (7)0.866 (4)
H20A0.4675780.3881410.5276990.054*0.866 (4)
H20B0.4652490.2471480.4737420.054*0.866 (4)
H20C0.3961460.3000370.5590270.054*0.866 (4)
C210.35248 (15)0.4905 (2)0.4045 (3)0.0345 (7)0.866 (4)
H21A0.3132890.4724810.4698190.052*0.866 (4)
H21B0.3284270.5259050.3253960.052*0.866 (4)
H21C0.3891480.5508220.4410160.052*0.866 (4)
C19A0.4165 (10)0.4668 (13)0.2667 (13)0.037 (4)0.134 (4)
H19D0.3751570.5282970.2586550.056*0.134 (4)
H19E0.4247040.4267670.1812190.056*0.134 (4)
H19F0.4633610.5091530.2953170.056*0.134 (4)
C21A0.3726 (10)0.4232 (17)0.4984 (11)0.050 (5)0.134 (4)
H21D0.4084370.4902410.5217560.075*0.134 (4)
H21E0.3739030.3581920.5665140.075*0.134 (4)
H21F0.3209150.4578080.4913130.075*0.134 (4)
C20A0.4711 (6)0.2925 (13)0.3923 (18)0.046 (5)0.134 (4)
H20D0.5108310.3505880.4229460.070*0.134 (4)
H20E0.4871490.2530260.3101160.070*0.134 (4)
H20F0.4630400.2276530.4590710.070*0.134 (4)
H10.1518 (13)0.051 (2)0.107 (2)0.052 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02311 (11)0.02777 (12)0.02797 (12)0.00560 (9)0.00830 (8)0.00102 (9)
O10.0233 (7)0.0183 (7)0.0285 (8)0.0029 (6)0.0093 (6)0.0009 (6)
N10.0192 (8)0.0235 (9)0.0220 (8)0.0005 (7)0.0051 (7)0.0004 (7)
C10.0174 (9)0.0204 (10)0.0189 (9)0.0020 (7)0.0010 (7)0.0048 (8)
C20.0184 (9)0.0181 (9)0.0163 (9)0.0008 (8)0.0013 (7)0.0006 (7)
C30.0175 (9)0.0212 (10)0.0165 (9)0.0008 (8)0.0027 (7)0.0022 (7)
C40.0192 (9)0.0207 (10)0.0173 (9)0.0020 (8)0.0018 (7)0.0016 (8)
C50.0229 (10)0.0163 (9)0.0212 (10)0.0022 (8)0.0027 (8)0.0007 (8)
C60.0191 (9)0.0204 (10)0.0199 (10)0.0016 (8)0.0035 (7)0.0014 (8)
C70.0233 (10)0.0182 (10)0.0251 (10)0.0019 (8)0.0058 (8)0.0026 (8)
C80.0198 (9)0.0228 (10)0.0186 (9)0.0016 (8)0.0039 (7)0.0014 (8)
C90.0201 (10)0.0330 (12)0.0274 (11)0.0074 (9)0.0047 (8)0.0048 (9)
C100.0273 (11)0.0285 (12)0.0245 (10)0.0050 (9)0.0048 (8)0.0084 (9)
C110.0201 (9)0.0225 (10)0.0178 (9)0.0035 (8)0.0046 (7)0.0031 (8)
C120.0171 (9)0.0240 (10)0.0267 (10)0.0016 (8)0.0033 (8)0.0017 (8)
C130.0252 (10)0.0200 (10)0.0258 (11)0.0006 (8)0.0051 (8)0.0016 (8)
C140.0226 (9)0.0167 (10)0.0203 (9)0.0003 (8)0.0006 (8)0.0003 (7)
C150.0285 (11)0.0219 (10)0.0300 (11)0.0019 (9)0.0054 (9)0.0074 (9)
C160.0373 (12)0.0181 (10)0.0264 (11)0.0045 (9)0.0019 (9)0.0011 (8)
C170.0285 (11)0.0225 (11)0.0259 (11)0.0028 (9)0.0017 (8)0.0020 (9)
C180.0250 (10)0.0221 (10)0.0189 (10)0.0074 (8)0.0053 (8)0.0015 (8)
C190.0294 (14)0.0411 (16)0.0271 (13)0.0159 (13)0.0017 (11)0.0037 (12)
C200.0416 (16)0.0350 (15)0.0300 (15)0.0172 (13)0.0176 (12)0.0068 (12)
C210.0318 (14)0.0272 (14)0.0443 (17)0.0040 (11)0.0037 (12)0.0151 (12)
C19A0.037 (8)0.035 (8)0.040 (8)0.006 (7)0.006 (7)0.003 (7)
C21A0.043 (8)0.058 (9)0.048 (9)0.021 (8)0.012 (7)0.012 (8)
C20A0.040 (8)0.036 (8)0.062 (9)0.023 (7)0.025 (7)0.001 (7)
Geometric parameters (Å, º) top
Br1—C111.9001 (19)C15—H15C0.9800
O1—C11.358 (2)C16—H16A0.9800
O1—H10.858 (10)C16—H16B0.9800
N1—C71.279 (3)C16—H16C0.9800
N1—C81.425 (2)C17—H17A0.9800
C1—C21.409 (3)C17—H17B0.9800
C1—C61.409 (3)C17—H17C0.9800
C2—C31.396 (3)C18—C191.511 (3)
C2—C141.540 (3)C18—C201.522 (3)
C3—H30.9500C18—C211.561 (3)
C3—C41.402 (3)C18—C19A1.536 (7)
C4—C51.381 (3)C18—C21A1.510 (7)
C4—C181.531 (3)C18—C20A1.571 (7)
C5—H50.9500C19—H19A0.9800
C5—C61.395 (3)C19—H19B0.9800
C6—C71.453 (3)C19—H19C0.9800
C7—H70.9500C20—H20A0.9800
C8—C91.392 (3)C20—H20B0.9800
C8—C131.388 (3)C20—H20C0.9800
C9—H90.9500C21—H21A0.9800
C9—C101.384 (3)C21—H21B0.9800
C10—H100.9500C21—H21C0.9800
C10—C111.383 (3)C19A—H19D0.9800
C11—C121.383 (3)C19A—H19E0.9800
C12—H120.9500C19A—H19F0.9800
C12—C131.391 (3)C21A—H21D0.9800
C13—H130.9500C21A—H21E0.9800
C14—C151.531 (3)C21A—H21F0.9800
C14—C161.541 (3)C20A—H20D0.9800
C14—C171.536 (3)C20A—H20E0.9800
C15—H15A0.9800C20A—H20F0.9800
C15—H15B0.9800
C1—O1—H1108 (2)H16A—C16—H16C109.5
C7—N1—C8118.93 (18)H16B—C16—H16C109.5
O1—C1—C2120.33 (17)C14—C17—H17A109.5
O1—C1—C6119.70 (17)C14—C17—H17B109.5
C6—C1—C2119.97 (17)C14—C17—H17C109.5
C1—C2—C14121.56 (17)H17A—C17—H17B109.5
C3—C2—C1116.94 (17)H17A—C17—H17C109.5
C3—C2—C14121.50 (17)H17B—C17—H17C109.5
C2—C3—H3117.7C4—C18—C21109.41 (17)
C2—C3—C4124.55 (18)C4—C18—C19A113.1 (7)
C4—C3—H3117.7C4—C18—C20A106.3 (6)
C3—C4—C18122.70 (17)C19—C18—C4109.53 (17)
C5—C4—C3116.54 (17)C19—C18—C20110.4 (2)
C5—C4—C18120.73 (17)C19—C18—C21108.6 (2)
C4—C5—H5119.1C20—C18—C4112.36 (17)
C4—C5—C6121.90 (18)C20—C18—C21106.5 (2)
C6—C5—H5119.1C19A—C18—C20A103.8 (7)
C1—C6—C7121.97 (17)C21A—C18—C4113.6 (7)
C5—C6—C1120.07 (17)C21A—C18—C19A112.3 (8)
C5—C6—C7117.91 (18)C21A—C18—C20A106.9 (7)
N1—C7—C6123.57 (19)C18—C19—H19A109.5
N1—C7—H7118.2C18—C19—H19B109.5
C6—C7—H7118.2C18—C19—H19C109.5
C9—C8—N1122.83 (18)H19A—C19—H19B109.5
C13—C8—N1117.93 (18)H19A—C19—H19C109.5
C13—C8—C9119.24 (18)H19B—C19—H19C109.5
C8—C9—H9119.7C18—C20—H20A109.5
C10—C9—C8120.66 (19)C18—C20—H20B109.5
C10—C9—H9119.7C18—C20—H20C109.5
C9—C10—H10120.4H20A—C20—H20B109.5
C11—C10—C9119.11 (19)H20A—C20—H20C109.5
C11—C10—H10120.4H20B—C20—H20C109.5
C10—C11—Br1118.52 (15)C18—C21—H21A109.5
C12—C11—Br1120.06 (15)C18—C21—H21B109.5
C12—C11—C10121.42 (18)C18—C21—H21C109.5
C11—C12—H12120.6H21A—C21—H21B109.5
C11—C12—C13118.85 (18)H21A—C21—H21C109.5
C13—C12—H12120.6H21B—C21—H21C109.5
C8—C13—C12120.69 (19)C18—C19A—H19D109.5
C8—C13—H13119.7C18—C19A—H19E109.5
C12—C13—H13119.7C18—C19A—H19F109.5
C2—C14—C16109.76 (16)H19D—C19A—H19E109.5
C15—C14—C2112.14 (16)H19D—C19A—H19F109.5
C15—C14—C16107.67 (17)H19E—C19A—H19F109.5
C15—C14—C17107.06 (16)C18—C21A—H21D109.5
C17—C14—C2110.26 (16)C18—C21A—H21E109.5
C17—C14—C16109.88 (17)C18—C21A—H21F109.5
C14—C15—H15A109.5H21D—C21A—H21E109.5
C14—C15—H15B109.5H21D—C21A—H21F109.5
C14—C15—H15C109.5H21E—C21A—H21F109.5
H15A—C15—H15B109.5C18—C20A—H20D109.5
H15A—C15—H15C109.5C18—C20A—H20E109.5
H15B—C15—H15C109.5C18—C20A—H20F109.5
C14—C16—H16A109.5H20D—C20A—H20E109.5
C14—C16—H16B109.5H20D—C20A—H20F109.5
C14—C16—H16C109.5H20E—C20A—H20F109.5
H16A—C16—H16B109.5
Br1—C11—C12—C13179.78 (15)C3—C4—C18—C20A30.2 (7)
O1—C1—C2—C3179.74 (17)C4—C5—C6—C11.1 (3)
O1—C1—C2—C140.4 (3)C4—C5—C6—C7176.38 (18)
O1—C1—C6—C5179.00 (18)C5—C4—C18—C1975.6 (3)
O1—C1—C6—C73.6 (3)C5—C4—C18—C20161.3 (2)
N1—C8—C9—C10178.1 (2)C5—C4—C18—C2143.2 (3)
N1—C8—C13—C12178.08 (18)C5—C4—C18—C19A35.0 (8)
C1—C2—C3—C40.3 (3)C5—C4—C18—C21A94.6 (8)
C1—C2—C14—C15179.49 (17)C5—C4—C18—C20A148.2 (7)
C1—C2—C14—C1659.9 (2)C5—C6—C7—N1179.40 (19)
C1—C2—C14—C1761.3 (2)C6—C1—C2—C31.1 (3)
C1—C6—C7—N11.9 (3)C6—C1—C2—C14178.78 (17)
C2—C1—C6—C51.8 (3)C7—N1—C8—C928.2 (3)
C2—C1—C6—C7175.62 (18)C7—N1—C8—C13152.0 (2)
C2—C3—C4—C51.0 (3)C8—N1—C7—C6177.84 (18)
C2—C3—C4—C18177.46 (18)C8—C9—C10—C110.7 (3)
C3—C2—C14—C150.7 (3)C9—C8—C13—C122.1 (3)
C3—C2—C14—C16120.3 (2)C9—C10—C11—Br1179.84 (16)
C3—C2—C14—C17118.5 (2)C9—C10—C11—C120.7 (3)
C3—C4—C5—C60.2 (3)C10—C11—C12—C130.7 (3)
C3—C4—C18—C19102.7 (2)C11—C12—C13—C80.8 (3)
C3—C4—C18—C2020.3 (3)C13—C8—C9—C102.0 (3)
C3—C4—C18—C21138.4 (2)C14—C2—C3—C4179.82 (18)
C3—C4—C18—C19A143.4 (8)C18—C4—C5—C6178.26 (18)
C3—C4—C18—C21A87.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (1)1.84 (2)2.622 (2)151 (3)
(E)-6-{[(4-Bromophenyl)imino]methyl}-2,4-di-tert-butylphenol (3_100K) top
Crystal data top
C21H26BrNOF(000) = 808
Mr = 388.34Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.4450 (3) ÅCell parameters from 13594 reflections
b = 10.69412 (16) Åθ = 3.0–34.3°
c = 10.15010 (17) ŵ = 2.18 mm1
β = 90.1557 (16)°T = 100 K
V = 1893.58 (5) Å3Needle, yellow
Z = 40.3 × 0.05 × 0.05 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
4491 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3799 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.3620 pixels mm-1θmax = 27.9°, θmin = 3.0°
ω and π scansh = 2222
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 914
Tmin = 0.692, Tmax = 1.000l = 1313
28200 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0215P)2 + 1.2915P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4491 reflectionsΔρmax = 0.46 e Å3
227 parametersΔρmin = 0.22 e Å3
22 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.13933 (2)0.43538 (2)0.28775 (2)0.02035 (6)
O10.18475 (7)0.01027 (11)0.15496 (11)0.0181 (2)
N10.11754 (8)0.19817 (13)0.03472 (13)0.0166 (3)
C10.23415 (9)0.09407 (15)0.20904 (15)0.0146 (3)
C20.29006 (9)0.05468 (14)0.30067 (15)0.0138 (3)
C30.33886 (9)0.14656 (15)0.35168 (15)0.0144 (3)
H30.3765700.1212680.4138950.017*
C40.33593 (9)0.27321 (15)0.31735 (15)0.0142 (3)
C50.27967 (9)0.30790 (15)0.22833 (16)0.0154 (3)
H50.2757400.3931490.2028690.019*
C60.22853 (9)0.22134 (15)0.17486 (15)0.0150 (3)
C70.16834 (9)0.26823 (15)0.08879 (16)0.0174 (3)
H70.1665240.3555090.0716500.021*
C80.05948 (9)0.25507 (15)0.04414 (15)0.0158 (3)
C90.07046 (10)0.36729 (16)0.11150 (17)0.0208 (4)
H90.1189680.4075330.1079760.025*
C100.01145 (10)0.42060 (16)0.18335 (16)0.0205 (4)
H100.0190480.4973350.2286340.025*
C110.05873 (9)0.36073 (15)0.18841 (15)0.0160 (3)
C120.07095 (9)0.24801 (15)0.12469 (16)0.0181 (3)
H120.1193090.2074310.1299140.022*
C130.01112 (9)0.19534 (15)0.05293 (16)0.0179 (3)
H130.0185700.1176630.0094020.021*
C140.29671 (9)0.08308 (14)0.34338 (15)0.0153 (3)
C150.36162 (10)0.10331 (16)0.44310 (17)0.0206 (4)
H15A0.3514780.0540640.5225940.031*
H15B0.4103260.0766450.4042820.031*
H15C0.3645670.1921540.4662190.031*
C160.31359 (10)0.16574 (15)0.22250 (17)0.0204 (4)
H16A0.3626490.1408650.1836750.031*
H16B0.2726160.1553700.1571580.031*
H16C0.3162250.2535350.2497970.031*
C170.22203 (10)0.12617 (16)0.40988 (17)0.0205 (4)
H17A0.1791110.1160690.3482920.031*
H17B0.2128200.0755150.4887230.031*
H17C0.2266110.2143550.4349470.031*
C180.39307 (9)0.36988 (14)0.37038 (15)0.0152 (3)
C190.45373 (10)0.39566 (18)0.26508 (17)0.0239 (4)
H19A0.4287020.4266180.1849110.036*
H19B0.4814120.3182150.2452150.036*
H19C0.4898910.4586560.2977120.036*
C200.43335 (11)0.32435 (17)0.49562 (17)0.0252 (4)
H20A0.4670290.3904540.5292550.038*
H20B0.4638850.2498900.4754190.038*
H20C0.3949330.3035430.5623840.038*
C210.35161 (10)0.49285 (16)0.40367 (19)0.0253 (4)
H21A0.3114910.4765590.4688450.038*
H21B0.3284190.5274130.3235230.038*
H21C0.3885300.5528780.4398460.038*
H10.1539 (11)0.051 (2)0.106 (2)0.048 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01862 (9)0.02097 (9)0.02144 (9)0.00471 (7)0.00577 (6)0.00085 (7)
O10.0184 (6)0.0135 (6)0.0223 (6)0.0024 (5)0.0070 (5)0.0010 (5)
N10.0146 (6)0.0178 (7)0.0174 (7)0.0007 (6)0.0028 (5)0.0008 (6)
C10.0137 (7)0.0150 (8)0.0151 (7)0.0018 (6)0.0002 (6)0.0030 (6)
C20.0158 (7)0.0120 (7)0.0136 (7)0.0000 (6)0.0012 (6)0.0012 (6)
C30.0140 (7)0.0159 (8)0.0132 (7)0.0008 (6)0.0006 (6)0.0006 (6)
C40.0150 (7)0.0141 (7)0.0136 (7)0.0007 (6)0.0007 (6)0.0011 (6)
C50.0177 (8)0.0111 (7)0.0174 (8)0.0005 (6)0.0016 (6)0.0003 (6)
C60.0150 (7)0.0151 (8)0.0150 (8)0.0013 (6)0.0011 (6)0.0002 (6)
C70.0195 (8)0.0140 (8)0.0186 (8)0.0023 (6)0.0025 (6)0.0014 (6)
C80.0162 (8)0.0172 (8)0.0141 (7)0.0024 (6)0.0022 (6)0.0022 (6)
C90.0168 (8)0.0251 (9)0.0206 (8)0.0057 (7)0.0030 (7)0.0035 (7)
C100.0221 (8)0.0207 (9)0.0186 (8)0.0030 (7)0.0020 (7)0.0055 (7)
C110.0163 (8)0.0180 (8)0.0137 (7)0.0033 (6)0.0030 (6)0.0024 (6)
C120.0149 (8)0.0181 (8)0.0212 (8)0.0020 (7)0.0020 (6)0.0022 (7)
C130.0200 (8)0.0141 (8)0.0196 (8)0.0003 (7)0.0021 (6)0.0008 (6)
C140.0182 (8)0.0117 (7)0.0159 (8)0.0006 (6)0.0002 (6)0.0008 (6)
C150.0248 (9)0.0151 (8)0.0219 (9)0.0014 (7)0.0036 (7)0.0046 (7)
C160.0275 (9)0.0127 (8)0.0210 (9)0.0018 (7)0.0001 (7)0.0007 (7)
C170.0246 (9)0.0160 (8)0.0210 (8)0.0032 (7)0.0019 (7)0.0014 (7)
C180.0182 (8)0.0139 (8)0.0136 (7)0.0030 (6)0.0025 (6)0.0001 (6)
C190.0230 (9)0.0278 (9)0.0209 (9)0.0098 (8)0.0005 (7)0.0032 (7)
C200.0305 (10)0.0228 (9)0.0224 (9)0.0092 (8)0.0116 (7)0.0029 (7)
C210.0255 (9)0.0191 (9)0.0314 (10)0.0014 (7)0.0030 (8)0.0084 (8)
Geometric parameters (Å, º) top
Br1—C111.9034 (15)C13—H130.9500
O1—C11.3581 (19)C14—C151.532 (2)
O1—H10.854 (10)C14—C161.541 (2)
N1—C71.283 (2)C14—C171.540 (2)
N1—C81.426 (2)C15—H15A0.9800
C1—C21.410 (2)C15—H15B0.9800
C1—C61.408 (2)C15—H15C0.9800
C2—C31.399 (2)C16—H16A0.9800
C2—C141.540 (2)C16—H16B0.9800
C3—H30.9500C16—H16C0.9800
C3—C41.399 (2)C17—H17A0.9800
C4—C51.383 (2)C17—H17B0.9800
C4—C181.533 (2)C17—H17C0.9800
C5—H50.9500C18—C191.531 (2)
C5—C61.394 (2)C18—C201.530 (2)
C6—C71.453 (2)C18—C211.539 (2)
C7—H70.9500C19—H19A0.9800
C8—C91.395 (2)C19—H19B0.9800
C8—C131.390 (2)C19—H19C0.9800
C9—H90.9500C20—H20A0.9800
C9—C101.383 (2)C20—H20B0.9800
C10—H100.9500C20—H20C0.9800
C10—C111.383 (2)C21—H21A0.9800
C11—C121.385 (2)C21—H21B0.9800
C12—H120.9500C21—H21C0.9800
C12—C131.390 (2)
C1—O1—H1107.4 (16)C17—C14—C2110.28 (13)
C7—N1—C8118.68 (14)C17—C14—C16109.94 (13)
O1—C1—C2120.42 (14)C14—C15—H15A109.5
O1—C1—C6119.65 (14)C14—C15—H15B109.5
C6—C1—C2119.92 (14)C14—C15—H15C109.5
C1—C2—C14121.53 (13)H15A—C15—H15B109.5
C3—C2—C1116.97 (14)H15A—C15—H15C109.5
C3—C2—C14121.51 (14)H15B—C15—H15C109.5
C2—C3—H3117.8C14—C16—H16A109.5
C2—C3—C4124.48 (15)C14—C16—H16B109.5
C4—C3—H3117.8C14—C16—H16C109.5
C3—C4—C18122.83 (14)H16A—C16—H16B109.5
C5—C4—C3116.59 (14)H16A—C16—H16C109.5
C5—C4—C18120.55 (14)H16B—C16—H16C109.5
C4—C5—H5119.1C14—C17—H17A109.5
C4—C5—C6121.90 (15)C14—C17—H17B109.5
C6—C5—H5119.1C14—C17—H17C109.5
C1—C6—C7122.09 (14)H17A—C17—H17B109.5
C5—C6—C1120.12 (14)H17A—C17—H17C109.5
C5—C6—C7117.73 (14)H17B—C17—H17C109.5
N1—C7—C6123.57 (15)C4—C18—C21110.36 (13)
N1—C7—H7118.2C19—C18—C4109.05 (13)
C6—C7—H7118.2C19—C18—C21109.00 (14)
C9—C8—N1122.97 (14)C20—C18—C4111.95 (13)
C13—C8—N1117.90 (14)C20—C18—C19108.70 (14)
C13—C8—C9119.13 (15)C20—C18—C21107.73 (14)
C8—C9—H9119.7C18—C19—H19A109.5
C10—C9—C8120.68 (15)C18—C19—H19B109.5
C10—C9—H9119.7C18—C19—H19C109.5
C9—C10—H10120.4H19A—C19—H19B109.5
C11—C10—C9119.11 (16)H19A—C19—H19C109.5
C11—C10—H10120.4H19B—C19—H19C109.5
C10—C11—Br1118.57 (12)C18—C20—H20A109.5
C10—C11—C12121.55 (15)C18—C20—H20B109.5
C12—C11—Br1119.87 (12)C18—C20—H20C109.5
C11—C12—H12120.6H20A—C20—H20B109.5
C11—C12—C13118.75 (15)H20A—C20—H20C109.5
C13—C12—H12120.6H20B—C20—H20C109.5
C8—C13—C12120.75 (15)C18—C21—H21A109.5
C8—C13—H13119.6C18—C21—H21B109.5
C12—C13—H13119.6C18—C21—H21C109.5
C2—C14—C16109.81 (13)H21A—C21—H21B109.5
C15—C14—C2112.09 (13)H21A—C21—H21C109.5
C15—C14—C16107.61 (13)H21B—C21—H21C109.5
C15—C14—C17107.03 (13)
Br1—C11—C12—C13179.90 (12)C3—C4—C18—C21139.68 (16)
O1—C1—C2—C3179.87 (14)C4—C5—C6—C11.3 (2)
O1—C1—C2—C140.6 (2)C4—C5—C6—C7176.08 (15)
O1—C1—C6—C5179.06 (14)C5—C4—C18—C1977.25 (19)
O1—C1—C6—C73.7 (2)C5—C4—C18—C20162.43 (15)
N1—C8—C9—C10177.94 (16)C5—C4—C18—C2142.4 (2)
N1—C8—C13—C12177.87 (15)C5—C6—C7—N1179.34 (16)
C1—C2—C3—C40.4 (2)C6—C1—C2—C31.2 (2)
C1—C2—C14—C15179.83 (14)C6—C1—C2—C14178.39 (14)
C1—C2—C14—C1660.27 (19)C7—N1—C8—C928.0 (2)
C1—C2—C14—C1761.03 (19)C7—N1—C8—C13151.64 (16)
C1—C6—C7—N12.1 (3)C8—N1—C7—C6177.74 (14)
C2—C1—C6—C52.0 (2)C8—C9—C10—C110.4 (3)
C2—C1—C6—C7175.24 (15)C9—C8—C13—C121.8 (2)
C2—C3—C4—C51.1 (2)C9—C10—C11—Br1180.00 (13)
C2—C3—C4—C18176.87 (15)C9—C10—C11—C120.9 (3)
C3—C2—C14—C150.6 (2)C10—C11—C12—C130.8 (2)
C3—C2—C14—C16120.18 (16)C11—C12—C13—C80.6 (2)
C3—C2—C14—C17118.52 (16)C13—C8—C9—C101.7 (3)
C3—C4—C5—C60.2 (2)C14—C2—C3—C4179.94 (15)
C3—C4—C18—C19100.62 (18)C18—C4—C5—C6177.76 (14)
C3—C4—C18—C2019.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (1)1.84 (1)2.6257 (18)152 (2)
Hydrogen-bond geometry (Å, °) top
CompoundTemperature (K)D—H···AD—HH···AD···AD—H···A
1A100O1—H1···N10.94 (3)1.72 (3)2.587 (2)151 (2)
1B120O1—H1···N10.96 (3)1.64 (3)2.544 (2)155 (2)
2300O1—H1···N10.84 (4)1.84 (4)2.612 (4)151 (4)
250O1—H1···N10.91 (3)1.76 (4)2.615 (4)155 (3)
200O1—H1···N10.90 (3)1.78 (3)2.611 (3)153 (3)
150O1—H1···N10.92 (3)1.77 (3)2.615 (3)151 (3)
120O1—H1···N10.86 (4)1.82 (4)2.633 (3)157 (4)
100O1—H1···N10.94 (4)1.77 (4)2.626 (3)150 (3)
3300O1—H1···N10.83 (5)1.84 (5)2.614 (4)154 (5)
250O1—H1···N10.84 (3)1.83 (3)2.612 (3)154 (3)
200O1—H1···N10.82 (3)1.85 (3)2.611 (2)153 (3)
150O1—H1···N10.86 (1)1.83 (2)2.612 (2)152 (3)
120O1—H1···N10.86 (1)1.84 (2)2.622 (2)151 (3)
100O1—H1···N10.85 (1)1.84 (1)2.6257 (18)152 (2)
Hydrogen-bond geometry (Å, °) top
CompoundTemperatureD—H···AD—HH···AD···AD—H···A
1A100C12—H12···O1i0.952.623.345 (2)133
1B120C10—H10···O1ii0.952.603.523 (3)165
C19—H19B···O1iii0.982.723.522 (3)140
C17—H17A···F1iv0.982.573.453 (3)150
2300C12—H12···O1v0.932.713.461 (4)138
250C12—H12···O1v0.942.683.438 (3)138
200C12—H12···O1v0.952.653.415 (2)138
150C12—H12···O1vi0.952.563.359 (3)142
100C12—H12···O1vi0.952.543.343 (4)142
150C12—H12···O1v0.952.633.396 (3)138
120C12—H12···O1vi0.952.563.359 (3)142
3300C12—H12···O1vii0.932.763.522 (3)140
250C12—H12···O1vii0.942.733.500 (2)140
200C12—H12···O1vii0.942.713.483 (3)140
150C12—H12···O1vii0.952.673.458 (2)140
120C12—H12···O1vii0.952.623.425 (2)142
100C12—H12···O1vii0.952.613.415 (2)143
Symmetry codes: (i) -x, -y+2, -z; (ii) x+1/2, -y+3/2, z; (iii) 3/2-x, 1/2+y, 1/2+z; (iv) -x+2, -y+1, z+1/2; (v) -x+2, -y+1, -z+1; (vi) -x+2, -y, -z+1; (vii) -x, -y, -z.
Dihedral angles (°) between planes calculated through the six atoms of the two rings top
CompoundTemperature (K)Dihedral angle (°)Fold angle (°)
1A10039.03 (5)8.68 (5)
1B12020.61 (7)3.24 (7)
230026.75 (7)9.01 (9)
25026.56 (8)8.87 (8)
20026.33 (6)9.09 (6)
15025.80 (9)9.28 (9)
12024.96 (10)11.84 (10)
10024.83 (9)12.05 (9)
330025.83 (8)9.29 (9)
25025.49 (6)9.45 (6)
20025.33 (8)9.69 (7)
15024.88 (7)10.16 (7)
12024.70 (7)12.49 (7)
10024.63 (5)13.20 (5)
Position of main peaks that appear in Raman upon irradiation top
CompoundNew peaks (cm-1)
1A1651, 1525, 1373, 1302 and 1143
1B20.85 (11)
21528, 1423, 1311 and 1152
31518, 1418, 1301 and 1134
Hydrogen-bond geometry (Å, °) top
CompoundTemperature (K)D—H···AD—HH···AD···AD—H···A
1A100O1—H1···N10.94 (3)1.72 (3)2.587 (2)151 (2)
1B120O1—H1···N10.96 (3)1.64 (3)2.544 (2)155 (2)
2300O1—H1···N10.84 (4)1.84 (4)2.612 (4)151 (4)
250O1—H1···N10.91 (3)1.76 (4)2.615 (4)155 (3)
200O1—H1···N10.90 (3)1.78 (3)2.611 (3)153 (3)
150O1—H1···N10.92 (3)1.77 (3)2.615 (3)151 (3)
120O1—H1···N10.86 (4)1.82 (4)2.633 (3)157 (4)
100O1—H1···N10.94 (4)1.77 (4)2.626 (3)150 (3)
3300O1—H1···N10.83 (5)1.84 (5)2.614 (4)154 (5)
250O1—H1···N10.84 (3)1.83 (3)2.612 (3)154 (3)
200O1—H1···N10.82 (3)1.85 (3)2.611 (2)153 (3)
150O1—H1···N10.86 (1)1.83 (2)2.612 (2)152 (3)
120O1—H1···N10.86 (1)1.84 (2)2.622 (2)151 (3)
100O1—H1···N10.85 (1)1.84 (1)2.6257 (18)152 (2)

Footnotes

Died 6th December 2019

Acknowledgements

HEM is grateful to the EPSRC and Durham University for funding, and Professor Jonathan Steed, Durham University, for useful discussions.

Funding information

Funding for this research was provided by: Engineering and Physical Sciences Research Council (grant No. EP/P505186/1).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationArod, F., Pattison, P., Schenk, K. J. & Chapuis, G. (2007). Cryst. Growth Des. 7, 1679–1685.  Web of Science CSD CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCohen, M. D. & Schmidt, G. M. J. (1962). J. Phys. Chem. 66, 2442–2446.  CrossRef CAS Web of Science Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFujiwara, T., Harada, J. & Ogawa, K. (2004). J. Phys. Chem. B, 108, 4035–4038.  Web of Science CrossRef CAS Google Scholar
First citationHadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588.  Web of Science PubMed CAS Google Scholar
First citationHarada, J., Fujiwara, T. & Ogawa, K. (2007). J. Am. Chem. Soc. 129, 16216–16221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarada, J., Nakajima, R. & Ogawa, K. (2008). J. Am. Chem. Soc. 130, 7085–7091.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHarada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809–5810.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohmoto, K., Ishida, T., Sekine, A., Uekusa, H. & Ohashi, Y. (2012). Acta Cryst. B68, 297–304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoyama, H., Kawato, T., Kanatomi, H., Matsushita, H. & Yonetani, K. (1994). J. Chem. Soc. Chem. Commun. pp. 579–580.  CrossRef Google Scholar
First citationLi, J., Zhao, R. & Ma, C. (2007). Acta Cryst. E63, o4923.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOgawa, K., Harada, J., Tamura, I. & Noda, Y. (2000). Chem. Lett. 29, 528–529.  Web of Science CSD CrossRef Google Scholar
First citationOgawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107–7108.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPistolis, G., Gegiou, D. & Hadjoudis, E. (1996). J. Photochem. Photobiol. Chem. 93, 179–184.  CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRobert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327–4342.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSahu, M., Manna, A. K., Rout, K., Mondal, J. & Patra, G. K. (2020). Inorg. Chim. Acta, 508, 119633.  Web of Science CSD CrossRef Google Scholar
First citationSeeboth, A., Lötzsch, D., Ruhmann, R. & Muehling, O. (2014). Chem. Rev. 114, 3037–3068.  CrossRef CAS PubMed Google Scholar
First citationSenier, A. & Shepheard, F. G. (1909). J. Chem. Soc. Trans. 95, 1943–1955.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSliwa, M., Létard, S., Malfant, I., Nierlich, M., Lacroix, P. G., Asahi, T., Masuhara, H., Yu, P. & Nakatani, K. (2005). Chem. Mater. 17, 4727–4735.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuzuki, Y., Kato, T., Huang, H. Y., Yoshikawa, I., Mutai, T. & Houjou, H. (2019). J. Photochem. Photobiol. Chem. 385, 112096.  CrossRef Google Scholar
First citationWang, H., Ji, X. F., Page, Z. A. & Sessler, J. L. (2020). Mater. Chem. Front. 4, 1024–1039.  CrossRef CAS Google Scholar
First citationWu, L., Chen, R. J., Luo, Z. W. & Wang, P. (2020). J. Mater. Sci. 55, 12826–12835.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds