
research papers

326 https://doi.org/10.1107/S205979832300181X Acta Cryst. (2023). D79, 326–338

Received 14 August 2022

Accepted 27 February 2023

Edited by K. Diederichs, University of Konstanz,

Germany

Keywords: neural networks; Buccaneer; model

building; structure solution.

Supporting information: this article has

supporting information at journals.iucr.org/d

Buccaneer model building with neural network
fragment selection

Emad Alharbi,a,c* Radu Calinescua and Kevin Cowtanb

aDepartment of Computer Science, University of York, Heslington, York YO10 5GH, United Kingdom, bDepartment of

Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom, and cDepartment of Information

Technology, University of Tabuk, Tabuk, Saudi Arabia. *Correspondence e-mail:

emad.alharbi@york.ac.uk, emalharbi@ut.edu.sa

Tracing the backbone is a critical step in protein model building, as incorrect

tracing leads to poor protein models. Here, a neural network trained to identify

unfavourable fragments and remove them from the model-building process in

order to improve backbone tracing is presented. Moreover, a decision tree was

trained to select an optimal threshold to eliminate unfavourable fragments. The

neural network was tested on experimental phasing data sets from the Joint

Center for Structural Genomics (JCSG), recently deposited experimental

phasing data sets (from 2015 to 2021) and molecular-replacement data sets. The

experimental results show that using the neural network in the Buccaneer

protein-model-building software can produce significantly more complete

protein models than those built using Buccaneer alone. In particular,

Buccaneer with the neural network built protein models with a completeness

that was at least 5% higher for 25% and 50% of the original and truncated

resolution JCSG experimental phasing data sets, respectively, for 28% of the

recently collected experimental phasing data sets and for 43% of the molecular-

replacement data sets.

1. Introduction

Model-building pipelines such as ARP/wARP (Perrakis et al.,

1999; Langer et al., 2008) and Buccaneer (Cowtan, 2006) start

their model building by finding the backbone of the protein

structure. In Buccaneer, this involves joining an ensemble of

chain fragments in a way which maximizes the length of the

resulting chain. The procedure used to find the longest chain

can yield incorrect tracing because of the choice of residues

that are incorrectly placed. We examined this problem by

modifying the growing step output of the Buccaneer model-

building process so that each possible tripeptide in the trace is

omitted in turn from the long fragments. The protein structure

built without each of these tripeptides was evaluated against

the deposited structure. Identifying and removing unfavour-

able tripeptides improves the protein structure, because such

fragments break up some paths and force the tracing algo-

rithm to change its direction away from the correct trace.

Machine learning and neural networks play useful roles in

the area of protein model building; see, for example, Bond et

al. (2020), Alharbi et al. (2021) and Chojnowski et al. (2022).

Therefore, we have developed a neural network model that

identifies unfavourable tripeptides and can be used to effi-

ciently eliminate them from protein model building before the

backbone-tracing step. The neural network predicts scores

indicating that these tripeptides are unfavourable based on

fragment features calculated from the electron-density map

and the protein model geometry. We show that backbone

tracing is significantly improved by eliminating tripeptides

with scores below a certain threshold as unfavourable.
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2. Methods

2.1. Creating the training data sets

We used molecular-replacement (MR) data sets containing

1351 protein structures (Bond et al., 2020) to create the

training data sets for the neural network. These MR data sets

have resolution ranges from 1.0 to 3.5 Å. For each protein

structure, we ran the finding and growing steps in Buccaneer;

the finding step to determine the likely positions of a few C�

atoms in the electron-density map and the growing step to

grow the C� atoms into longer fragments (Cowtan, 2006). The

output of the growing step is a set of overlapped fragments

that have different lengths. Each fragment was split into three-

residue fragments, which we call tripeptides. All of these

tripeptides were saved into a CIF file. The procedure for

labelling each of the tripeptides as either a ‘favourable frag-

ment’, i.e. those which lead to a better model in subsequent

cycles, or an ‘unfavourable fragment’, which leads to a worse

model in subsequent cycles, is as follows.

(i) Run Buccaneer for one building cycle starting from the

joining step in order to build a protein structure from all the

tripeptides, and compare the built structure with the deposited

structure to compute the structure completeness (i.e. the

percentage of residues matching the residues in the deposited

structure with a distance of less than 1 Å and with the same

residue type). This structure and its completeness provide a

baseline for the later steps of our solution.

(ii) Omit one tripeptide at a time and build the protein

structure as in step (i).

(iii) Compare the completeness of the protein structure

obtained in step (ii) with that of the baseline structure from

step (i).

(iv) If the structure from step (ii) has a higher structure

completeness, label the omitted tripeptide ‘unfavourable’.

(v) Repeat steps (ii), (iii) and (iv) for the rest of the

tripeptides, removing all of the tripeptides identified as

‘unfavourable’ in step (iv) from the model-building process.

As an additional step, we examine whether the tripeptides

not removed by the procedure above were actually included in

the protein structure. There are two reasons why a tripeptide

may not be included in the structure and thus its removal

would have no impact on the structure completeness.

(i) Buccaneer is not using tripeptides that cannot be

combined into chains of at least six residues (which is the

minimum length set in Buccaneer for tracing).

(ii) A small branch appended to a long fragment.

These tripeptides are also labelled ‘unfavourable’. Finally, all

of the tripeptides that were not labelled ‘unfavourable’ after

this additional step were labelled ‘favourable’.

Using the procedure above, we labelled the tripeptides in

1132 protein structures of the MR data sets, producing 822 366

favourable and 299 577 unfavourable tripeptides. A number of

protein structures were not used for the following reasons,

with the number of omitted protein structures reported in

parentheses.

(i) Protein structures with more than 2856 tripeptides, as

this is the highest number of chains that can be saved in a CIF

file with a unique ID of two characters (172 protein struc-

tures).

(ii) Protein structures for which no unfavourable tripeptides

were found using our procedure (22 protein structures).

(iii) Protein structures that had a very large number of

tripeptides and the identification of the unfavourable tri-

peptides could not be completed within 48 h, which is the

maximum time that we allocated for processing each protein

structure (25 protein structures).

2.2. Features of tripeptides

Table 1 shows the features used in training the neural

network in addition to the electron-density map resolution.

The following sections describe each of these features.

2.2.1. Ramachandran angles. A residue is classified into

either favoured or allowed regions based on the probability

densities of phi (’) and psi ( ) (Ramachandran et al., 1963).

When the probability densities of ’ and  are greater than

0.01 or 0.0005 rad�2, the residue is classified into favoured or

allowed regions, respectively (Cowtan, 2003, 2006).

2.2.2. Log-likelihood score. The log-likelihood score

(LLK), also known as the density-likelihood function, is a

score of possible C�-group positions that reflects the repro-

ducibility of the density features of real C� groups in a simu-

lated electron-density map for a known structure and can be

calculated as

log PðFj�Þ ¼
P

x

log P½Fj�ðxÞ� ¼
P

x

�
½�ðxÞ � �00ðx0Þ2�

2�00ðx0Þ2

� �
þ c;

ð1Þ

where F represents the electron density of the correct

C�-group position and orientation, x is the coordinate in the
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Table 1
Features used in training the neural network in addition to the electron-density map resolution.

Mean, SD, highest and lowest were calculated for the features when applicable and each was used as a separate feature.

Feature Mean SD Highest Lowest Categorical values (0 or 1) Single value

Ramachandran angles in favoured regions Yes
Ramachandran angles in allowed regions Yes
Log-likelihood score (LLK) Yes Yes Yes Yes
Density score Yes Yes Yes
Root-mean-square deviation (r.m.s.d.) Yes
Is a tripeptide at the start of a chain? Yes
Is a tripeptide in the middle of a chain? Yes
Is a tripeptide at the end of a chain? Yes



observed density map and x0 is the coordinate in the search-

fragment map rotated and translated to a given position and

orientation in the observed map (Cowtan, 2001, 2006).

2.2.3. Density score. The mean electron density for each

residue in the tripeptide is calculated; the electron-density

here is only calculated for the main-chain residues.

2.2.4. Comparison score between tripeptides and best-
matching fragments. We use the root-mean-square deviation

(r.m.s.d.) between the tripeptide and best-matching fragment

from the Top 500 well refined protein structure database

(Lovell et al., 2003). We refer to this feature as r.m.s.d. in the

rest of the paper.

2.2.5. Small fragment position. Another feature used by the

neural network is a categorical measure that distinguishes

between tripeptides located at the start, in the middle or at the

end of a chain. We determine the value of this feature for a

tripeptide by measuring the distance between the tripeptide

and the surrounding tripeptides within a 4 Å radius of the

same or even other fragments. Fig. 1 shows an example of four

tripeptides and their associated joining matrix. The matrix

element in row i and column j 6¼ i of this matrix is 1 if the

distance between fragments Fi and Fj is less than 4 Å and

fragment Fj is to the right of Fi (meaning that Fi can be

followed by Fj in a chain); otherwise, this matrix element is

zero.

The tripeptides that have zeros in their corresponding

columns can only be at the start of a chain and those with only

zeros in their corresponding rows can only be at the end of a

chain. All other tripeptides are middle fragments.

2.3. Neural network architecture and training

2.3.1. Data-set preparation. The sets of favourable and

unfavourable tripeptides from Section 2.1 were split into a

training data set (containing 78.97% of the favourable frag-

ments and 79.26% of the unfavourable fragments) and a

validation data set (containing the remaining fragments). We

normalized both the training data set and the validation data

set by using z-score normalization, which is a standard practice

in machine learning. This normalization ensures that the

features used to train and validate the neural network have

zero mean and unit standard deviation. To this end, the mean

and standard deviation of every feature is calculated for the

data set undergoing normalization, and the value of each data

sample feature is adjusted by subtracting from it the mean and

dividing the result by the standard deviation.

2.3.2. Neural network architecture. The input of the neural

network model is a 2849� 14 array. The 2849 rows correspond

to the largest number of tripeptides across all of the protein

structures from the training and validation data sets as there

are no structures with a number of tripeptides between 2849

and 2856, and the 14 columns correspond to the 14 tripeptide

features that we used. The output of the neural network model

is a score of the tripeptide being favourable and ranges from

0 to 1. The neural network was implemented using the Keras

framework version 2.3.1 (Chollet, 2015).

Because the number of tripeptides differs between protein

structures, the first layer in the neural network model is a

masking layer to skip passing a data row to downstream layers

when all of its values equal a mask value. This layer uses a

mask value of �1 for rows from the input array for which no

corresponding tripeptide is available for a protein structure,

ensuring that the neural network disregards these rows.

The hidden layers contained five long short-term memory

(LSTM) layers with 512 neurons in the first hidden layer and

reduced in geometric sequence to 32 neurons in the last

hidden layer (Hochreiter & Schmidhuber, 1997). A sigmoid

function was used in the output layer, and binary cross-

entropy was used for the loss function (Han & Moraga, 1995).

2.3.3. Neural network training. Training of the neural

network was carried out using an NVIDIA Tesla V100 32 GB

SXM2 GPU server. The maximum number of epochs was set

to 1000, with early stopping when the area under the curve

(AUC) did not increase for ten successive epochs. The Adam

optimizer (Kingma & Ba, 2014) was used and the learning rate

was set to 0.005. To evaluate the performance of the neural

network model, we used the AUC and loss function.

To evaluate the feature importance, we used permutation

feature importance (Breiman, 2001), which involves shuffling

the values of each feature, evaluating the neural network

model obtained for the shuffled feature values and comparing

it with the baseline model (the model in which the values of

the features are not shuffled). As shuffling the values of the

features disconnected the association with the true label, the

change from the baseline model in the evaluation metrics

shows the feature importance.
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Figure 1
An example of four tripeptides (F ) and the distances between them. The matrix shows when two tripeptides can be joined when the distance between
them is less than 4 Å.



2.4. Using the neural network in Buccaneer

The neural network model weights and biases from Section

2.3 were extracted and saved into a CSV file, and C code was

then generated for the neural network model using the

Keras2c library (Conlin et al., 2021). The C code was

converted to C++ code for use in Buccaneer. As part of this

work, the Keras2c library was extended to support the

masking layer. The results from the Keras2c library were

validated against the Keras Python framework.

As shown in Fig. 2, the neural network model is used in

the joining step of Buccaneer, after the fragments built by

Buccaneer in earlier steps have been split into tripeptides and

before Buccaneer performs its tracing substep. The role of the

neural network is to partition the set of tripeptides into a

subset of ‘favourable’ fragments for use in the tracing substep

and a subset of ‘unfavourable’ fragments that are disregarded

(i.e. are not used for this tracing). To this end, a threshold is

applied to the outputs of the neural network such that

tripeptides are deemed ‘favourable’ if their associated neural

network outputs (i.e. estimate scores of being ‘favourable’) are

above this threshold. To improve the likelihood of producing a

good protein model, multiple thresholds are used to generate

a small set of such models and a decision tree developed by

our project is employed to select the best of these models at

the end of the Buccaneer model-building cycle.

Two mechanisms for determining the thresholds were

developed. The first mechanism is to set a fixed number of

thresholds (for example ten thresholds) to divide the score

range into equal intervals. The second mechanism is to use

the Freedman–Diaconis rule to determine the number of the

thresholds based on the score distribution (Freedman &

Diaconis, 1981). The Freedman–Diaconis rule can be calcu-

lated as

Bin width ¼ 2
IQRðxÞ

n1=3
; ð2Þ

where IQR is the difference between the third and first

quartiles and n is the number of samples. The bin width is used

to split the score range and determines the thresholds.

A model will be built for each threshold by eliminating the

tripeptides that have scores lower than this threshold. More-

over, we run either one or two Buccaneer confirmation

building cycles to estimate how this protein structure will

evolve in the next building cycles and then pick the best

model.

A decision tree was trained to predict the best indicators to

use in picking the best model (from the models built at

different thresholds) using the Weka framework version 3.8.5

(Eibe et al., 2016). Reduced error pruning (REP) was used to

simplify the decision-tree size by replacing leaves with the

most predicted class, and this change is kept if the perfor-

mance of the tree is not negatively affected (Elomaa &

Kaariainen, 2001). The decision tree is used separately from

the neural network to pick the best model. The training data

set for the decision tree was obtained by running Buccaneer

using two different seeds with no neural network, as using

nondefault seeds led to changes in the model. Using a

nondefault seed leads to a change in the noise in the training

map and causes very small changes in the LLK targets,

although those changes are entirely within the uncertainties in

the data. This may lead to seeds being found in very slightly

different positions and orientations or, more rarely, in one

seed being pushed off the bottom of the list and replaced by

another.

Growing will be more affected because the small changes

will sometimes be amplified as we grow a chain until a place is

reached where two alternative paths are possible and the

other one is selected. The outcome is that the resulting traces

are similar, but usually some will differ significantly.

The difference between the Buccaneer evaluation indica-

tors, Rwork and Rfree was calculated between models built from

the same data set (Table 2). The number of residues uniquely

added to a chain is determined by estimating how many chains

are present (from how many independent copies of the

sequence appear to have been built), allocating each

sequenced chain fragment to one chain based on a score which

favours compactness and completeness of each chain, and

then counting how many residues of the expected sequences

have actually been accounted for in this way. The Buccaneer

evaluation indicators are interpreted in combination; for

example, a model with a high number of residues uniquely

allocated to a chain and a low number of residues built is

better than a model with a high number of residues built and a

low number of residues uniquely allocated to a chain. We

deemed that the model is better when the structure comple-

teness is at least 5% higher. The actual difference between the

evaluation indicators was replaced by binary labels: ‘Y’ when

the indicator is better based on Table 2 and ‘N’ otherwise. (An

example of the labelling of training features is reported in the

supporting information.) Under-sampling was applied to class

‘N’ to reduce it from 906 to 281 protein structures and tenfold

cross-validation was used to train the decision tree. Each fold

had the same proportion of each class as in the training data

sets after under-sampling, as Weka uses stratified cross-

validation by default.

The first model of these multiple models will be built from

all of the fragments, as the first threshold used to partition

tripeptides into ‘favourable’ and ‘unfavourable’ always has the

lowest score. The number of confirmation building cycles is the
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Table 2
Protein structure evaluation indicators: Buccaneer indicators, Rwork and
Rfree.

Whether a higher or lower value of the indicator is better is indicated.

Indicator Optimal

Longest fragment Higher
No. of residues built Lower
No. of fragments Lower
No. of sequenced residues Higher
No. of residues uniquely allocated to a chain Higher
Completeness by residues Higher
Completeness by chain Higher
Rwork Lower
Rfree Lower



remaining number of building cycles. For example, if

Buccaneer runs on three building cycles, we run two and one

confirmation building cycles in the first and second building

cycles, respectively; no confirmation building cycle is run in the

third building cycle. As our neural network model is limited to

2849 tripeptides, Buccaneer will batch the tripeptides and run

the neural network multiple times when the number of

tripeptides exceeds this limit.
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Figure 2
Creating the training data sets, the neural network architecture and the use of the neural network in Buccaneer.



3. Results

3.1. Evaluation of neural network training

As is common in machine learning, we tried a wide range of

neural network architectures and training hyperparameters in

order to obtain a suitable neural network for our framework.

For instance, we trained alternative LSTM neural networks

with six layers and between 1024 and 32 neurons, and we used

multiple learning rates for the training process (for example

0.001 and 0.005). Moreover, we tested a neural network of five

convolutional layers and between 512 and 32 neurons and

LSTM neural networks using individual fragments as input

rather than an array of fragments, but the loss score was

relatively high. From all of the candidate neural networks we

obtained, we selected the one that had five layers (the neural

network detailed in Section 2.3.2).

The training of this neural network was stopped after epoch

38, as the AUC stopped improving at epoch 28. Fig. 3 shows

the AUC and loss score of the training and validation data sets

across the 38 epochs. The AUC and loss score improved until

epoch 28. The neural network model then started to be

overfitted, as the difference in the loss score between the

training and validation data sets became larger. Table 3 shows

the other performance metrics, precision, recall, F-measure

and accuracy, for the training and validation data sets at epoch

28. The neural network model from epoch 28 was used as the

final neural network model.

3.2. Feature importance

Fig. 4 shows the importance of features based on the change

in AUC in the training and validation data sets. The applica-

tion of permutation feature importance as described in

Section 2.3.3 affected the AUC negatively for each of the

features, decreasing it by between 0.001 and 0.11; the mean of

the LLK score has the highest impact on the model. The

positions of the residues decreased the performance of the

model by more than 0.03 in AUC. Other features have less

impact on the model performance; the SD of the density score

has the lowest impact. Moreover, we trained the model
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Figure 3
Difference in loss score and AUC between the training and validation data sets (the data sets used during model training for frequent evaluation and
tuning of the model parameters) across the epochs. The best model was obtained from epoch 28 as this has the highest AUC in the validation data sets.

Table 3
Data split and the performance metrics precision, recall, F-measure, accuracy, loss and area under the curve (AUC) for the neural networks and the
decision tree.

Predictive model Data sets Data split Precision Recall F-measure Accuracy Loss AUC

LSTM neural networks Training 66% 0.8315 0.9225 0.8746 0.8064 0.1421 0.8453
Validation 33% 0.8390 0.9137 0.8748 0.8075 0.1491 0.8455

Decision tree Cross-validation Tenfold 0.761 0.760 0.760 0.7597 — —



without the features that have less impact on the performance

and that made the loss and AUC worse, and the results are

reported in the supporting information.

Overall, the features using the mean have a higher level of

importance compared with the SD features for the same

characteristics. For example, the mean LLK score and density

score have a higher importance than the SD of the same

scores. Comparing the Ramachandran angle regions showed

that the model relied on the allowed regions feature rather

than the favoured regions.

3.3. Evaluation of using the neural network in Buccaneer

We assessed the effect of using the neural network in

Buccaneer for three data sets.

(i) 894 experimental phasing data sets from the Joint Center

for Structural Genomics (JCSG) at the original and truncated

resolutions (Bedem et al., 2011; Alharbi et al., 2019).

(ii) 203 newer experimental phasing data sets deposited

between 2015 and 2021 and taken from the PDB.

(iii) 218 MR data sets (the remainder of the 1351 MR data

sets from Section 2.1) that were not used in either training or

validation of the neural network. One data set was omitted

because it exceeded the 20 GB memory limit that we set for

each data set.

The resolution of the JCSG experimental phasing data sets

was between 1.2 and 4 Å, corresponding to 150 and 744 data

sets at the original and truncated resolutions, respectively.

Structure completeness, Rwork, Rfree and structure correlation,

which is the weighted F-map correlation between the built

model and the deposited model, were considered in this

evaluation; we deemed the Buccaneer version augmented with

the neural network better when the improvement was at least

5% in the relevant measure.

We ran Buccaneer twice to evaluate the two methods of

selecting the threshold for including tripeptides in the

Buccaneer tracing, as described in Section 2.4. We set the

maximum number of models to ten by selecting ten equidi-

stant thresholds and only building a model for those thresh-

olds whose use increased the number of tripeptides deemed

‘favourable’ compared with the previous threshold.

All the experiments used Buccaneer version 1.6.12 and the

simple iterative model-building/refinement pipeline imple-

mented in CCP4i version 7.0.045 (Winn et al., 2011). We will

refer to the Buccaneer variant that uses the neural network as

‘Buccaneer(NN)’ in the rest of the paper.

3.3.1. Evaluation of the decision tree. The decision tree was

trained using data obtained by running Buccaneer on JCSG

experimental phasing data sets; 562 protein structures were

used in training and testing after under-sampling. The trained

decision tree predicted that the best model has a lower Rwork

and a higher number of residues uniquely allocated to a chain.

The precision was 0.761, and both recall and F-measure were

0.760 (Table 3). Moreover, we trained the decision tree with

no pruning, but the performance metrics were worse than

when we used pruning.

3.3.2. Experimental phasing. Fig. 5 summarizes the results

obtained for the Buccaneer(NN) variants with tripeptide

selection based on both equidistant and Freedman–Diaconis

thresholds.

This Buccaneer(NN) variant with equidistant thresholds

built 22% and 40% of the protein structures with at least 5%

higher completeness than Buccaneer for the original and

truncated resolution JCSG data sets, respectively, compared

with 1% and 11% of the data sets that were built better by

Buccaneer without the neural network

For the original resolution, Buccaneer(NN) improved the

Rwork and Rfree of 4% and 5% of the data sets, respectively, and

no structure was better built by Buccaneer. At truncated

resolutions, 9% and 14% of the protein models were built by

Buccaneer(NN) with better Rwork and Rwork. By comparison,

only 4% of the protein structures were built with better Rfree

and none of the structures were built with better Rwork by

Buccaneer.
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Figure 4
Difference between the baseline model and a model in which the feature values are shuffled to find out the importance of the features.



Using the Freedman–Diaconis rule to select the threshold

led to Buccaneer(NN) building 25% and 50% of the protein

models with (at least 5%) higher structure completeness and

3% and 7% with (at least 5%) lower structure completeness

compared with Buccaneer, for the original and truncated

resolution JCSG data sets, respectively. Rwork and Rfree

improved when a fixed number of thresholds was used for the

original resolution JCSG data sets, except for 1% of the data

sets that were built with higher Rwork and Rfree. However, for

the truncated resolution JCSG data sets 18% and 21% of the

protein structures were built with lower Rwork and lower Rfree,

respectively, and 5% of the structures were built with a higher

Rfree compared with Buccaneer; none of these structures was

built with a higher Rwork.

For the recently deposited experimental phasing data sets,

27% and 28% of the protein models were built with higher

structure completeness by Buccaneer(NN) using a fixed

number of thresholds and the Freedman–Diaconis rule,

respectively, and 4% and 3% were built with lower structure

completeness by Buccaneer(NN) with equidistant thresholds

and the Freedman–Diaconis rule, respectively, compared with

Buccaneer. Rwork improved in 6% of the data sets for both

threshold-selection methods, and Rfree in 7% and 5% of the

data sets for the fixed number of thresholds and the

Freedman–Diaconis rule, respectively; no protein structure

built by Buccaneer had a better Rwork or Rfree.

Figs. 6 and 7 show the results of JCSG experimental phasing

for structure completeness, Rwork, Rfree and structure correla-

tion, and for structure completeness for the recently deposited

data sets. The Rwork, Rfree and structure correlation results for

the recently deposited data sets are reported in the supporting

information.

For the JCSG experimental phasing data sets, the results

show multiple data sets for which the completeness signifi-

cantly improved by around 50% when the neural network was

used with a fixed threshold and improved even further when

the Freedman–Diaconis rule was used. While Buccaneer(NN)

did not produce better protein models for a number of data

sets, it did improve the majority of the structures to different

degrees. These improvements were less significant when

Buccaneer(NN) used the Freedman–Diaconis rule.

Rwork and Rfree show less improvement than completeness,

but Buccaneer(NN) did still achieve remarkable improve-

ments in Rfree and Rwork for several data sets. For example,
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Figure 5
Percentage of the data sets where either Buccaneer(NN) or Buccaneer built a protein structure at least 5% better in structure completeness, Rwork or
Rfree.



Buccaneer(NN) dcreased Rfree for half of the data sets, with

the highest improvement of around 0.10 when using the

Freedman–Diaconis rule.

Structure correlation shows that the data sets built by

Buccaneer and Buccaneer(NN) have similar F-map correla-

tion; it is slightly better for those built by Buccaneer(NN)

using both fixed thresholds and the Freedman–Diaconis rule.

However, the data sets built by Buccaneer(NN) have either

higher or similar structure correlation to those built by

Buccaneer and very few have lower structure correlation.

Buccaneer(NN) significantly improved some of the data sets;

for example, the structure correlation of one data set

increased by around 0.20 when using the Freedman–Diaconis

rule.

For the recently deposited data sets, Buccaneer(NN) only

produced slight improvements for the protein structures that

had already been built by Buccaneer at resolutions between

1.0 and 2.0 Å. However, the structures built from data sets

worse than 2 Å by Buccaneer were improved when built by

Buccaneer(NN). Only a few protein structures were built with

slightly lower completeness by Buccaneer(NN) compared with

Buccaneer.

We illustrate the use of Buccaneer(NN) in Figs. 8 and 9,

which depict two protein structures built by Buccaneer and by

our two Buccaneer(NN) variants. To provide an impartial

view, we present both a protein structure whose modelling is

improved by Buccaneer(NN) (PDB entry 6hcz; Fig. 8) and a

protein structure that Buccaneer builds with better results

(PDB entry 2gnr; Fig. 9). Thus, for PDB entry 6hcz

Buccaneer(NN) using the Freedman–Diaconis rule increased

the structure completeness by 42%, while for PDB entry 2gnr

the structure completeness decreased by 17% when

Buccaneer(NN) was used.

3.3.3. MR. As shown in Fig. 5, Buccaneer(NN) with a fixed

number of thresholds produced protein models with (at least

5%) better completeness, Rwork and Rfree than Buccaneer for

39%, 8% and 8% of the data sets, respectively. By comparison,

Buccaneer built protein structures with better completeness

for only 2% of the data sets, respectively; no protein structure

built by Buccaneer had a better Rwork or Rfree than the

corresponding structure built by Buccaneer(NN). Using the

Freedman–Diaconis rule to select the threshold, 43%, 9% and

8% of the MR data sets were built with better completeness,

Rwork and Rfree, respectively, by Buccaneer(NN), compared

with only 2% of the MR data sets that were built with

higher structure completeness by Buccaneer; no structure

was built with (at least 5%) worse Rwork or Rfree by

Buccaneer(NN).
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Figure 6
Difference in structure completeness, Rwork, Rfree and structure correlation between Buccaneer(NN) and Buccaneer.



Fig. 10 shows the same analysis for the MR data sets as in

Fig. 6. The results obtained for the individual data sets show

multiple significant improvements that are achieved by

Buccaneer(NN); for example, Buccaneer(NN) with a fixed
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Figure 7
Difference in structure completeness between Buccaneer and the Buccaneer(NN) variants for the recently deposited experimental phasing data sets. (a)
Buccaneer(NN) using ten thresholds. (b) Buccaneer(NN) using the Freedman–Diaconis rule. The regions in which Buccaneer(NN) is better than
Buccaneer are indicated in the diagrams.

Figure 8
A protein structure built by Buccaneer and Buccaneer(NN) compared with the deposited structure, with the chains of the deposited structure depicted as
dashed bonds. (a) The structure built by Buccaneer. (b, c) The protein structure built by Buccaneer(NN) using ten thresholds and the Freedman–Diaconis
rule, respectively. (d) The structure completeness, Rwork and Rfree achieved by Buccaneer and the two Buccaneer(NN) variants. The PDB code for the
structure is 6hcz and its resolution is 2.3 Å.



number of thresholds improved the completeness of one

protein structure by around 40% and decreased the Rfree

of another protein structure by around 0.10. Moreover,

Buccaneer(NN) improved the structure correlation for the

majority of the data sets. However, very few are built with

lower structure correlation compared with Buccaneer.

3.4. Evaluation of execution times

Fig. 11 shows the mean Buccaneer and Buccaneer(NN)

execution times for the original JCSG data sets. We ran both

Buccaneer variants using a 173-node high-performance cluster

with 7024 Intel Xeon Gold/Platinum cores and a total memory

of 42 TB. For small structures, Buccaneer(NN) is three and

seven times slower than Buccaneer when using fixed thresh-

olds and the Freedman–Diaconis rule, respectively. For

example, a small structure was built by Buccaneer within

around 6 min; in comparison, Buccaneer(NN) using fixed

thresholds and the Freedman–Diaconis rule took around 20

and 39 min, respectively. However, this execution time

increased to become eight times slower than Buccaneer when

large structures were built using the Buccaneer(NN) variant

with fixed thresholds and 21 times slower when using the

Freedman–Diaconis rule.

4. Discussion

A new method to improve the backbone-tracing step of

protein structure-building software by using a neural network

has been presented. As no training data sets were available,

we created training data sets and used them in neural network

training and validation. Moreover, two experimental phasing

data sets were used in evaluation.

Comparing the loss score of the different neural network

architectures shows that LSTM layers are more capable of

learning the dependency between the tripeptides compared
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Figure 9
A protein structure built by Buccaneer and Buccaneer(NN) compared with the deposited structure. The chains of the deposited structure are depicted as
dashed bonds. (a) The structure built by Buccaneer. (b, c) The protein structure built by Buccaneer(NN) using ten thresholds and the Freedman–
Diaconis rule, respectively. (d) The structure completeness, Rwork and Rfree of the Buccaneer variant. The PDB code for the structure is 2gnr and its
truncated resolution is 3.2 Å.



with convolutional layers. Moreover, a reduction in the

number of LSTM layers from six to five improved the learning

by the neural network, which may suggest that a larger neural

network needs more data for learning.

The evaluation of the feature importance in determining

favourable and unfavourable tripeptides yielded unexpected

results. In particular, the r.m.s.d. of the data sets has lower

importance than the residue position type. In contrast, the

LLK score (used in Buccaneer to decide when fragments stop

growing) has the greatest importance in discriminating

between favourable and unfavourable tripeptides among all of

the other features in protein structure building. A comparison

of the impact of the mean and the SD of the features shows

that the mean of a feature has higher importance than its SD.

Optimizing the threshold used to select the tripeptides used

in the tracing step of protein structure building is key to

achieving good neural network performance. The imbalance

of the feature data makes this particularly challenging. In this

paper, we addressed the threshold-tuning problem by trying

several thresholds obtained by using both a fixed number

of equidistant thresholds and the Freedman–Diaconis rule.

Evaluation of the two threshold methods shows that the

Freedman–Diaconis rule is more effective for data sets with

lower resolutions; for example, the truncated resolution data

sets, which all had resolutions worse than 3.1 Å, improved in

their structure completeness more than the original resolution

data sets.

Training a decision tree to predict the best indicators for

selecting the best protein structure from a set of protein

structures showed that Rwork and the residues that are

uniquely allocated to a chain perform best in reflecting the

improvement in the structure completeness. Running Bucca-

neer on different seeds to the default seeds led to changes in

the fragments and therefore to changes in the structure

completeness. However, 203 newer experimental phasing data

sets were used in the evaluation in order to eliminate the

potential bias due to using the JCSG experimental phasing

data sets in the training of the decision tree.

We use confirmation cycles (running a few cycles ahead to

evaluate protein structure quality) because we are not

necessarily interested in the correctness of the intermediate

protein structure, but rather in the quality of the final protein
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Figure 10
Difference in structure completeness, Rwork, Rfree and structure correlation between the Buccaneer(NN) and Buccaneer variants using ten thresholds and
the Freedman–Diaconis rule for the MR data sets. The regions where Buccaneer(NN) is better than Buccaneer (either below or above the zero point) are
indicated in the diagrams.



structure arising from this intermediate protein structure. For

our purposes, the best intermediate protein structure is that

which will later lead to the most plausibly complete protein

structure.

The systematic evaluation shows that completeness, Rwork,

Rfree and structure correlation are significantly improved by

Buccaneer(NN). Moreover, our neural network has shown

significant improvements even when tested on MR protein

structures from PDB-REDO, which are likely to have fewer

building mistakes than PDB structures (the results of using

PDB-REDO protein structures are reported in the supporting

information).

For MR data sets, we noticed that Buccaneer(NN) signifi-

cantly improved the structures that Buccaneer built from data

sets at resolutions between 1.0 and 3.0 Å. This may suggest

that structures with resolutions worse than 3.0 Å have no or

few favourable fragments and therefore the use of the neural

network cannot improve them. The problem needs to be

addressed by extending the neural network to build favour-

able fragments itself instead of only using those built by

Buccaneer.

Buccaneer(NN) achieved higher levels of improvement in

structure completeness than in Rwork, Rfree and structure

correlation. This may be due to our use of structure

completeness as an improvement measure when the training

data sets for the neural network were created. In future work,

this will be addressed by creating training data sets based on

the structure completeness, Rwork, Rfree and structure corre-

lation, and training a new version of the neural network also

using training methods that take class imbalance into account.

5. Data and methods

The software is now available as both source code and in

executable form as a part of the 8.0.009 update to the CCP4

software suite. Pipeline developers are evaluating how to best

incorporate the software into user-facing automated model

building pipelines.
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Figure 11
Mean execution time of Buccaneer and Buccaneer(NN) for the original
JCSG data sets. The structure sizes are grouped into classes and the
number of data sets in each class is reported below the graph.
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