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Contamination with diffraction from ice crystals can negatively affect, or even

impede, macromolecular structure determination, and therefore detecting the

resulting artefacts in diffraction data is crucial. However, once the data have

been processed it can be very difficult to automatically recognize this problem.

To address this, a set of convolutional neural networks named Helcaraxe has

been developed which can detect ice-diffraction artefacts in processed

diffraction data from macromolecular crystals. The networks outperform

previous algorithms and will be available as part of the AUSPEX web server

and the CCP4-distributed software.

1. Introduction

Crystals of biological macromolecules are routinely cryo-

cooled to a temperature of 100 K before exposure to X-rays to

reduce radiation damage during the diffraction experiment

(Garman & Weik, 2019). Cryocooling can lead to the forma-

tion of ice (Garman & Owen, 2006). While antifreeze agents

and flash-cooling are commonly employed to minimize this,

rings from the diffraction of small ice crystals are frequently

found in diffraction images from cryocooled macromolecular

samples (Chapman & Somasundaram, 2010; Fig. 1). The

emergence of fast-readout pixel detectors, which are ideally

used to measure finely sliced diffraction images, makes the

visual identification of ice artefacts from individual images

more difficult (Thorn et al., 2017). Ice rings can be observed

when several images are averaged to increase the contrast

or through newly developed machine-learning approaches

(Czyzewski et al., 2021).

Identifying whether a structure, or more exactly the inte-

grated, scaled and merged diffraction data set, available in the

worldwide Protein Data Bank (wwPDB; Berman et al., 2000)

is affected by ice-ring contamination is even more difficult.

Only a few entries have the corresponding raw data (i.e. the

images) available, as these are neither required for publication

nor can be deposited directly in the wwPDB. However, if an

integrated and merged data set is affected by ice diffraction,

one can assume that subsequent model refinement will be

affected. It has been demonstrated that removing ice rings

from the data during integration improves the R values by as

much as 4.8% (Parkhurst et al., 2017). Thus, the correct

identification of ice rings in data sets is an important step in

assessing and ultimately improving data quality.

In addition to statistical identification in CTRUNCATE

(Winn et al., 2011) and phenix.xtriage (Adams et al., 2010), the

ISSN 2059-7983

http://crossmark.crossref.org/dialog/?doi=10.1107/S205979832101202X&domain=pdf&date_stamp=2022-01-21


AUSPEX Icefinder score, recently improved by Moreau et al.

(2021), is one of the most reliable statistical tools to detect ice-

crystal artefacts in integrated, merged and scaled diffraction

data sets. While statistical identification can identify stronger

ice diffraction in processed data automatically, less distinct ice

rings can go unnoticed. For this reason, in addition to auto-

matic indication, AUSPEX also produces plots of observed

intensities (Iobs) (or structure-factor amplitudes Fobs) against

resolution, which permit the easy visual identification of ice-

ring contamination as spikes (Fig. 2; Thorn et al., 2017).

The discrepancy that humans can easily recognize ice rings

in these AUSPEX plots while automatic statistical detection

remains difficult led us to attempt identification using artificial

intelligence. In recent years, the use of convolutional neural

networks (CNNs) for data-driven research has enabled the

identification and recognition of complicated patterns in noisy

data (Schmidt et al., 2019), leading to advances in all disci-

plines of science and data analysis. CNNs are exceptionally

suited to the classification of multi-dimensional arrays because

they can retain spatial input information (Yamashita et al.,

2018). Here, we present the results of employing CNNs to

detect ice artefacts in processed macromolecular diffraction

data.

2. Methods

2.1. Selection of training, validation and test data

1827 integrated, scaled and merged diffraction data sets

indicated to have been measured at 100 K were used to

generate training and validation sets (see supporting infor-

mation). These diffraction data were randomly selected from

the Coronavirus Structural Task Force repository (Croll et al.,

2021; 396 diffraction data sets), the Integrated Resource

for Reproducibility in Macromolecular Crystallography

(Grabowski et al., 2016; 280 diffraction data sets) and the

Protein Data Bank (Berman et al., 2000; 1151 diffraction data

sets) without duplicates. Diffraction data were used in MTZ

format, obtained through the conversion of sf.cif files by

CIF2MTZ from CCP4 (Winn et al., 2011). If the CIF files had

no observed intensities (Iobs), structure-factor amplitudes

(Fobs) were used instead. If MAD data had been measured, the

wavelength listed first in the deposited CIF file was used.

To convert the data into a format that could be presented to

a neural network, two-dimensional histograms of Iobs or Fobs

against resolution were generated, dubbed ‘Helcaraxe1 plots’,

using the NumPy histogram2d function (Virtanen et al., 2020;

example code is given in the supporting information). The size

of the histograms was set to 80 � 80 pixels as this has proven

to be the best compromise between information loss and data

size. Multiple Helcaraxe plots were produced per data set, one

around every expected ice-ring position present in the overall

resolution range of the diffraction data set (Fig. 2, top). The

width of individual ice-ring resolution ranges has previously

been identified (Thorn et al., 2017). To avoid extreme intensity

outliers and for normalization, the lower limit of the y axis was

set at the 0.5th percentile of intensities or amplitudes and the

top limit at the 95th percentile. These parameters have proven

to be the best middle ground between data loss and plot
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Figure 1
Diffraction patterns of dihydrofolate reductase from Mycobacterium ulcerans. The resolution is marked by dashed lines. (a) shows a pattern without ice
rings (PDB entry 7k6c) and (b) shows a pattern with ice-crystal artefacts (indicated by the red arrows; PDB entry 7km9).

1 Helcaraxë Quenya. Elvish word meaning ‘jagged hedge of spikes’; name of
the icy wastes that lay north of Middle Earth.



similarity. The x axis was scaled to obtain a constant histogram

size despite the different widths of the individual ice-ring

resolution ranges.

80% of the Helcaraxe plots generated from the MTZ files

were allocated randomly to the training set and 20% to the

validation set. The validation set was used to evaluate the

CNNs during training and to select two final CNN candidates

for the Helcaraxe program. The test set was not used in

training.

A set of 200 randomly chosen diffraction data sets labelled

for ice-ring contamination [previously published as Test Set C

in the supporting information to Thorn et al. (2017) and

reproduced here as supporting information] was assigned as a

test set.

2.2. Data annotation

For annotation, ice rings were first identified in diffraction

data sets using AUSPEX plots. Subsequently, Helcaraxe plots

for the training, validation and test sets were generated as

described and manually annotated for the presence of ice rings

using the previous annotation results as guidance. A Helcaraxe

plot was labelled as contaminated by ice diffraction if at least

two of the following criteria were met.

(i) A vertical shift of the Iobs or Fobs values in the shape of a

spike must be visible to the naked eye.

(ii) At least 1% of the area of the plot must be affected by

the ice ring, meaning that either part of the plot was blank

because of the ice ring or the intensities were shifted upwards.

The area was measured by overlaying a grid.

(iii) The ice ring must be visible in the corresponding

AUSPEX plot.
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Figure 2
Relationship between the AUSPEX plot (bottom; PDB entry 4epz) and the Helcaraxe plots (top), which are 80 � 80 pixel histograms of the respective
areas. Helcaraxe axis labels refer to pixel numbers. Ice-ring features were automatically identified by the statistical AUSPEX Icefinder score (shaded
pink bars). The grey bars in the AUSPEX plot indicate the resolution ranges in which an ice ring can appear (letters A–H) that are used to generate the
focused plots (top). The rectangles indicate the areas that the upper plots display. Helcaraxe plots E and H show ice-ring characteristics (spikes), while
plot D shows none.

Table 1
Composition of the training, validation and test sets: numbers of
Helcaraxe plots divided into Fobs and Iobs.

The percentages of plots with ice-ring contamination are given in parentheses.

Training Validation Test

Fobs 6849 1713 1032
No ice contamination 6251 1564 977
Ice contamination 598 (8.73%) 149 (8.70%) 65 (6.24%)
Iobs 3686 922 1410
No ice contamination 3497 874 1329
Ice contamination 189 (5.13%) 48 (5.21%) 81 (5.74%)



486 (26.6%) of the 1827 diffraction data sets used for the

training and validation sets were found to have ice-diffraction

contamination according to the aforementioned criteria. This

resulted in the generation of 13 170 individual Helcaraxe plots,

of which 984 (7.47%) were annotated as contaminated (see

Table 1 and supporting information).

The test set (Test Set C in the supporting information to

Thorn et al., 2017), which was previously labelled for ice-ring

contamination, includes ice-ring classi-

fication from other software and was

also used by Moreau and coworkers to

investigate the performance of their

algorithm (Moreau et al., 2021). The test

set was again reviewed, consulting the

annotation of Moreau and coworkers,

and nine labels (4.5%) were updated

(see supporting information). Three

diffraction data sets were omitted

because they had been superseded or

had a lower maximum resolution than

those ranges contaminated by ice rings.

Of the 197 diffraction sets, 40 (20.3%)

were labelled as containing an ice ring.

There was no overlap between the

training/validation set and the test set.

2.3. Network architecture and training

The network architecture of the

employed CNNs consists of a convolu-

tional and a fully connected part (Fig.

3). Two networks with the same archi-

tecture were trained, one for Iobs values

and one for Fobs values. Helcaraxe plots

were supplied through an input layer

that passes the plot directly to the

subsequent convolutional segment. The

first segment of the network extracts

data features and consists of four blocks,

with each block having two convolu-

tional layers followed by an aggregating

max pooling layer (Fig. 4), with batch

normalization layers in between to

reduce the risk of overfitting through

normalization. The second segment is

connected through a flatten layer and

research papers

190 Kristopher Nolte et al. � Detecting ice artefacts in diffraction data Acta Cryst. (2022). D78, 187–195

Figure 3
Schematic of the Helcaraxe network architecture. Input dimensions are shown as vertical numbers and the filter sizes are shown as horizontal numbers.
Input is grey, convolutional layers are teal and pooling layers are light blue. Fully connected dropout layers are shown in purple and fully connected
dense layers are shown in green. The image was created with Net2Vis (Bäuerle et al., 2019).

Figure 4
(a) General operation of a convolutional layer to create a feature map. Colours and grey shades
refer to example numbers written in the fields. A patch (the local receptive field) of the input array
is altered through multiple filters and the resulting values are saved in the feature map. (b) Like a
convolutional layer, the pooling layer is only connected to a limited group of inputs within a
rectangular field. However, it has no filter and only summarizes the input matrix through
aggregation. (c) The flatten layer flattens the multidimensional matrix into a single-dimensional
matrix; the output is passed to a regular neural network made of fully connected artificial neurons.



contains two fully connected layers of artificial neurons

separated by dropout layers which randomly omit neurons

during training to further reduce the risk of overfitting

(Srivastava et al., 2014). The output layer is a single neuron

that uses a sigmoid activation function. Therefore, a value

(hereafter referred to as a prediction) between 0 (no ice-

diffraction artefacts) and 1 (ice-diffraction artefacts) is

returned for each Helcaraxe plot. The threshold for classifi-

cation was 0.5.

The parameters which control the learning process (the

hyperparameters) were optimized using the Hyperband opti-

mization algorithm (Li et al., 2018). The network used for

predicting ice-diffraction Fobs plots (hereafter referred to as

the Fobs network) was trained and validated only using Fobs

Helcaraxe plots. The network for predicting Iobs plots (here-

after referred to as the Iobs network) was trained through

transfer learning, fine-tuning the Fobs network using Iobs plots

and a very moderate rate of learning (0.0005). This was

performed to make sure that the network could adapt to the

differences in the Iobs Helcaraxe plots without overriding the

pattern-recognition abilities that had already been acquired by

the Fobs network.

Network design and training were performed using

TensorFlow 2.4.1 (Abadi et al., 2016). The final trained

networks were selected from multiple training runs based on

their performance against the validation set. Their ability to

operate reliably on unseen data was tested using the inde-

pendent test set.

3. Results

3.1. Data features

To acquire an overview of how ice-diffraction artefacts

manifest in Helcaraxe plots, all plots from the training and

validation sets which had been manually annotated as not

containing ice diffraction were averaged for amplitudes and

intensities, respectively (Figs. 5a and 5c), as were all plots

annotated as containing ice diffraction (Figs. 5b and 5d). The

resulting averaged plots of intensities or structure-factor

amplitudes with no ice show a uniform vertical gradient. The

corresponding plots with ice artefacts show an upward shift in

the form of a spike in the middle. It is apparent that the points

spread more evenly in Fobs plots than in Iobs plots. Spikes are

also more visually prominent in Fig. 5(b) than in Fig. 5(d),

which is potentially a consequence of the conversion of

intensities into amplitudes by the French and Wilson method

(French & Wilson, 1978), which imposes distribution expec-

tations in order to facilitate conversion.

3.2. Network performance

Two trained networks were selected from multiple training

runs based on their performance on the validation set. They

were both evaluated against the test set (see Section 2.1) to

confirm that they can generalize. The performance was

measured using three metrics, accuracy (1), sensitivity (2) and

specificity (3).

Accuracy ¼
NðtÞ

NðtÞ þ NðfÞ
; ð1Þ

where N(t) is the number of true classifications and N(f) is the

number of false classifications.

Sensitivity ¼
NðtpÞ

NðtpÞ þ NðfnÞ
; ð2Þ

where N(tp) is the number of true positive classifications and

N(fn) is the number of false negative classifications.

Specificity ¼
NðtnÞ

NðtnÞ þ NðfpÞ
; ð3Þ

where N(tn) is the number of true negative classifications and

N(fp) is the number of false positive classifications.

Judging by these criteria, the networks perform well on the

validation set used in network training and the independent

test set (see Table 2), showing that there was no overfitting of

the networks with regard to the training set. The performance

of both networks is sufficient to detect ice rings in most cases.

Both networks have a higher specificity than sensitivity.

Closer visual inspection of the false negative classifications

reveals that a portion of all test plots in the test set which were

falsely identified as negative had only very small spikes

affecting approximately 1% of the plot [as described in defi-

nition (ii) in Section 2.2] (Iobs, seven of the 12 false negative

classifications; Fig. 6a) or the diffraction data set contained

relatively few reflections (Iobs, five of the 12 false negative

classifications; Fobs, two of the 13 false negative classifications;

Fig. 6c). Another cause of false negative classification is the

presence of data points in the area of the ice spike (Iobs, four of

the 12 false negative classifications; Fobs, eight of the 13 false

negative classifications; Fig. 6c). We suspect that this occurs

when ice crystals build up during measurement so that both

contaminated and uncontaminated intensities are present in

the merged diffraction data. The main reason for false positive

classification was a shift or absence of intensities in the usual

ice-ring range without the typical shape of a spike [as

described in definition (i) in Section 2.2] (Iobs, 7 of the 13 false
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Table 2
Performance of the final Fobs and Iobs networks against the Helcaraxe plots of the validation and test sets.

Accuracy, sensitivity and specificity values are given with a 95% confidence interval.

True positive False positive True negative False negative Accuracy Sensitivity Specificity

Fobs, validation 92 8 1556 57 0.962 � 0.009 0.617 � 0.003 0.995 � 0.0001
Fobs, test 42 4 973 13 0.984 � 0.007 0.764 � 0.004 0.996 � 0.0001
Iobs, validation 37 6 868 11 0.982 � 0.009 0.771 � 0.003 0.993 � 0.0001
Iobs, test 69 13 1316 12 0.982 � 0.007 0.852 � 0.002 0.990 � 0.0002



positive classifications; Fobs, two of the four false positive

classifications).

To obtain insight into the decision-making process of the

networks, SmoothGrad (Smilkov et al., 2017) was used to

generate sensitivity maps that highlight which area has the

most impact on the classification of the Helcaraxe plot. The

area at the bottom, especially in the middle (where ice rings

usually appear), had the greatest influence on the decision of

the network. The edges at the top, right and left had close to

no impact on the classification. Fig. 7 shows that the networks

recognize the characteristic ice spike in Helcaraxe plots and

use it as indicator for the classification. A comparison of the

two sensitivity maps suggests that the two models have

adapted to the properties (as described in Section 3.1) of their

respective Helcaraxe plots (as described in Section 3.1). Fobs

plots have a more spread-out distribution than Iobs plots and

the sensitivity map shows that the Fobs model is sensitive to a

broader area.

3.3. Comparison with other algorithms

The performance of both the Fobs and

Iobs networks against the test set was

compared with other ice-ring detection

algorithms, namely phenix.xtriage

(Adams et al., 2010), CTRUNCATE

(Winn et al., 2011), the AUSPEX

Icefinder score and the recent pice

algorithm (Moreau et al., 2021).

Helcaraxe rates the individual resolu-

tion ranges in which ice rings can appear

(as described in Section 3.1) and not the

complete diffraction data set. There-

fore, a data set was labelled as ice ring-

contaminated when the network classi-

fied even a single Helcaraxe plot as

contaminated.

The algorithm recently introduced by

Moreau and coworkers outperformed

all previous statistical methods.

Helcaraxe reaches an even higher

accuracy and sensitivity (both over

93%). Using Iobs plots Helcaraxe has a

specificity of 92% and using Fobs plots it

has a specificity of 97%. In general, the

use of Helcaraxe results in the most

reliable output in comparison to the

traditional statistical methods (Table 3).

3.4. Analysis of the PDB

The Helcaraxe networks were then

used to analyse 117 615 randomly

selected diffraction data sets deposited

in the PDB (see Fig. 8). We found that
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Figure 5
Averaged Helcaraxe plots of training and validation data, annotated as containing or not containing
ice artefacts, for both Fobs and Iobs. The characteristic ice spike can be seen in both mean ice-ring
plots (b, d). The spike is more prominent for Fobs. Axes refer to pixel values.

Table 3
Comparison of different ice-detecting software.

pice is the new score introduced by Moreau and coworkers based on the previous AUSPEX Icefinder score. The data for accuracy, sensitivity and specificity are
given with a 95% confidence interval.

Program True positives True negatives False positive False negatives Accuracy Sensitivity Specificity

phenix.xtriage 13/40 144/157 13 27 0.80 � 0.056 0.33 � 0.005 0.92 � 0.001
CTRUNCATE 22/40 93/157 64 18 0.58 � 0.069 0.55 � 0.005 0.59 � 0.002
AUSPEX 23/40 141/157 16 17 0.83 � 0.052 0.58 � 0.005 0.90 � 0.002
pice 29/40 148/157 9 11 0.90 � 0.042 0.73 � 0.005 0.94 � 0.001
Helcaraxe, Iobs 39/40 145/157 12 1 0.93 � 0.036 0.98 � 0.001 0.92 � 0.001
Helcaraxe, Fobs 26/28 122/126 4 2 0.96 � 0.027 0.93 � 0.003 0.97 � 0.001



21 741 PDB entries (18.5%) show evidence of ice contam-

ination in the processed, scaled and merged diffraction data.

This number is similar to other previous large-scale analyses of

the PDB (19% in Thorn et al., 2017; 16% in Moreau et al.,

2021). We analysed the historical evolution of ice contam-

ination. The presence of ice rings started increasing in the late

1990s when cryotechniques became routine at the first

synchrotron MX beamlines and steadily grew when the first

sample changers came online. Since the mid-2000s, the frac-

tion of ice-contaminated data has stabilized at around 19%,

even though the advent of pixel detectors has translated into

shorter measurement times and consequently less time in

which the protein crystal is exposed to a cryo-stream where it

may accumulate surface ice crystals on the sample. The data

produced in this analysis could be a useful starting point for

research into the impact that ice rings have on structure

solution and will be available from the Helcaraxe git reposi-

tory (https://github.com/thorn-lab/helcaraxe).

3.5. Integration into AUSPEX

Helcaraxe has been integrated into a new Python-based

version of AUSPEX (to be published) and can be used to

automatically decide whether a specific resolution range

contains ice-ring artefacts. The previous Icefinder score

(Thorn et al., 2017) is still used to rate the severity of the
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Figure 6
Misclassified Helcaraxe plots. Axis labels refer to pixels. Weak (a) and ‘accumulating’ (b) ice rings in plots were the main causes of false negative
classifications. ‘Accumulating’ refers to ice rings which do not affect all intensities equally at a given resolution. Diffraction data with a low number of
reflections (c) were a source of false positive misclassifications.

Figure 7
A SmoothGrad averaged sensitivity mask of the Fobs and Iobs networks against the test set, with pixel numbers indicated on the y and x axes. Larger
values indicate a higher significance of the pixel. The area where ice artefacts usually appear has a higher relevance than the top, left and right edges. Fobs

plots have a more spread-out distribution, which is likely to be the reason why the Fobs network also has a larger relevant area.



artefacts, as Helcaraxe, which is trained only for the detection

and not the assessment of ice rings, provides a less differ-

entiated classification. An additional discriminator function in

the Helcaraxe script detects plots that are completely or

partially blank, for example because resolution ranges were

omitted during integration. This is achieved by checking, for

specified resolution bins, whether the mean Iobs (or Fobs) is

close to 0. If this is true the plot is marked as nonpredictable

and a warning is passed to the user. The runtime of AUSPEX

is barely influenced by Helcaraxe as the prediction is fast (1–

3 s per diffraction data set). No additional input for AUSPEX

is needed to use Helcaraxe, and users of AUSPEX can choose

between the Helcaraxe networks or AUSPEX Icefinder score

to detect potential ice-crystal artefacts.

4. Conclusion

The identification of ice-diffraction artefacts in integrated,

scaled and merged data has been an ongoing problem in

macromolecular crystallography, even with modern cryo-

cooling techniques (Moreau et al., 2021) and new background-

estimation algorithms (Parkhurst et al., 2017). To aid identi-

fication in automatic pipelines as well as by users, a set of

neural networks named Helcaraxe was developed to identify

whether a scaled and merged X-ray diffraction data set

contains ice-diffraction contamination of the reflection data

from a macromolecular crystal. This program presents a

significant improvement over previous automatic tools using

classical statistical indicators. One area of future exploration

would be to combine these approaches: reliable statistical

methods such as those recently introduced by Moreau and

coworkers could be used as an additional feature in the fully

connected part of the Helcaraxe networks. Our work also

shows that the multi-dimensional pattern-recognition abilities

of convolutional neural networks are a valuable addition to

the toolbox of diffraction data analysis, and the authors of this

paper expect to see an increase in AI methods in this field in

the near future. Helcaraxe is currently already in use in the

Coronavirus Structural Task Force pipeline (Croll et al., 2021)

and has been integrated into the newest version of AUSPEX,

which is available through the AUSPEX webserver (https://

www.auspex.de).

Acknowledgements

The authors would like to thank Robert Nicholls, Gianluca

Santoni, Maximilian Edich, Ferdinand Kirsten, Luise Kandler,

Matt Reeves and scientific fairy godmother Arwen Pearson

for discussion. Open access funding enabled and organized by

Projekt DEAL.

Funding information

This work was supported by the German Federal Ministry of

Education and Research (grant No. 05K19WWA) and the

Deutsche Forschungsgemeinschaft (grant No. TH2135/21).

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu,
Y. & Zheng, X. (2016). arXiv:1603.04467.

Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W.,
Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-
Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read,
R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. &
Zwart, P. H. (2010). Acta Cryst. D66, 213–221.
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Figure 8
The number of deposited diffraction data sets (green) and the amount of
these depositions which were annotated by Helcaraxe as containing at
least one ice ring (blue). The contamination proportion is shown as a
purple line.
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