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X-ray diffraction enables the routine determination of the atomic structure

of materials. Key to its success are data-processing algorithms that allow

experimenters to determine the electron density of a sample from its diffraction

pattern. Scaling, the estimation and correction of systematic errors in diffraction

intensities, is an essential step in this process. These errors arise from sample

heterogeneity, radiation damage, instrument limitations and other aspects of the

experiment. New X-ray sources and sample-delivery methods, along with new

experiments focused on changes in structure as a function of perturbations,

have led to new demands on scaling algorithms. Classically, scaling algorithms

use least-squares optimization to fit a model of common error sources to the

observed diffraction intensities to force these intensities onto the same empirical

scale. Recently, an alternative approach has been demonstrated which uses a

Bayesian optimization method, variational inference, to simultaneously infer

merged data along with corrections, or scale factors, for the systematic errors.

Owing to its flexibility, this approach proves to be advantageous in certain

scenarios. This perspective briefly reviews the history of scaling algorithms and

contrasts them with variational inference. Finally, appropriate use cases are

identified for the first such algorithm, Careless, guidance is offered on its use and

some speculations are made about future variational scaling methods.

1. Introduction

X-ray diffraction from crystalline samples is a widely used

technique for determining the molecular properties of samples

at atomic resolution. A key challenge in deducing the atomic

structure from observed diffraction intensities is that these

intensities need to be corrected for a range of physical effects

due to sample imperfections, radiation damage, X-ray absorp-

tion, and source and detector characteristics. The process of

correcting for such artifacts is known as scaling, and is

essential to obtain high-quality experimental structures. With

the advent of accurate structure prediction and determination

methods, the focus of macromolecular diffraction experiments

is shifting towards comparative experimental designs that

emphasize, for example, the detection of ligand-binding

events, as in high-throughput drug-fragment screens (Harts-

horn et al., 2005; Murray et al., 2007), time-resolved studies

using X-ray free-electron lasers and synchrotron beamlines

(Tenboer et al., 2014; Carrillo et al., 2021), and the use of

physical perturbations (Hekstra et al., 2016; Thompson et al.,

2019). These studies seek to detect differences in diffraction

intensities between data sets, placing stringent demands on the

accuracy of corrections for systematic errors.

In this topical review, we provide a brief overview of

diffraction experiments on crystalline samples and the factors

that affect the final diffraction intensities, followed by a
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discussion of past and present scaling algorithms seeking to

correct measured intensities. We then focus on a new class of

scaling algorithms based on variational inference and deep

learning. We conclude with a discussion of the design of a

specific algorithm, Careless, and share our thoughts on best

practices for its use, along with potential future developments

and extensions.

2. Diffraction experiments

In a typical diffraction experiment, a crystalline sample is

exposed to high-energy particles, usually X-ray photons, and

the scattered particles are recorded on a two-dimensional

detector. In the case of X-rays, their electric field component

interacts strongly with the electrons in the sample. Some

X-rays are scattered by these electrons and yield patterns on

the detector that provide information about the positions of

electrons, and thereby the atoms, in the sample.

Scattering from crystals is known as diffraction. Due to the

repeating nature of crystals, scattered X-rays form discrete

spots, or reflections, on the detector (Fig. 1a) where the

conditions are met for constructive interference between

X-rays scattered from different unit cells, the repeating units

of the crystal. Each reflection represents an interference

maximum indexed by a triplet of integers called Miller indices.

The reflections each have two associated parameters: ampli-

tude and phase. Amplitude and phase dictate how much and

in what manner a reflection contributes to the total electron

density. The amplitudes are experimentally observable, while

the phases are not directly observable but can be determined

by certain experiments or, more frequently, computationally

from a suitable starting model. The contribution made by a

reflection is a plane wave (Figs. 1b–1d). The frequency and

direction of the wave are calculated from the unit-cell

constants of the crystal and the Miller index of the reflection.

Summing the plane waves for every reflection yields the

electron density of the sample (Fig. 1e). The relative contri-

bution of a particular reflection to this sum is given by the

amplitude, which is proportional to the square root of the

brightness (intensity) of the spot on the detector. Phase

dictates the relationship of the spatial frequency vector of a

wave (visualized as a white arrow in Fig. 1b) to the origin of

the crystal unit cell. Taken together, these quantities, ampli-

tude and phase, are referred to as a structure factor.

The squared amplitude is referred to as the intensity of a

reflection. A central task in crystallography is to derive esti-

mates for the intensity of each reflection. However, this task

is complicated by physical factors that alter the measured

intensity of a reflection based on its context. This phenomenon

is best visualized by plotting the average intensity of reflec-

tions as a function of their context (Fig. 2). Ideally, the average

intensity of the reflections should be uniform across the
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Figure 1
(a) Schematic of a diffraction pattern. The phase of each reflection is represented by color and its intensity is represented by the size of the reflection.
Reflections B, C and D are highlighted with black circles. (b, c, d) The spatial frequency components of the electron density encoded by structure factors
which correspond to the circled reflections B, C and D, respectively, in (a). The outline of the unit cell is shown as white dashes. Reflections farther from
the origin exhibit a higher spatial frequency (for example reflection D). Brighter reflections correspond to higher-amplitude spatial frequency (for
example reflection C). (e) Summing over all components results in the electron density of the sample.



experiment. However, the observed intensity of the collected

data depends nonlinearly on the positions of the reflections

(Figs. 2b–2d). To faithfully estimate the intensity of the

reflections, it is essential to estimate and correct for these

artifacts.

3. Contributions to scale factors

The observed reflection intensities, I, on a diffraction pattern

are proportional to the squared amplitude of the structure

factors, F, of the crystallographic unit cell (Darwin, 1922),

I ¼ K � jFj2; ð1Þ

where K is the scale factor. Unfortunately, K varies from

observation to observation. Under ideal experimental condi-

tions, K depends on the brightness and shape of the incident

beam, the wavelength and the crystal volume in the X-ray

path. For polarized X-ray sources such as synchrotrons, the

observed reflection intensity is also affected by the angle of

the diffracted X-rays relative to the polarization of the inci-

dent beam. In conventional rotation-method experiments,

the intensity further depends on the Lorentz factor, which

accounts for the resolution-dependent speed at which the

Bragg peaks traverse the diffracting condition. Detailed

discussions of these contributions can be found in Holton &

Frankel (2010) and Otwinowski et al. (2003).

In practice, additional systematic errors influence the scale

factor K. These errors include crystal-related factors, such

as lattice defects, radiation-induced damage or dehydration

during exposure (Kabsch, 2010), absorption in the primary

(incident) and secondary (scattered) beam directions by the

crystal or surrounding material (Katayama, 1986), incident

beam-intensity fluctuations (Evans, 2006) and instrument-

related errors such as pixel and panel defects (Diederichs,

2010) or errors in integrated intensities due to errors in spot-

position prediction. As a consequence, observed intensities

for the same Miller index can rarely be compared directly,

whether from the same crystal or not.

Successful electron-density reconstruction requires that

symmetry-related and redundant observations be placed on

the same scale. This procedure, known as scaling, is carried out

by finding optimal scale factors K such that equation (1)

provides a set of intensity values that agree as much as

possible and can be properly compared. Parameterizing

detailed physical models of scattering to determine K is

difficult due to the many physical parameters that contribute

to the scale in mathematically similar ways. Hence, despite

recent efforts to model diffraction data from first-principles

physics (Mendez et al., 2020), most approaches still rely on an

empirical routine to scale diffraction data.

4. Algorithms for scale-factor determination

The goal of a scaling algorithm is to place all symmetry-related

and redundant reflections on the same scale. This is necessary

for successful electron-density reconstruction and is critical
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Figure 2
(a) Schematic representation of a rotation experiment. The crystal sample (shown as a gray hexagon) diffracts the incident X-ray beam. Diffracted
X-rays are measured on a detector (shown as gray spots) at a particular x, y detector coordinate. (b, c, d) Two-dimensional histograms showing the
distribution of measured reflection intensities for a hen egg-white lysozyme data set. The dashed white lines show the median intensity in each metadata
bin. (b, c) The observed reflection intensities are dependent on the detector position. (d) The observed reflection intensities vary as a function of crystal
rotation.



when comparing data sets. Methodologically, reflection

intensities are placed on a common scale by finding optimal

inverse scale factors and subsequently dividing the observed

reflection intensities by these factors. Scale factors are deter-

mined by optimizing an objective function which penalizes

deviations between redundant reflection observations.

Let Ih,i denote the observed intensity corresponding to

Miller index h = {h, k, l} on image i. Recall that the observed

intensity is corrupted by various factors depending on the

context of that image. We denote a corrected intensity as

ÎIh;i ¼ Kh;iIh;i; ð2Þ

with corresponding uncertainty

�ÎIh;i
¼ Kh;i�Ih;i

: ð3Þ

Estimates of the error in integrated intensities, �Ih;i
, are

typically determined earlier during integration. The goal of

scaling is to estimate optimal values of Kh,i such that merged

intensities may be estimated by averaging,

hIhi ¼

P
i

ŵwh;iÎIh;iP
i

ŵwh;i

; ð4Þ

where the weights are typically the inverse variance of the

corrected intensity introduced in equation (3),

ŵwh;i ¼ 1=�2
ÎIh;i
; ð5Þ

which is the maximum-likelihood weighting scheme under a

normally distributed error model.

Most scaling algorithms work iteratively, estimating merged

intensities and using optimization to find appropriate scale

factors (Fig. 3).

The objective function for optimizing K typically takes the

form of a least-squares model, introduced by Hamilton et al.

(1965),

� ¼
P

h

P
i

wh;iðIh;i �Gh;ihIhiÞ
2; ð6Þ

where

Gh;i ¼ 1=Kh;i ð7Þ

is the inverse scale factor. In this case, the weights,

wh;i ¼ 1=�2
Ih;i
; ð8Þ

should be derived from the empirical, uncorrected uncer-

tainties.

In Hamilton et al. (1965), the scale factor, Kh,i, is para-

meterized by a single scalar value per image. By minimizing

the objective function with respect to the scale factors, one will

obtain a set of scale factors that correct redundant intensities

to make them as close as possible to each other (Fig. 3). In this

sense, the objective function serves as a measure of the

performance of the model.

In essence, the objective function of Hamilton et al. (1965)

remains in use in current scaling algorithms. However, modern

scaling algorithms offer several important refinements of the

core idea. For example, modern algorithms may include

rounds of outlier rejection interspersed with merging and

optimization to reduce the influence of spurious data points.

In addition to the least-squares term, regularization terms

may be added. Regularization terms generally penalize large

differences in scale factors between observations, for example

large higher order coefficients in absorption corrections using

spherical harmonics (Evans, 2006) or large differences in per-

image linear scale factors or B factors (Otwinowski et al.,

2003).

Most importantly, modern scaling algorithms provide more

sophisticated parameterizations of the scale factors K. In the

next section, we briefly cover the scale-factor parameteriza-

tions used by two popular scaling programs, AIMLESS and

XDS (Kabsch, 2010; Evans & Murshudov, 2013).

4.1. Scale-factor parameterizations

Finding optimal scale parameters K via least-squares opti-

mization of the objective function of Hamilton et al. (1965)

(equation 6) requires the design of a parametric model for the

scale factor and minimization of the objective function with

respect to the scale-factor parameters. Scale-factor para-

meterizations depend on the mode of data collection.

Historically, in macromolecular diffraction experiments the

primary mode of data collection has been the rotation method

(Arndt & Wonacott, 1977). In these experiments, a crystal is

rotated at a fixed speed while X-ray exposures are collected

(nearly) continuously, capturing the rotation of each reciprocal-

lattice point through the Ewald sphere.

Various software suites include models designed to correct

intensities originating from the rotation method. These soft-

ware packages include XDS (Kabsch, 1988), AIMLESS

(Evans & Murshudov, 2013), HKL-2000 (Otwinowski &

Minor, 1997) and DIALS (Beilsten-Edmands et al., 2020).

Here, we briefly describe the parameterizations used by XDS

and AIMLESS.

The scaling algorithm AIMLESS employs a physical model

of the systematic errors that contribute to the observed

intensity discrepancies. Specifically, the scale factor used in

AIMLESS (Evans & Murshudov, 2013) accounts for radiation

damage, absorption in the secondary-beam direction and a

rotation-dependent scale factor. Attenuation due to X-ray

damage is parameterized with a relative B factor as a function

of rotation angle. Absorption in the secondary-beam direction

is corrected by a scale factor determined by a sum of spherical

harmonic basis functions. The rotation-dependent scale factor

is parameterized as a smooth function of the rotation angle

and it corrects for variations in the illumination volume or

the absorption of the primary beam (Evans, 2006; Beilsten-

Edmands et al., 2020). Smoothness is enforced by representing

each parameter by a set of prototypes spaced evenly across

the rotation series. These prototypes are interpolated using

a Gaussian kernel smoother (Murphy, 2012). Optimal scale

factors are found through least-squares optimization. A

scaling model used in DIALS is based on the physical model

implemented in AIMLESS (Beilsten-Edmands et al., 2020).
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In contrast, the scale factor used in XDS utilizes a product

of three two-dimensional functions to remove correlations

between variations in reflection intensity and experimental

parameters (Kabsch, 1988, 2010). Specifically, the scale factor

accounts for radiation damage, absorption and non-uniform

detector response, with each factor parameterized by a two-

dimensional function. These functions take as input the image

number and resolution, the X and Y location of reflections on

the detector, and the image number and detector surface

region, respectively. Unlike AIMLESS (Evans, 2006), XDS

learns parameters on discrete grid points. Optimal scale

functions are again found through least-squares optimization

of the objective function of Hamilton et al. (1965).

Scaling algorithms tailored to the rotation method rely on

prior knowledge of the experimental setup. Specifically, these

algorithms assume an ordered set of diffraction images, with

each subsequent image being related to the previous image by

a small rotation. This approach relies on the intuition that

systematic errors vary gradually across the data set.

4.2. Scaling methods for serial crystallography

Rotation-series scaling algorithms take as input ‘full’

reflection intensities, which are available because rotation

sweeps the entire diffracting volume of each reflection.

Advances in X-ray technology have led to the development of

fourth-generation X-ray sources. The X-ray beams generated

from X-ray free-electron lasers (XFELs), in particular, are

much brighter than third-generation sources (Hattne et al.,

2014; Doniach, 2000). The femtosecond-duration XFEL-

generated pulses can be focused to submicrometre widths,

facilitating the use of microcrystalline samples, and are

suitable for rapid-mixing experiments and photoexcitation

studies (Liu et al., 2013).

Moreover, the femtosecond durations of XFEL pulses allow

one to collect diffraction data before the onset of radiation

damage. However, focused XFEL pulses destroy crystalline

samples after a diffraction event (Liu & Lee, 2019). Thus, to

collect a full data set, thousands of microcrystals must be

delivered to the beam in a serial manner. This mode of data

collection is known as serial crystallogaphy (SX), or as serial

femtosecond crystallography (SFX) when used with XFELs

(Martin-Garcia, 2021). Unlike the rotation method, oscillating

a crystal during diffraction is not possible, and each measured

reflection is strictly partial. Additionally, each diffraction

image generated in an SFX experiment originates from a

single, randomly oriented microcrystal. These key differences

require the estimation of full intensities for each reflection,

and require indexing algorithms for randomly oriented

crystals (Kabsch, 2014; Chapman et al., 2011; Sauter, 2015;

Brewster et al., 2019). Several programs have been developed

to process SFX data, including CrystFEL (White, 2019), nXDS

(Kabsch, 2014) and cctbx.xfel (Brewster et al., 2019). These
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Figure 3
Schematic representation of a classical scaling algorithm. Scale factors, K, are initialized to K = 1 for each image and are iteratively optimized until
convergence. The top left plot shows observed reflection intensity values on ten diffraction images; each color represents a distinct Miller index h. The
middle left panel is a swarm plot of the observed reflection intensities (Ih,i) for each Miller index h. Optimal scale factors are found by iteratively merging,
optimizing K and correcting the unmerged reflections from the previous iteration. The algorithm iterates until the convergence of the objective function
(equation 4) is achieved. The rightmost plots show the final values of the scaled intensities (ÎIh;i) as a function of image number (top) or Miller indices
(middle) and the optimal values of the scale factors K (bottom).



packages contain scaling routines which are specifically

designed for serial crystallography. The algorithms are similar

in design to that of Hamilton et al. (1965) but modify the

parameterization of K to account for the independent nature

of each image. Subsequent to scaling, partialities can be

inferred and corrected for in a process called post-refinement

(White, 2014; Uervirojnangkoorn et al., 2015; Kabsch, 2014).

Intuitively, post-refinement works by updating the empirical

experimental geometry to better model the observed inten-

sities. Post-refinement is similar to scaling, but K is para-

meterized by a geometric model using the crystallographic

unit cell, orientation and mosaic parameters of the crystal to

incorporate information on the distance of each reciprocal-

lattice point to the condition for maximal diffraction (the

Ewald sphere).

5. Scaling diffraction data by variational inference

Recently, Dalton et al. (2022) introduced an alternative to

sequential least-squares optimization and merging. The algo-

rithm is similar in spirit to the classic algorithm of Hamilton

et al. (1965), yet it is implemented using modern machine-

learning principles. Functionally, the most important differ-

ence is that merging and scaling occur simultaneously as part

of the same optimization routine. Key to doing so is varia-

tional inference (VI). VI is a Bayesian estimation technique in

which data (observed intensities) are used to update prior

beliefs (see below) to yield a posterior probability for model

parameters (here the structure-factor amplitudes and the scale

factors) conditional on the observed intensities. Exact deter-

mination of this posterior distribution is generally not tract-

able. Instead, in VI one proposes a general functional form for

the posterior distribution and optimizes the parameters of this

‘surrogate posterior’, also known as a variational distribution.

The formalism used by Dalton et al. (2022) allows the use of

several forms of the surrogate posterior. In its current form,

the structure-factor amplitudes, Fh, are treated as statistically

independent from each other and from the scale factors, and

are described by a truncated normal distribution for each

amplitude. That is, the posterior distribution over structure

factor amplitudes and scale factors is approximated as

PðF;�jIÞ ’
Q
h

q’ðFhÞ
Q

i

q’ð�h;iÞ

� �
; ð9Þ

where � represents the scale factors and the surrogate

posteriors are denoted q’( ) with variational parameters ’.

Somewhat similar to the scale functions in XDS and

AIMLESS, the scale-factor function q(�) depends on meta-

data about each reflection (for example detector location,

resolution and rotation angle). In the algorithm proposed by

Dalton et al. (2022), however, the scale-factor function is

parameterized by a neural network. This neural network takes

as input user-specified metadata about each reflection, and

calculates (a posterior distribution for) the scale factor for

each reflection. This choice of scale-factor parameterization is

innovative due to its generality. Neural networks are universal

function approximators (Hornik et al., 1989), meaning that

the same inference routine can be applied to many types of

diffraction data without the need to construct and calibrate

detailed physical models of the experiment.

The algorithm then proceeds to estimate merged structure-

factor amplitudes (along with the scale function) from

unmerged reflection intensities by maximizing the following

objective function (for a derivation and implementation

details, see Dalton et al., 2022),

ELBOðq’Þ ¼ Eq’
½log PðIjF;�Þ� �DKL½q’ðFÞjjpðFÞ�: ð10Þ

The Evidence Lower BOund (ELBO) is the standard

objective function in VI (Blei et al., 2017). To provide some

intuition about the meaning of the ELBO, we observe that the

first term, Eq’
½log PðIjF;�Þ�, is the expected log likelihood of

the data set given the estimated values of the amplitudes and

scale factors. This term ensures that the structure factors

faithfully represent the experimental data. In general, the

description of the likelihood function should reflect the

understanding of experimental errors. The precise form of the

error model used in variational inference is a modeling choice.

However, the flexibility of VI allows options beyond the

normally distributed error model implied in the historical

least-squares objective function of Hamilton et al. (1965).

Specifically, Dalton et al. (2022) introduced a robust error

model which uses a Student’s t-distribution. This distribution

has heavier tails than the normal distribution and thus is more

tolerant of outlying intensities in the data set. The degree of

tolerance is specified by the ‘degrees of freedom’ parameter of

the t-distribution. In the limit of infinity, the t-distribution

becomes equivalent to a normal distribution. For smaller

values, it becomes increasingly heavy-tailed and consequently

less sensitive to outliers.

Because outlier rejection has been a very successful tool in

crystallographic data processing, we wish to note that the

architecture of the model does not preclude such methods. In

fact, Careless outputs the mean and standard deviation of the

predicted intensity for each reflection. In the future, these

results could readily be used as the basis for an outlier-

rejection algorithm which discards reflections that cannot be

accurately described by the model.

The second term in the ELBO, DKL[q’(F)||p(F)], is the

Kullback–Leibler (KL) divergence between the variational

distribution and a prior distribution, which is a measure of the

similarity of two distributions that is minimal (zero) when the

two are identical. This term can be thought of as a regular-

ization penalty which enforces the assertion that the structure-

factor distribution should resemble the prior. The simplest

prior is the Wilson distribution (Wilson, 1949), which reflects

the assumption that the unit cell of a crystal consists of atoms

that are sufficiently randomly distributed that the central limit

theorem applies to the resulting complex structure factors.

Use of the KL divergence relative to a prior reduces over-

fitting. Note that one could also propose a prior distribution

for the scale function, �, but this is not current practice.

topical reviews

Acta Cryst. (2023). D79, 796–805 Luis A. Aldama et al. � Correcting systematic errors 801



6. Careless

The algorithm just described is implemented as a command-

line interface program named Careless, which is written in

Python using the TensorFlow library (https://github.com/

rs-station/careless). Careless supports conventional CPUs.

However, it benefits from GPU accelerators, and potential

users should consider gaining access to modern NVIDIA

GPUs if they wish to perform extensive work with Careless.

6.1. Should I use Careless?

The performance of Careless relative to other software has

only been established in a limited number of cases (Dalton et

al., 2022). Thus, we offer some guidance for potential Careless

users. For standard rotation-method X-ray diffraction data,

the difference in the quality of Careless output relative to

conventional packages seems to be minimal. Users are

welcome to try the program on their conventional data, but we

do not claim that it will make a substantial difference. In

contrast, for Laue crystallography, where the X-ray beam is

polychromatic, we strongly encourage users to try Careless.

Careless was designed to natively support Laue crystallo-

graphy and provides wavelength normalization and harmonic

deconvolution. To our knowledge, Careless is the only open-

source package that provides these capabilities besides

LSCALE from the Daresbury Laue Suite (Arzt et al., 1999).

In synchrotron and XFEL serial crystallography, we also

recommend the use of Careless for modestly sized data sets.

Dalton et al. (2022) demonstrated that the model performs

well for such serial data, especially when layers with per-image

parameters (image layers) are appended to the neural

network. Careless performs well when all data fit within the

memory of a single GPU accelerator (typically data sets of up

to 10 000 images). Larger data sets require slower, CPU-

backed training. In certain cases, we have found it worthwhile

to train the model on CPUs despite the extended run times,

but this is not a recommended practice.

6.2. Cross-validation for resolution determination

Analogous to conventional merging packages, Careless can

provide estimates of half-data-set correlation coefficients,

CC1/2. We recommend using this measure to determine the

resolution cutoff. Because of the architecture of the model,

calculating CC1/2 is more computationally expensive than for

conventional merging. To estimate it, the scale function and

structure factors are first trained on the full data set. Subse-

quently, the scale model is frozen and used to estimate

structure factors separately for random half data sets. Because

it requires additional training time, this functionality is

disabled by default. The --merge-half-datasets flag in

the command-line interface will enable half-data-set merges

after initial model training. The output is saved to a special

MTZ file, which can be analyzed with an included program,

careless.cchalf. If error estimates of CC1/2 are desired, they can

be obtained from repeated partitioning of the data set using

the --half-dataset-repeats flag. We have found that

the popular resolution cutoff of CC1/2 � 0.3 works well for

Careless.

6.3. Cross-validation of hyperparameters

Careless has several hyperparameters that may impact

model performance. Selecting these hyperparameters wisely is

crucial in order to obtain high-quality results. To help with this

selection, Careless offers a form of cross-validation, which is

uncommon in conventional scaling packages. Specifically,

users can compute CCpred, the correlation coefficient between

the intensities predicted by the model and the observed

intensities. This is especially powerful when a fraction of the

observations are withheld during model training using the

--test-fraction flag. CCpred can be calculated using

careless.ccpred. Users can diagnose overfitting by looking at

the gap between CCpred for the test and training fractions,

similar to the gap between Rwork and Rfree used in structure

refinement. Functionally, hyperparameters should be chosen

to maximize CCpred for the test set.

6.4. Common hyperparameters

One of the strengths of Careless is its flexibility. As

demonstrated by Dalton et al. (2022), Careless can model

drastically different types of diffraction experiments. However,

this flexibility also results in several hyperparameters that the

user must adjust. The most important hyperparameters are

summarized in Table 1 as Careless input flags. Here, we

provide some advice about sensible default settings.

The first and most obvious hyperparameters are the iden-

tities of the metadata provided for each reflection. At a

minimum, we believe these should include the detector coor-

dinates of the reflection observation and the resolution of the

reflection (‘dHKL’) or the P1 Miller indices (‘Hobs’, ‘Kobs’

and ‘Lobs’). These two sets of parameters allow the model to

perform isotropic or anisotropic scaling, respectively. For

single-crystal data, it also makes sense to incorporate some

notion of image number or rotation information into the

metadata. This allows the model to learn to inflate the scale

factors observed later in the data set, which accounts for

radiation damage. Different types of diffraction experiments

may require additional metadata. For Laue experiments, it is

essential to include the empirical wavelength of each reflec-

tion observation to enable wavelength normalization. Like-

wise, for serial crystallography data it is important to include

an empirical estimate of the Ewald offset, which can be

represented by a scalar or vector quantity. Further, regarding

serial crystallography, we find that image layers have a

dramatic impact on performance. However, including too

many layers can lead to overfitting. If the compute budget

permits, we recommend trying a series of layer counts

--image-layers={1,2,4,8} and choosing the best

performer based on CCpred. If compute time is limited we

suggest using two layers, as this rarely results in overfitting.

Anecdotally, image layers can also improve performance in

single-crystal processing.
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Another key hyperparameter is the degrees of freedom of

the error model. By default, Careless employs a normally

distributed error model. However, we have encountered many

examples where it is advantageous to use the robust Student’s

t-distributed error model. This model features a hyper-

parameter, the degrees of freedom, which should be chosen

by cross-validation for each data set. In our experiments, we

typically explore a range of values in logarithmic spacing, for

example {1, 4, 16, 64, 256, 1024}, and select the top performer

by CCpred. However, we recognize that performing this sweep

can be time-consuming. If you are resource-constrained, we

recommend trying --studentt-likelihood-dof=32 in

addition to the default normal error model. In our experience,

this option rarely degrades performance and often provides

improved results.

7. Future directions

One of the major benefits of the variational approach to X-ray

data processing is its extensibility. We anticipate that over

time, we and others will expand on the core model presented

in Dalton et al. (2022) to further improve its accuracy and

applicability. Below, we outline several anticipated extensions.

7.1. Error models

Although Dalton et al. (2022) demonstrated that Student’s

t-distribution offers superior performance to a normally

distributed error model in some cases, it may not be the

optimal choice. For a positively distributed quantity such as

intensity, the optimal error model may not be symmetric (see,

for example, Greisman et al., 2021). Future work may address

this shortcoming by deriving a more appropriate error model.

7.2. Structured priors

In Careless, Wilson’s prior, based on a random-atom model,

is applied independently to each structure factor. Modeling

structure factors as statistically dependent could be advanta-

geous. For instance, in comparative crystallography, multiple

sets of closely related experiments are carried out simulta-

neously. In anomalous diffraction, the two halves of reciprocal

space (Friedel mates) are closely related but contain small

anomalous differences that can be used to localize atoms of

certain elements or estimate phases. In upcoming work, we

will describe how Friedel mates can be modeled as statistically

dependent structure-factor pairs to recover more anomalous

signal (for a preview, see the example Using a bivariate prior

to exploit correlations between Friedel mates at https://

github.com/rs-station/careless-examples/; see also Garcia-

Bonete & Katona, 2019). For time-resolved crystallography

experiments, modeling subsequent time points as statistically

dependent could be advantageous. Similarly, when dealing

with derivative structures resulting from isomorphous repla-

cement or small-molecule ligand screens, one may want to

scale a consensus set of structure factors against a native or

apo data set, while modeling the perturbed (for example metal

or ligand-soaked) crystals as dependent.

7.3. Stochastic training

Currently, a major limitation of variational scaling is that

the entire data set must reside in memory alongside the model.

Consequently, processing large serial crystallography data sets

on contemporary accelerator cards is challenging. Our studies

indicate that such data sets must be trained on a CPU node

with a large amount of memory (512 GB in our case). Without

GPU hardware acceleration, estimating structure factors for a

serial data set with over 100 000 images can take weeks. One

strategy to solve this problem is to parallelize the algorithm

across multiple accelerators or even cluster nodes. However,

our experiments indicate that this is not a viable strategy due

to I/O overhead. A more effective approach is to adjust the

model such that it can estimate accurate gradients for the

structure factors from small batches of data. This method,
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Table 1
Flags used in Careless.

Flag Default Description

--test-fraction 0.0 Fraction of the data held out for cross-validation
--merge-half-datasets — If True, merge pairs of random half data sets separately after training. Generates output files for

estimating CC1/2.
--half-dataset-repeats 1 Number of half-data-set merging repeats. Used to estimate the uncertainty of CC1/2.
-d, --dmin None Set maximum resolution in Å. By default, merge reflections to the maximum input resolution.
--separate-files False Create an individual output file for each input MTZ. If True, data are scaled together and merged

separately.
--studentt-likelihood-dof None Invoke Student’s t-distributed error model and set its degrees of freedom
--refine-uncertainties — Use the model in Evans (2011) to adjust the �ðIobsÞ

--positional-encoding-frequencies 4 Number of positional encoding (Zhong et al., 2019; Mildenhall et al., 2020) frequencies for
metadata. Use with mlp-width to limit memory use. Default encodes all columns. For
sepcific columns, see --positional-encoding-keys.

--positional-encoding-keys None Provide comma-separated metadata keys for positional encoding
--anomalous — Merge Friedel mates separately
--wilson-prior-b None Learn reflections on a specific global Wilson scale. The default Wilson prior is flat across all

resolutions.
--mlp-layers 20 Number of neural network layers
--mlp-width None Width of hidden layers in the neural net; defaults to the dimensionality of the metadata array
--image-layers 0 Add additional layers with local, image-specific parameters
--disable-image-scales — Do not learn a scalar, per-image scale parameter
-w, --wavelength-key Wavelength For polychromatic data, the MTZ column name corresponding to reflections’ peak wavelength



known as stochastic training, is a popular paradigm in

contemporary machine learning. Our preliminary work

demonstrates that it is possible to reparameterize the scale

model to accomplish this goal. In fact, this model can

productively estimate global structure-factor gradients from as

little as a single image at a time. A preliminary manuscript

is available on the NeurIPS Machine Learning in Structural

Biology Workshop webpage at https://www.mlsb.io/papers_2022/

Online_Inference_of_Structure_Factor_Amplitudes_for_Serial_

X_ray_Crystallography.pdf.

7.4. Direct pixel merging

The most exciting prospect for this technology is its direct

application to diffraction patterns. Specifically, the form of the

variational objective function does not require the calculation

of the likelihood in terms of integrated reflection intensities.

Instead, the likelihood function could be parameterized in

terms of the pixels surrounding a Bragg peak. In this context,

it would be natural to use a Poisson error model reflecting

the uncertainty due to counting noise. This approach would

require the incorporation of a model of the Bragg peak shape

in the scale function. While ad hoc models such as a multi-

variate normal or Lorentzian lineshapes could be used, it is

more appealing if the neural network could learn the suitable

peak-shape model in a black-box manner.

8. Conclusion

Cutting-edge light sources pave the way for innovative

experimental designs that enable a deeper understanding

of protein dynamics through comparative experiments. As

macromolecular crystallography shifts its focus to comparative

experiments, accurate and reliable scaling methods become

more crucial. New experimental designs using novel sample-

delivery methods or novel experimental geometries may

introduce new systematic errors. Traditional scaling algorithms

often require the development of new packages to accom-

modate updated experimental designs. In contrast, the

flexibility of machine-learning methods, as demonstrated by

Careless, allows the generalization of data-processing algo-

rithms. This adaptability enables researchers to quickly tackle

new experimental methods without developing algorithms for

each specific case. Moreover, these methods may be applicable

to diffraction experiments involving neutron or electron

beams.
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