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As more protein structure models have been determined from cryogenic

electron microscopy (cryo-EM) density maps, establishing how to evaluate the

model accuracy and how to correct models in cases where they contain errors is

becoming crucial to ensure the quality of the structural models deposited in the

public database, the PDB. Here, a new protocol is presented for evaluating a

protein model built from a cryo-EM map and applying local structure

refinement in the case where the model has potential errors. Firstly, model

evaluation is performed using a deep-learning-based model–local map

assessment score, DAQ, that has recently been developed. The subsequent

local refinement is performed by a modified AlphaFold2 procedure, in which a

trimmed template model and a trimmed multiple sequence alignment are

provided as input to control which structure regions to refine while leaving other

more confident regions of the model intact. A benchmark study showed that this

protocol, DAQ-refine, consistently improves low-quality regions of the initial

models. Among 18 refined models generated for an initial structure, DAQ shows

a high correlation with model quality and can identify the best accurate model

for most of the tested cases. The improvements obtained by DAQ-refine were on

average larger than other existing methods.

1. Introduction

Cryogenic electron microscopy (cryo-EM) has become a core

technique for determining the three-dimensional structure of

biomolecules. Technical advancements in cryo-EM occurred a

few years ago which made it possible to achieve near-atomic

resolution in determining density maps (Yip et al., 2020;

Nakane et al., 2020). Cryo-EM has unique strengths including

the ability to determine macromolecular structures, such as

large complexes or membrane proteins, that are often difficult

to crystallize for X-ray crystallography (Cheng, 2018). As an

increasing number of protein structures are being determined

by cryo-EM, however, it has been observed that a substantial

number of structural models determined using cryo-EM and

deposited in the PDB (Berman et al., 2000) contain potential

errors (Terashi et al., 2022). Errors include cases in which the

modeled local conformation itself is wrong and situations in

which misassignment of amino acids has occurred in an

otherwise correct main-chain conformation.

Structure modeling is intrinsically difficult for map regions

in which the local resolution is low. Also, errors often occur

when assigning sequences along a long helix, as amino acids in

the sequence region all have a high helix propensity. As the

‘resolution revolution’ of cryo-EM (Kühlbrandt, 2014) has

opened the door of structural analysis to many inexperienced

users who are attempting to build atomic models into maps of
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moderate resolution, many mistakes may have been intro-

duced into structural models. Therefore, a reliable protocol is

needed that can correctly identify and fix regions in models

that are built from a cryo-EM map.

The cryo-EM modeling community recognizes the impor-

tance of model validation: it was a focus of discussions in the

EM Modeling Challenge held in 2019 (Lawson et al., 2021).

Various model-validation methods have been proposed in the

past. Validation methods can be categorized into two main

types: map–model scores and model–coordinate scores. The

former, map–model scores, measure the consistency of the

map and a protein model, and include the atom-inclusion

score (Joseph et al., 2017), EMRinger (Barad et al., 2015), Q-

score (Pintilie et al., 2020) and map correlation score (Joseph

et al., 2017, 2022). The other category, model–coordinate

scores, such as MolProbity (Chen et al., 2010) and CaBLAM

(Prisant et al., 2020), identify stereochemical outliers in a

protein model. In the worldwide Protein Data Bank

(wwPDB), MolProbity is used as a validation method for PDB

entries. Additionally, the atom-inclusion score and Q-score are

used to assess the quality of fit between the map and the

atomic structure for cryo-EM data in the PDB. Recently, we

developed a novel map–model score, the Deep-learning-based

Amino acid-wise model Quality (DAQ) score, which uses deep

learning to capture local density features to assess the like-

lihood that each residue in a model is correct. The DAQ score

was very effective in finding the positions in the structure

model where amino-acid assignments to local density are

likely to be incorrect (residues in the model which were placed

more than 2.0 Å away from the native structure; see Supple-

mentary Fig. 3 of Terashi et al., 2022).

Following our development of the DAQ score, here we

address the next step: how to refine local regions that are

identified to be incorrect in a structural model. The local

refinement protocol, DAQ-refine, starts by identifying poten-

tially incorrect regions in a protein model using the DAQ

score. It then remodels the local regions using AlphaFold2

(AF2), a protein structure-prediction method (Jumper et al.,

2021a,b) that achieved significantly high accuracy in the 14th

Critical Assessment of Structure Prediction (CASP14), a

community-wide protein structure-prediction experiment

(Kryshtafovych et al., 2021). Although AF2 produces a highly

accurate model from the protein sequence information in

many cases, it has several reported limitations (Aderinwale et

al., 2022; Jones & Thornton, 2022). Among the known

limitations, the most relevant issue for this work is that a

predicted structure from AF2 is built solely based on the

sequence and is occasionally different from the conformation

in a particular experimental structure and condition, such as in

a complex determined by cryo-EM (Zhou et al., 2022; Heo &

Feig, 2022; Del Alamo et al., 2022). Thus, in the current

refinement protocol, instead of running AF2 as it is, we

attempt to keep confident regions in the initial protein model

intact and to only remodel low-confidence regions using AF2.

This is achieved by following a recently proposed protocol for

AF2 in which a partial structure of the target protein is

provided as a template to AF2 (Heo & Feig, 2022).

The current protocol is different and complementary to the

protein structure-modeling protocol proposed by Terwilliger

and coworkers in the framework of the Phenix modeling

package (Terwilliger et al., 2022). Their protocol, dock_and_

rebuild, employs AF2 and Phenix model fitting iteratively to

model the entire protein structure model for a density map. In

contrast to their approach, the protocol that we discuss here

involves correcting local regions in a structural model that has

already been built by some modeling tool.

We applied DAQ-refine to 13 PDB-deposited models and

the corresponding cryo-EM maps reconstructed at 3.20–

4.35 Å resolution. Around the 3–5 Å resolution range, struc-

ture modeling is intrinsically difficult in map regions where the

local resolution is low or moderate. Therefore, it is challenging

for model-refinement algorithms. For 11 targets (85%), our

local refinement protocol achieved the highest GDT-HA

model-assessment score (Kopp et al., 2007) among four other

model-refinement methods. Detailed analysis shows that the

final model selection by DAQ(AA) score and the use of a

partial model of the target protein as a customized template

for AF2 contributed to the high performance of the proposed

method. The result demonstrated that DAQ-refine is able to

identify misaligned regions in the initial models and to refine

those regions in an automated fashion.

2. Materials and methods

We illustrate the overall protocol of DAQ-refine in Fig. 1. It

consists of five steps.

(i) Initial model evaluation using the DAQ score.

(ii) Generating multiple sequence alignments (MSAs) and a

template model as input for AF2. An MSA is a set of aligned

similar sequences to the target protein.

(iii) Model building with AF2 with the customized input

data. The AF2 neural network directly predicts the 3D co-

ordinates of the protein structure using features extracted

from the given MSAs and the template model.

(iv) Model refinement with Rosetta relax.

(v) Model selection with the DAQ score.

We describe each step in more detail in the subsequent

subsections.

2.1. Initial model-quality evaluation using the DAQ score

The first step in the protocol is to evaluate the model using

the DAQ score. The DAQ score quantifies how well residues

in an atomic model agree with density features detected by

deep learning. The local density features of an EM map are

captured by deep learning. The input EM map is scanned with

a box 11 � 11 � 11 Å in size with an interval of 1 Å along the

three coordinate-axis directions and a trained deep neural

network outputs probabilities that the box contains 20 amino-

acid types at the center position of the box (Terashi et al.,

2022).

The DAQ(AA) of a residue position i in a protein model is

defined as
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DAQðAAÞðiÞ ¼ log
Paai
ðiÞP

j Paai
ðjÞ=N

 !
; ð1Þ

where Paai
ðiÞ is the computed probability of amino-acid type

aai being assigned at position i by deep learning, which is

normalized by the average value among all atom positions j in

the model. N is the total number of atoms in the model. As the

equation shows, if the predicted probability value for position i

is higher than the average, then DAQ(AA) becomes positive.

If DAQ(AA) is below �0.5 for an amino-acid position, it is

highly likely that the amino acid does not fit the local density

and is worth attention. After DAQ(AA) had been computed

for all amino acids in a model, the values were averaged by a

sliding window of 19 residues along the protein sequence to

better detect a local sequence shift in a model (Terashi et al.,

2022).

There are two other types of DAQ score: the probabilities

of a C� atom, DAQ(C�), and of three types of secondary

structures, DAQ(SS), being in a scanning box. Here, we only

use DAQ(AA) since it detects sequence-assignment shifts and

incorrect conformations in a structure model, which are two

common errors in protein structure modeling.

2.2. Running AlphaFold2 with modified MSAs and template

Low-confidence regions detected by the DAQ score in the

initial model were refined with AF2. In this local refinement,

we want to only refine the local regions and keep confident

regions in the model untouched. A regular AF2 run is not

suitable for this task because it will generate a full residue

model from the sequence information only, which may deviate

in the confident regions of the initial model and consequently

may not fit well to the map. To achieve local refinement with

AF2, we modified the input to AF2 in two different ways and

compared the results with a regular AF2 run. Thus, we

performed three different runs. We used ColabFold (Mirdita et

al., 2022) on Google Colab to run AF2 because the server

allows us to use customized input.

A regular AF2 run takes an input protein sequence,

generates an MSA with MMseqs2 (Mirdita et al., 2019;

Steinegger & Söding, 2017), which we call here a full MSA,
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Figure 1
Overview of the DAQ-refine protocol. (1) Initial model evaluation with the DAQ score. The initially deposited model for PDB entry 7jsn chain A, which
was derived from the EM map (EMDB entry EMD-22458, 3.2 Å resolution), is used as an example. The DAQ(AA) scores along the model are shown
with a color scale from red [DAQ(AA) < �1.0] to blue [DAQ(AA) > 1.0]. The enlargement highlights regions (residue His230–Glu256) where
DAQ(AA) is negative and thus highly likely to be incorrect. (2) MSA and template-model generation. Full MSAs are computed by MMseqs2 in
ColabFold. Trimmed MSAs are generated by masking alignment data corresponding to positions in the full MSAs where the DAQ(AA) score is positive.
The trimmed template model is generated by removing residue positions where the DAQ(AA) score is negative or zero from the initial model. (3) Model
building by AlphaFold2. Three strategies (AF2 with full MSAs, AF2 with full MSAs + trimmed template model and AF2 with trimmed MSAs + trimmed
template model) are performed. (4) Models are refined with Rosetta relax in the EM map. (5) Finally, the top-ranked model by DAQ(AA) score is
selected as the final model.



and runs AF2. AF2 simply performs structure prediction and

does not consider the initial structural model. This procedure

produced five models.

The second run uses the full MSA with a trimmed initial

model as a template, in which residues with a negative

DAQ(AA) score, and potentially incorrectly modeled residue

positions, are removed from the initial model. The intention of

the trimmed template model is to provide a template that only

covers confident regions of the initial model. In AF2 trained

network models, only two fine-tuned models (model 1 and

model 2) use template data (Jumper et al., 2021a). Therefore,

this run produces two models from model 1 and model 2.

The third run is with a trimmed MSA and the trimmed

template model. In the trimmed MSA, we mask local regions

in the full MSA that correspond to residues with a zero or

positive DAQ(AA) score, i.e. confident regions in the initial

model (AF2 with trimmed MSA + trimmed template model).

The intention of the trimmed MSA is to not provide MSA

information for the confident regions of the model, so that

AF2 does not have information to alter the structure of the

confident regions. This procedure also produces two models.

In total, we have nine models for a target protein from the

three different AF2 runs. The strategy to trim an MSA and a

template was inspired by work by Heo and Feig in which they

attempted to produce multiple conformations of target

proteins by controlling the MSA and template to input (Heo

& Feig, 2022).

The nine models were superimposed on the trimmed

template model, which was then subjected to the Rosetta relax

protocol (Nivón et al., 2013; Conway et al., 2014) with the cryo-

EM density map. In the Rosetta relax protocol, the agreement

of the atomic mode and experimental density on the 3D map is

used as an additional energy term for structure refinement.

Finally, 18 models, nine models with and nine without Rosetta

relaxation, were evaluated using the DAQ(AA) score. We

selected the model that has the highest DAQ(AA) score as the

final model.

2.3. Data set of PDB entries to refine

We tested the DAQ-refine protocol on 13 PDB chain

models with corresponding EM maps, which were taken from

the data sets used in the DAQ score paper (Terashi et al.,

2022). These targets were selected because their initial model

has mismodelled regions as indicated by negative DAQ(AA)

scores.

Six of the 13 targets (PDB entries 6cp3 chain Y, 6k1h chain

Z, 7jsn chain A, 7jsn chain B, 7ksm chain C and 7ksm chain D)

were PDB entries that have at least two versions of the

deposited structure available in the wwPDB database (http://

ftp-versioned.wwpdb.org). Moreover, the two versions of the

structures differ by a C� r.m.s.d. of greater than 1.0 Å and the

first version has a mismodelled region that has a low negative

DAQ(AA) score. The second version of the structure has a

substantially better DAQ(AA) score with a positive value,

indicating that the error in the model was fixed by the authors.

We rebuilt the model from the initial version of the structure

and compared it with the second version of the deposited

structure. These six targets were named the 2Ver targets. The

targets and file names of the PDB files on the PDB FTP site

are listed in Supplementary Table S1.

The other seven targets (PDB entries 6l54 chain C, 3j6b

chain 9, 5lc5 chain N, 6gcs chain 2, 6gcs chain 4, 6cv9 chain A

and 6iqw chain E) were selected from protein structure pairs

from different PDB entries (and corresponding different

EMDB entries) that have over 90% sequence identity to each

other but nevertheless have a C� r.m.s.d. of 1.0 Å or higher

and have at least four contiguous inconsistent and thus

probably misaligned residues between them. We defined these

misaligned residues to be corresponding residues in the two

structures that are more than 2.0 Å away from each other and

are close to different residues when the two models were

superimposed. We selected pairs in which one member of the

pairs had a negative DAQ(AA) score for that region. For a

structure pair, we refined the structure with lower DAQ score

using the associated EM map and examined whether the

refined structure became close to the higher-scoring counter-

part. We call these targets homologous pair (Hom) targets.

There is a possibility that both entries of a Hom target are

correct since they are not identical proteins and have been

independently deposited in the PDB. However, one of the pair

has a negative DAQ(AA) score, which usually indicates an

incorrect model, and our local refinement protocol constantly

improved DAQ(AA) when applied to the entry with the lower

score. Thus, as we also discussed in the original DAQ paper

(Terashi et al., 2022), we believe that the entry with the lower

score does indeed include incorrectly modeled regions. The

EMDB and PDB IDs of these pairs of targets are provided in

Supplementary Table S2. In Supplementary Table S3, we

provide the average DAQ(AA) scores of each of two struc-

tures of the 13 targets as well as the r.m.s.d.s between them.

3. Results and discussion

3.1. Local refinement results with the three AlphaFold2
protocols

We first show a summary of the refined structures built by

the three AF2 protocols discussed above: AF2 with a full MSA

and no template, AF2 with a full MSA and a trimmed template

model, and AF2 with a trimmed MSA and a trimmed template

model. After each model had been generated, we ran the

Rosetta relax protocol. For comparison, we also show the

results of applying Rosetta relax only to the initial models. The

results are presented as two metrics: the root-mean-square

deviation of C� atoms (r.m.s.d.) and the high-accuracy version

of the global distance test (GDT-HA; Kopp et al., 2007) to the

native (i.e. the second version model for the 2Ver targets and

the higher scored structure for the Hom targets). GDT-HA is

defined as the average fraction of correctly modeled C�-atom

positions obtained in each superposition to the native struc-

ture at four distance thresholds: 0.5, 1.0, 2.0 and 4.0 Å. Table 1

shows the r.m.s.d. and GDT-HA of the best model among
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those generated for each protocol. Supplementary Tables S4

and S5 provide the results for all 18 models for each target.

When Rosetta relax was directly applied to the initial

models, improvement was observed for six targets and no

change was observed for one target (53.8% considering both

cases) out of the 13 targets when r.m.s.d. was considered.

GDT-HA improved for four cases, with no change for four

other cases out of 13. The average GDT-HA decreased slightly

from 0.69 to 0.68. For both the improvements in r.m.s.d. and

GDT-HA, the Wilcoxon test indicates high p-values of 0.63

and 0.58, respectively. Thus, using only Rosetta relax did not

give a statistically significant improvement. This is mainly

because misaligned residues in the initial models are difficult

to resolve by regular structure refinement.

When we applied the three AF2 protocols followed by

Rosetta relax, the resulting models clearly improved over the

simple application of structure relaxation (Table 1). The

average r.m.s.d. improved from 3.33 to 1.42 and 1.33 Å for

AF2 with a full MSA and no template model and for AF2 with

a full MSA and a trimmed template model, respectively. The

average r.m.s.d. became worse for AF2 with a trimmed MSA

and a trimmed template model, due to two targets, PDB entry

6gcs chain 2 and PDB entry 6cv9 chain A, where the resulting

r.m.s.d. increased. The r.m.s.d. became very large for these two

targets because the refined structures had a tail region that

was placed on the wrong side of the protein structure

(Supplementary Fig. S1). In terms of GDT-HA, all three

DAQ-refine protocols improved the initial models except for

one target, PDB entry 6k1h chain Z. Comparing the three

DAQ-refine protocols, AF2 with a full MSA and a trimmed

template model performed the best, with the smallest average

r.m.s.d. and the largest average GDT-HA.

To further examine the effect of

Rosetta relax, in Fig. 2 we compare the

model accuracy before and after

applying Rosetta relax. The relaxation

improved the models in most of the

cases. 110 of 117 models (94.0%)

improved and one model stayed the

same in terms of r.m.s.d., while 100

models (85.5%) improved in terms of

GDT-HA using the structure-relaxation

step. For both r.m.s.d. and GDT-HA, the

Wilcoxon test result indicates that the

improvements are statistically signifi-

cant (p-values of 1.7 � 10�19 and 2.2 �

10�14, respectively). Thus, Rosetta relax

is not helpful when used on its own, but

is effective in combination with

AF2 runs, i.e. the full DAQ-refine

protocol.
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Table 1
Summary of structure remodeling with the three AlphaFold2-based methods.

The EMDB IDs for entries in the Hom data set are indicated with an asterisk (*). The other six entries are from the 2Ver data set. R.m.s.d. and GDT-HA were
computed for the whole model including all residues of the protein. The results of three variations of running AlphaFold2 after structure refinement with Rosetta
relax are shown. The ‘Relax only’ column shows the results of applying the Rosetta relax protocol to the initial structure. No templ., no template model; trim.
templ., trimmed template model; trim. MSA, trimmed MSA. Each method outputs multiple models and the best result among the outputs is listed here. A triangle
(~) is shown when the result is worse than the initial model. The best values for each target are indicated in bold.

R.m.s.d. (Å) GDT-HA

EMD ID PDB ID Initial
Relax
only

Full MSA
+ no templ.

Full MSA
+ trim. templ.

Trim. MSA
+ trim. templ. Initial Relax only

Full MSA
+ no templ.

Full MSA
+ trim. templ.

Trim. MSA
+ trim. templ.

EMD-0837* 6l54 chain C 3.12 3.12 1.23 1.21 1.73 0.63 0.62~ 0.69 0.68 0.65
EMD-2566* 3j6b chain 9 1.67 1.69~ 0.54 0.53 1.76~ 0.82 0.80~ 0.93 0.93 0.83
EMD-4032* 5lc5 chain N 2.58 2.51 1.02 1.19 1.53 0.60 0.68 0.83 0.82 0.77
EMD-4384* 6gcs chain 2 2.09 2.14~ 1.62 1.46 9.22~ 0.67 0.65~ 0.76 0.78 0.68
EMD-4384* 6gcs chain 4 3.01 2.94 2.13 2.20 2.32 0.61 0.61 0.79 0.79 0.75
EMD-7637* 6cv9 chain A 7.55 7.64~ 1.66 1.64 26.2~ 0.41 0.41 0.80 0.83 0.63
EMD-9708* 6iqw chain E 1.61 1.63~ 0.87 0.67 0.75 0.64 0.66 0.86 0.86 0.84
EMD-7546 6cp3 chain Y 9.50 9.44 1.83 1.86 2.85 0.45 0.37~ 0.68 0.68 0.62
EMD-9906 6k1h chain Z 2.79 2.77 1.17 1.15 1.82 0.85 0.78~ 0.82~ 0.83~ 0.80~

EMD-22458 7jsn chain A 3.18 3.22~ 0.95 1.00 1.05 0.72 0.72 0.90 0.90 0.90
EMD-22458 7jsn chain B 3.98 3.92 2.56 2.36 3.80 0.67 0.67 0.89 0.89 0.83
EMD-23020 7ksm chain C 1.31 1.33~ 1.77~ 0.89 1.24 0.91 0.92 0.89 0.93 0.95
EMD-23020 7ksm chain D 1.05 0.99 1.14~ 1.13~ 1.04 0.93 0.94 0.94 0.95 0.96
Average 3.34 3.33 1.42 1.33 4.25~ 0.69 0.68~ 0.83 0.84 0.79

Figure 2
Model quality before and after refinement. R.m.s.d. and GDT-HA for nine models of all 13 targets
before and after applying Rosetta relax structure refinement are shown. (a) R.m.s.d.; (b), GDT-HA.
For r.m.s.d., four models were omitted from the plot that have r.m.s.d. values of over 10 Å. They
were two models from PDB entry 6cv9 chain A, which have before and after r.m.s.d. values of 26.0
and 26.2 Å and of 35.7 and 35.5 Å, respectively, and two models from PDB entry 7jsn chain A, which
have before and after r.m.s.d. values of 26.0 and 25.6 Å and of 25.4 and 25.1 Å, respectively.



3.2. Model selection with the DAQ score

The next question that we address is how to select the

refined structures from the 18 models that we have built. In

Fig. 3 we show GDT-HA for each of the 18 generated models,

including unrelaxed and relaxed models, for each target

relative to the DAQ(AA) score. For reference, the initial

model and the relaxed initial model from Rosetta relax are also

included in the plots. The same plots instead showing r.m.s.d.

are provided as Supplementary Fig. S2. The plots show that

DAQ(AA) has a clear correlation with the model quality

GDT-HA. For each target, the Pearson correlation coefficient

and a regression line between GDT-HA and DAQ(AA) were

computed from 20 models (18 generated models, the initial

model and the relaxed initial model). The Pearson correlation
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Figure 3
Comparison of the DAQ(AA) score and GDT-HA for 13 targets. The DAQ(AA) scores of 18 structure models refined with our protocol are plotted
against GDT-HA. Small green circles represent models refined without the Rosetta relax protocol. Large green circles represent the refined models after
the Rosetta relax protocol. Initial models and initial models relaxed using Rosetta relax are shown as red squares and blue triangles, respectively. Black
lines represent the regression lines of the plots.



coefficients ranged from 0.10 (PDB entry 6l54 chain C) to 0.97

(PDB entries 7jsn chain B, 7ksm chain C and 7ksm chain D),

with an average of 0.85. Except for PDB entry 6l54 chain C, all

targets have a correlation coefficient of over 0.85. Therefore,

we can use DAQ(AA) as a metric to select one of the most

accurate models from those generated.

For PDB entry 6l54 chain C, Rosetta relax made GDT-HA

worse in all generated models (Figs. 2b and 3). Close exam-

ination of the EM map of the target structure (EMDB entry

EMD-0837) and the map of the homologous protein structure

which was considered as the reference (PDB entry 6z3r chain

C; EMDB entry EMD-11063) revealed that the two EM maps

differ slightly in the local region where PDB entry 6l54 chain C

contains a modeling error (Supplementary Fig. S3). Therefore,

Rosetta relax further deviated the structures away from PDB

entry 6z3r chain C towards the density of EMDB entry EMD-

0837, which made GDT-HA lower; moreover, DAQ(AA) was

better for the refined models with lower GDT-HA because

they agree better with the density of

EMDB entry EMD-0837.

Fig. 4 shows actual model-selection

results using DAQ(AA). The model

with the highest DAQ(AA) was

improved over the initial model in terms

of both r.m.s.d. and GDT-HA (Figs. 4a

and 4b). There was one target, PDB

entry 7ksm chain D, for which the

model with the highest DAQ(AA) has

the same r.m.s.d. as the initial model. In

terms of GDT-HA, a model worse than

the initial model was selected for

another target, PDB entry 6kih chain Z.

The average improvement in r.m.s.d.

was 1.96 Å, while the improvement in

GDT-HA from the initial models was on

average 0.15. The Wilcoxon test indi-

cates statistical significance for the

improvements in both r.m.s.d. and

GDT-HA, with low p-values of 4.9 �

10�4 and 1.2 � 10�3, respectively.

3.3. Comparison with other structure-
refinement methods

We further compared the DAQ-refine

protocol with four other existing

refinement methods, namely molecular-

dynamics flexible fitting (MDFF) with a

g-scale of 0.5 (Singharoy et al., 2016;

McGreevy et al., 2016), the Rosetta relax

protocol (Nivón et al., 2013; Conway

et al., 2014), phenix.real_space_refine

(Afonine et al., 2013) and phenix.

dock_and_rebuild (Terwilliger et al.,

2022). MDFF performs structure

refinement with molecular dynamics

under the constraint of an input density

map. phenix.real_space_refine performs gradient-driven mini-

mization of the target function that combines the fit of the

model to the map and the restraints on the protein structure,

such as bond lengths and angles. phenix.dock_and_rebuild first

runs AF2 to predict the tertiary structure of the target protein

and then splits it into reliable domains based on the pLDDT

score; it then performs docking and rebuilding iteratively for

each domain in the map. Additionally, a simple combination of

AF2 and Rosetta relax was also implemented for comparison.

This protocol used a full MSA and the initial structural model

as input to AF2. The generated model with the best pLDDT

score was then superimposed on the initial structural model

and refined with Rosetta relax.

Fig. 5 compares the r.m.s.d. and GDT-HA of refined

structures for the 13 targets from the DAQ-refine protocol and

the results from the five existing methods. Numerical values of

the data are provided in Supplementary Table S6. ‘DAQ-

refine’ in Fig. 5 and ‘Top Score Model’ in Supplementary Table
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Figure 4
Model selection with DAQ(AA). From 18 models generated for each target, that with the highest
DAQ(AA) was selected. The selected models were compared with the initial model in terms of (a)
r.m.s.d. and (b) GDT-HA.

Figure 5
Comparison of DAQ-refine with five other existing methods. For each of the 13 targets the model
with the highest score was selected from the models generated by each method. Blue diamonds,
Rosetta relax; orange triangles, MDFF; green crosses, phenix.real_space_refine; red circles,
phenix.dock_and_rebuild; purple triangles, AF2 + Rosetta relax. The phenix.dock_and_rebuild
and AF2 + Rosetta relax protocols start by predicting the structure of the target protein using AF2.
AF2 + Rosetta relax uses the initial protein model as a template protein structure in AF2. The other
refinement methods started from the initial protein model. For our DAQ-refine protocol, the model
with the highest DAQ(AA) score was selected. (a) Comparison is made in terms of r.m.s.d. to the
native structure. Two models generated by phenix.dock_and_rebuild and AF2 + Rosetta relax have
large r.m.s.d.s. of 25.6 and 24.8 Å and were not included in this plot. (b) Comparison is made in
terms of GDT-HA.



S6 are the final model that has the highest DAQ(AA) score

among the 18 generated models from the DAQ-refine

protocol. It should be noted that dock_and_rebuild only

constructs models for confident regions, as shown in Supple-

mentary Table S7. On average, models from dock_and_rebuild

cover 89% of the amino acids in the target proteins; the rest

were not modeled. Therefore, models generated by dock_and_

rebuild tend to have low r.m.s.d.s but a low coverage that

results in a low GDT-HA.

Our protocol achieved a lower r.m.s.d. for all of the targets

when compared with Rosetta relax, MDFF and phenix.real_

space_refine (Fig. 5a). When compared with models from

phenix.dock_and_rebuild, DAQ-refine had a larger r.m.s.d.

than phenix.dock_and_rebuild for six target models (PDB

entries 6l54 chain C, 5lc5 chain N, 6gcs chain 2, 6gcs chain 4,

6cp3 chain Y and 7jsn chain B), but this is mainly because

phenix.dock_and_rebuild did not model all of the residues in

the proteins, i.e. its models are shorter than the native struc-

ture. Compared with AF2 + Rosetta relax, our protocol

achieved a lower r.m.s.d. for nine targets (69.2%). When GDT-

HA is considered, DAQ-refine showed a higher value for all of

the targets than Rosetta relax and MDFF. Compared with

phenix.real_space_refine and phenix.dock_and_rebuild, our

protocol showed a higher GDT-HA for 12 targets (92.3%).

Compared with AF2 + Rosetta relax, DAQ-refine showed a

higher or same GDT-HA for 11 targets.

3.4. Case studies

The following sections discuss four case studies that illus-

trate how DAQ-refine improved the initial models.

3.4.1. Case study 1: PDB entry 7jsn chain A (EMDB entry
EMD-22458). In this example, we refined the first version of

the model of cGMP-specific 30,50-cyclic GMP phosphodi-

esterase (cGMP phosphodiesterase 6 subunit; PDB entry 7jsn

chain B; Gao et al., 2020; Fig. 6a). The model was built from a

3.2 Å resolution EM map (EMDB entry EMD-22458). PDB

entry 7jsn contains two versions of the structure. The first

model was released in the PDB on 21 October 2020, and was

later revised on 31 March 2021 (Gao et al., 2021). In the initial

model, which is shown in the left panel of Fig. 6(a), there are

several regions colored magenta where large deviations of

over 3.0 Å were observed when compared with the revised

version of the model. The DAQ(AA) score clearly indicates

low values for these inconsistent regions, as shown in red in

the second panel from the left.

The refined structure is shown on the right in Fig. 6(a). The

DAQ(AA) score of the refined model is much improved, with

positive values for all of the residues, as indicated in blue in

the model. The change in the scores along the residue posi-

tions is clear in the two plots shown below the model structure

images. In the initial model, inconsistent regions with the

native (shown in gray) had low, negative DAQ(AA) scores,

while the refined model has all positive DAQ(AA) values

along the chain. One of the remodeled regions is highlighted

in squares. In the initial model, residues including Leu241,

Trp243 and Lys247 do not fit well to the density. The problem

with this region is that the assigned sequence was shifted along

the helix. On the other hand, in the refined model shown on

the right, the revised conformation of the three residues

(cyan) agree well with the native structure except for the

direction of the tip of Lys247. After local refinement, the

overall model accuracy was improved from 3.18 to 1.00 Å in

C� r.m.s.d. and from 0.72 to 0.90 in GDT-HA.

3.4.2. Case study 2: PDB entry 7ksm chain C (EMDB entry
EMD-23020). The second example is a model of the human

mitochondrial AAA+ protein LONP1. The first version of the

model (PDB entry 7ksm; Shin et al., 2021) was released in the

PDB on 2 December 2020 and it was revised on 15 June 2022.

As shown in the left plots in Fig. 6(b), there is an inconsistent

region (Ile312–Glu339, gray shade in the score plot and shown

in magenta in the leftmost model) between the first and

revised versions of the model, where DAQ(AA) exhibited

negative values as indicated by a thick tube in red. As high-

lighted in the square, the side chains of Phe330 and Asn326 in

the first version of the model (magenta) were not covered well

by the map density. The main problem in this region is that the

sequence assignment was shifted along the main-chain

conformation, which resulted in the unnatural side-chain

conformation in the density. In the refined model (right panel)

DAQ(AA) for these two amino-acid residues improved to

positive values and they fit well into the map. After refine-

ment, the overall model accuracy improved from 1.31 to

1.24 Å in C� r.m.s.d. and from 0.91 to 0.95 in GDT-HA.

3.4.3. Case study 3: PDB entry 6l54 chain C (EMDB entry
EMD-0837). The next two examples are taken from the Hom

targets. Fig. 7(a) is a pair of models of the protein SMG9. One

is PDB entry 6l54 chain C, which was modeled from EMDB

entry EMD-0837, determined at 3.43 Å resolution (Zhu et al.,

2019) and the other is PDB entry 6z3r chain C, built from

EMDB entry EMD-11063, at 2.97 Å resolution (Langer et al.,

2020). These two protein models have 100% identical

sequences, yet their structures deviate by an r.m.s.d. of 3.1 Å.

In PDB entry 6l54 chain C, Thr405–Leu428 have negative

DAQ(AA) scores (shown in red in the second model from the

left), indicating a likely shift in the sequence assignment. On

close inspection, it is observed that this region has implausible

side-chain packing. For example, the side chains of Asp423

and Glu425 are directed into the hydrophobic core of the

protein in PDB entry 6l54 (magenta, highlighted in the

enlargement). However, in PDB entry 6z3r these residues are

exposed to solvent (orange model, highlighted in the square

on the right), which would be more appropriate. PDB entry

6l54 chain C has a total DAQ(AA) score of 272.4, which is

lower than the DAQ(AA) score of 308.2 for PDB entry 6z3r

chain C. Therefore, we used PDB entry 6l54 chain C as the

initial model and refined it to see whether the structure

becomes closer to PDB entry 6z3r chain C as the reference

structure. As shown in the right column in Fig. 7(a), DAQ-

refine corrected the inconsistent region and improved the

DAQ(AA) score. After local refinement, Asp423 and Glu425

in PDB entry 6l54 chain C (cyan in the enlargement on the

right) adopted similar conformations to those in PDB entry

6z3r chain C (orange). Reflecting this change, the DAQ(AA)
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Figure 6
Analysis of initial and refined models of two 2Ver targets using the DAQ(AA) score. Left: the initial model (the first version of the PDB entry). The color
of the chain reflects the deviation of C�-atom positions from the native structure (the revised version of the entry). Color is scaled from green (deviation
< 1.0 Å) to magenta (deviation > 3.0 Å). Middle and right: the initial and refined models colored by the DAQ(AA) score. The color is scaled from red
[DAQ(AA) < �1.0] to blue [DAQ(AA) > 1.0]. The radius of the chain tube is thicker if the region has a low DAQ(AA) score. The enlargements show
model regions with a low DAQ(AA) score. The initial, refined and revised models are indicated in magenta, cyan and orange, respectively. Surface
meshes represent the EM map at the author’s recommended contour level. Plots show the DAQ(AA) scores along the sequence position. Gray in the
plot represents residue positions where the deviation of the C�-atom position between the model and native (the revised structure) is larger than 3.0 Å.
(a) PDB entry 7jsn chain A, which was built from the EM map (EMDB entry EMD-22458). A region containing Leu241, Trp243 and Ly247, which has a
residue shift in sequence assignment in the initial model, is enlarged. The corresponding position in the plot is indicated by a red arrow. In the refined
model, residue conformations in the native (the revised model) are shown in orange and cyan residues are those refined by DAQ-refine. (b) PDB entry
7ksm chain C with the EM map (EMDB entry EMD-23020) from which the chain structure was built. A region with a residue shift in the initial model,
which includes Asn326 and Phe330, is enlarged.
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Figure 7
Analysis of initial and refined models of two Hom targets using the DAQ(AA) score. (a) PDB entry 6l54 chain C built from EMDB entry EMD-0837
contained regions that are inconsistent with the other protein model, PDB entry 6z3r chain C from EMDB entry EMD-11063. This region is shown in
magenta in the leftmost structure and is detected as negative DAQ(AA) scores, as shown in red with thick tubes in the model second from the left. The
refined model is shown on the right. It has an overall positive score (blue). The four squares provide magnified views of residues in the inconsistent
region before and after refinement by DAQ-refine. EMDB entry EMD-0837 used for refinement is shown as a mesh in the top squares. The lower squares
show the map of the reference homologous structure (EMDB entry EMD-11063). The DAQ score plots have gaps at missing residues in the initial model
(PDB entry 6l54 chain C). In the enlargements, Asp423 and Glu425 in pink are the conformations of these two residues in the initial model, whereas
those in cyan are the results of DAQ-refine. Those in orange are conformations in the reference structure, PDB entry 6z3r chain C. (b) Local refinement
of PDB entry 5lc5 chain N, which was built from EMDB entry EMD-4032, in comparison with PDB entry 6zkm chain N, which was derived from EMDB
entry EMD-11254. The enlargements highlight Met334 and Leu336 in an inconsistent region between the two entries. The squares show the maps of the
initial structure and the reference homologous structure (top, EMD-4032; bottom, EMD-11254) as meshes. In the refined model, Met334 and Leu336
were shifted to the corresponding positions in PDB entry 6zkm chain N and the DAQ(AA) score improved (red arrows in the plots).



score improved to positive values, as shown in the plots. The

map–model cross-correlations also improved from 0.442 to

0.528 for the initial and refined structures, respectively.

Supplementary Figure S4(a) shows sequence and structure

alignments of the initial and refined models. In the initial

model, two phenylalanine residues, Phe414 and Phe421, are

not covered by the density of the map and fit better into the

density in the refined model. The EM map does not have

density after Leu428 of the initial model, which would be a

possible reason why the large shift of about five residues

occurred and was possible in the initial model.

3.4.4. Case study 4: PDB entry 5lc5 chain N (EMDB entry
EMD-4032). The last example (Fig. 7b) is a pair of structures

of NADH-ubiquinone oxidoreductase chain 2: PDB entry 5lc5

chain N (EMDB entry EMD-4032, 4.35 Å resolution; Zhu et

al., 2016) and PDB entry 6zkm chain N (EMDB entry EMD-

11254, 2.8 Å resolution; Kampjut & Sazanov, 2020). These two

protein models have a high sequence identity of 91.9% but

have an r.m.s.d. of 2.6 Å. There are three inconsistent regions

between the two PDB models, which are indicated in magenta

in the leftmost structure model and in gray shades in the

DAQ(AA) plot on the left. These regions are identified as

having a low, negative DAQ(AA) score. The DAQ(AA) score

clearly indicates a potential misalignment at Lys311–Val344 in

PDB entry 5lc5 chain N. Applying the refinement protocol to

PDB entry 5lc5 chain N modified the sequence assignment of

this region and improved the DAQ(AA) from negative values

to positive, as shown in the two plots (the positions indicated

by red arrows). The refined model of PDB entry 5lc5 chain N

has now an identical sequence assignment to PDB entry 6zkm

chain N. To illustrate the refined model, we show two residues:

Leu336 and Met334. In the initial model, PDB entry 5lc5 chain

N, these two hydrophobic residues are facing solvent and do

not fit well into the density. The refined structure (cyan in the

enlargement on the right) now has these two residues in the

same conformations as in PDB entry 6zkm chain N, where

they face the interior of the protein and make hydrophobic

interactions, which would be more reasonable. In this region

the authors only positioned C� atoms, probably because the

side-chain densities were not clearly visible within the author-

recommended contour level. This low resolution probably

prevented detection of the misalignment in the initial struc-

ture by the authors. Supplementary Figure S4(b) highlights the

region of the initial and refined models in the map (EMDB

entry EMD-4032).

In all four of these examples the DAQ(AA) score detects

inconsistent regions between two compared models by a

negative score in one of the models, and these regions were

improved to a positive DAQ(AA) score by the DAQ-refine

protocol.

4. Summary

As more protein structure models built from high-resolution

EM maps become available, accurate model evaluation and

suitable local refinement methods become more important.

In this work, we present DAQ-refine, a protein structure local

refinement protocol which uses local model-quality evaluation

with the DAQ score to detect potential locally incorrect

regions and then rebuilds them with AlphaFold2. To reflect

the local data quality from the DAQ score in the refinement

step by AlphaFold2, we introduced a trimmed template model

and trimmed MSAs. Trimmed input data allow AlphaFold2 to

focus on building incorrect regions while keeping correct

regions almost intact. Comparing the three DAQ-refine

protocols, AF2 with a full MSA and a trimmed template model

performed the best, with the smallest average r.m.s.d. and the

largest average GDT-HA. Our protocol generates a series of

different models using different AlphaFold2 settings. We

demonstrated that the DAQ(AA) score has a substantial

correlation with the quality of the models and is able to select

good models among those generated.

5. Availability

The DAQ program is freely available for academic use via

GitHub (https://github.com/kiharalab/DAQ). In addition, the

DAQ program is available to run on a Google Colab notebook

at https://bit.ly/daq-score and https://github.com/kiharalab/

DAQ/blob/main/DAQ_Score.ipynb. DAQ-refine including the

modified ColabFold that can use both trimmed MSAs and a

trimmed template model is available at https://bit.ly/

DAQ-Refine and https://github.com/kiharalab/DAQ-Refine.

This Colab notebook provides the instructions for DAQ-refine

and tools for generating trimmed template models and

trimmed MSAs based on the results of the DAQ program.
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Uchański, T., Yu, L., Karia, D., Pechnikova, E. V., de Jong, E.,
Keizer, J., Bischoff, M., McCormack, J., Tiemeijer, P., Hardwick,
S. W., Chirgadze, D. Y., Murshudov, G., Aricescu, A. R. & Scheres,
S. H. W. (2020). Nature, 587, 152–156.

Nivón, L. G., Moretti, R. & Baker, D. (2013). PLoS One, 8, e59004.
Pintilie, G., Zhang, K., Su, Z., Li, S., Schmid, M. F. & Chiu, W. (2020).

Nat. Methods, 17, 328–334.
Prisant, M. G., Williams, C. J., Chen, V. B., Richardson, J. S. &

Richardson, D. C. (2020). Protein Sci. 29, 315–329.
Shin, M., Watson, E. R., Song, A. S., Mindrebo, J. T., Novick, S. J.,

Griffin, P. R., Wiseman, R. L. & Lander, G. C. (2021). Nat.
Commun. 12, 3239.

Singharoy, A., Teo, I., McGreevy, R., Stone, J. E., Zhao, J. & Schulten,
K. (2016). eLife, 5, e16105.
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