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The widespread adoption of cryoEM technologies for structural biology has

pushed the discipline to new frontiers. A significant worldwide effort has refined

the single-particle analysis (SPA) workflow into a reasonably standardized

procedure. Significant investments of development time have been made,

particularly in sample preparation, microscope data-collection efficiency,

pipeline analyses and data archiving. The widespread adoption of specific

commercial microscopes, software for controlling them and best practices

developed at facilities worldwide has also begun to establish a degree of stan-

dardization to data structures coming from the SPA workflow. There is oppor-

tunity to capitalize on this moment in the maturation of the field, to capture

metadata from SPA experiments and correlate the metadata with experimental

outcomes, which is presented here in a set of programs called EMinsight. This

tool aims to prototype the framework and types of analyses that could lead to

new insights into optimal microscope configurations as well as to define methods

for metadata capture to assist with the archiving of cryoEM SPA data. It is also

envisaged that this tool will be useful to microscope operators and facilities

looking to rapidly generate reports on SPA data-collection and screening sessions.

1. Introduction

Cryogenic-sample electron microscopy (cryoEM) has under-

gone significant growth and has matured into a major tool for

determining the structures of macromolecular complexes at

resolutions that are useful in structural biology research. This

progress is evident in the substantial number of entries in the

Electron Microscopy Data Bank (EMDB), which at the time

of writing stands at 24 576 for single-particle analysis (SPA).

The SPA technique involves using a transmission electron

microscope (TEM) instrument to acquire many thousands of

two-dimensional images of a target biological macromolecule

preserved under cryogenic conditions and using computa-

tional techniques to identify the different poses of that

macromolecule to reconstruct its three-dimensional structure.

The growth of the technique can be attributed to improve-

ments in various aspects of the SPA workflow, including

sample preparation, automation and efficiency gains in data

collection, and data-analysis techniques.

One crucial aspect that has gained prominence in enhancing

microscope data-collection efficiency is the computerized

control of microscopes. Several software packages, such as

Leginon (Carragher et al., 2000), SerialEM (Mastronarde,

2003) and EPU (e pluribus unum; out of many, one) from
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Thermo Fisher Scientific (TFS) have emerged as major tools

in instrument control, allowing increased levels of data

production via autonomy and lowering the technical barrier in

controlling TEMs. At the time of writing, 72% (17 657) of the

SPA macromolecular structures deposited in the EMDB are

recorded as having been obtained using a Titan Krios micro-

scope, as now produced by TFS, reflecting a standardization

that has occurred due to the predominance of an instrument

type in the field. The evident widespread adoption of instru-

mentation and collection strategies presents an opportunity to

develop processes that attempt to standardize the capture of

metadata from cryoEM imaging experiments. Such a process

would benefit the community, enabling the automatic and

robust generation of descriptions of how an experiment was

performed. Such a tool to survey or parse instrument meta-

data also presents the opportunity for facilities to globally

monitor the utilization and performance of their instruments.

Fig. 1 graphically represents the SPA workflow at (i) the

level of the experiment and (ii) in image processing. Acqui-

sition workflows are reasonably well standardized in SPA.

As the images (or micrographs) taken of the target macro-

molecules are destructive due to radiation damage, these data

may only be collected from an area once. Thus, the experi-

mental workflow may be thought of as a targeting exercise,

whereby an expert operator uses nondestructive low-dose

low-magnification images to identify regions of the specimen

(atlas and grid square) expected to yield data of high quality.

The knowledge of which regions produce high-quality data

may have been established from prior knowledge gained

during trial collections on the current or equivalent specimen

(so-called ‘screening’), but in essence the goal of the operator

is to set the microscope to target the coordinates of many foil

holes and, within these, many acquisition areas. The micro-

scope will then automatically collect micrograph data in those

acquisition areas. This targeting exercise collects and produces

a hierarchical image structure where acquired micrographs

exist in relation to a series of lower magnification images that

describe the location of that micrograph on the specimen.

Assessments of the quality of micrographs from SPA

experiments are made as a product of the image processing

that is performed to transform two-dimensional images into a

three-dimensional structure of the target macromolecule. This

is described in detail in various general reviews (Orlova &

Saibil, 2011; Saibil, 2022; Lyumkis, 2019). Due to the broad

range of software available for structure determination in SPA

cryoEM, image-processing workflows can uniquely evolve for

each structure-determination project. Increasingly, however,

inline analysis packages are available to perform the image-

processing steps leading to particle identification (so-called

particle picking) and 2D alignment, averaging and classifica-

tion (Punjani et al., 2017; Fernandez-Leiro & Scheres, 2017;

Gómez-Blanco et al., 2018; Tegunov & Cramer, 2019; Caesar et

al., 2020), which we refer to as a preprocessing pipeline and

depict in Fig. 1(b). Many packages are able to automatically
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Figure 1
Workflow for an SPA cryoEM experiment showing (a) the hierarchical image-collection structure representing the collection strategy to arrive at the
acquisition of micrograph data and (b) the preprocessing of many micrographs to arrive at filtered particles ready for structure determination. Some
potential quality metrics that can be obtained from preprocessing are highlighted in light blue.



perform analyses to produce three-dimensional reconstruc-

tions and the quality of the three-dimensional density is the

de facto measure of the success of the experiment; however,

preprocessing pipelines arguably already produce many of

the metrics suitable for describing micrograph data quality.

Benefitting again from a relative standardization of the

preprocessing approach, there is an opportunity to capture

these quality metrics as metadata describing the quality of an

acquired data set of micrographs.

Taken together, these metadata describe how the experi-

ment was configured and performed, and the experimental

and analytical outcomes relating to the performance of the

instrument and specimen. Many of these metadata points may

still be manually documented by users, but could equally be

retrieved from outputs from the instrumentation and pipelines

that performed and analysed the experiment. If performed

automatically, this would lead to efficiency gains for depositors

and an increase in the robustness of the deposition process.

The automatic capture of metadata describing the cryoEM

experiment could also lower the barrier to capturing and

depositing more descriptive data on the experiment. If avail-

able, this would permit hypothesis testing on the relationship

between the experimental configuration and the experimental

outcome. We would expect that an increased richness of

metadata in the structural biology EM archives (Lawson et al.,

2016; Iudin et al., 2023; Patwardhan & Lawson, 2016) will also

make entries ready to support future machine-learning (ML)

applications that require more descriptive labels for training

and inference.

We present a tool, called EMinsight, which allows the

systematic extraction of information from TFS EPU SPA

directories to collate and summarize metadata describing the

experiment. The directories of associated pipeline prepro-

cessing in RELION are also interrogated to associate quality

information with a collected data set. The outputs of EM-

insight are expected to be useful for different end uses: PDF

reports on the experiment for the microscope operator’s

documentation, comprehensive metadata capture for facility

database and instrument managers, and concise metadata

capture with data-integrity measures for archive and deposi-

tion developers. We expect that this type of tool may form the

conceptual basis for future systems that could be used locally

within facilities to monitor instrument and session perfor-

mance. Additionally, EMinsight could represent one type of

approach to a method of generating metadata to automatically

populate archival depositions of macromolecular structures,

maps and raw data of SPA cryoEM experiments.

2. Materials and methods

2.1. Data structure

EMinsight has been developed with the SPA session type

performed at eBIC (the UK national cryo-EM facility),

Diamond Light Source. The software expects a data structure

as shown in Table 1.

2.2. XML metadata parsing

Under the EPU SPA collection system (TFS), metadata

describing the experiment are stored in XML format. These

files are produced by EPU during an SPA session and store

much of the metadata describing the configuration and

behaviour of the microscope during the experiment. EM-

insight has been developed at eBIC and EPU version 3.0. In

general, every image that is acquired by the microscope and

collection system is paired with an XML metadata file docu-

menting the optical configuration of the microscope for that

image as well as additional information. Information about the

setup of the experiment is stored in hierarchical auxiliary files

that do not necessarily have images associated with them (also

in XML format file, with the extension .dm). For instance, the

number and names of grids inventoried for collection is stored

in a global ScreeningSession.dm but the individual grid

type, hole diameter and radius are stored in an EpuSes-

sion.dm for each grid. EMinsight uses a Python library to

transform the XML into a dictionary and then query known

addresses for instrument and experimental metadata. In

general, these are passed to the pandas Python library to

create internal dataframes for reference, analysis and output.

2.3. Preprocessing analysis parsing

During SPA collections at eBIC, an automatic preprocessing

pipeline is executed using RELION and components of the

CCP-EM pipeliner (https://gitlab.com/ccpem/ccpem-pipeliner).

This includes motion correction, CTF estimation, particle

picking using crYOLO (Wagner et al., 2019), 2D classification,

particle selection and subsetting. The directory structure of

the results is as is typically expected for RELION, including

a relion_it_options.py file containing many of the

parameters defining the processing pipeline. EMinsight reads

files in the expected RELION directory structure (tested using

RELION version 4.0 and CCP-EM pipeliner version 0.1.0) and

parses some elements of the relion_it_options.py file

to conveniently gather the pipeline parameters and results and

associate them with each individual micrograph of a data set.

Associations of those micrographs with their respective origi-

nating grid square and hole locations are retained such that

they can be used for data grouping in location-based analyses.

2.4. Particle-picking analyses

Particle picking at eBIC is typically performed using

crYOLO (Wagner et al., 2019). This is leveraged to read the

particle diameter by parsing and averaging the particle

diameters reported for each picked particle by crYOLO in the

output *.cbox files. While keeping in mind a data set with

large amounts of carbon or ice contamination may interfere

with the interpretation of particle-picking analysis, EMinsight

measures particle density and particle clustering. These are

calculated independently, allowing the user to identify

particle-distribution pathologies. Particle density is calculated

as a value normalized to 1 and considers only picks made with

a crYOLO score over a threshold of 0.3 in an attempt to

exclude false-positive picks (Wagner et al., 2019). A density of
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1 would represent maximum packing of particles into a

simplified 2D array in the micrograph field of view based on

the observed particle diameter. In brief, the circular diameter

of a particle is used to approximate the area of the particle to a

square with that diameter. The ideal packing density is then

estimated as the number of particles given by dividing the

total magnified sensor area by the approximated particle area.

Particle coordinate clustering is calculated independently of

particle density using the scikit-learn implementation of

nearest-neighbour analysis. Where the nearest-neighbour

distance is found to be less than 80% of the measured particle

diameter, the particle is labelled as overlapping or, as termed

in EMinsight, clustered.

2.5. Outputs

Each of the following subsections describes the outputs that

a user of EMinsight can expect to be produced.

2.5.1. Comma-separated value (CSV) collated data.

*_datastructure.csv: associates the micrographs with

the associated lower magnification images, as well as with

quality metrics gathered from metadata.

*_optics.csv: reports all of the microscope optics

configurations for each preset used by EPU for the data-

collection session.

*_processed.csv: reports on the outcomes of prepro-

cessing jobs to infer the quality of the data set.

*_session.csv: reports on the outcomes of the session,

i.e. targeting statistics, collection rates, data-set size, specimen

properties and collection strategy.

2.5.2. Reports. PDF reports are created to summarize and

present the major descriptors of the data-collection session to

the end user of EMinsight. These are *_session.pdf to

present information on the session configuration and outcome

and *_processed.pdf to present information on the

preprocessing outcomes.

2.5.3. Deposition. JSON files recording the necessary fields

for populating the mandatory fields of the Microscopy section

of an EMDB deposition. Checksums are included to provide a

method of verifying data integrity.

3. Results

3.1. Reporting on SPA sessions

All raw data and the hierarchical image structure from SPA

experiments are written out by EPU along with metadata

in XML format. These can be interrogated to expose the

configuration of the experiment; however, these metadata are

not practically human-readable. EMinsight parses through

the metadata structure of experimental outputs from EPU

sessions to gather important data describing the experiment to

produce a concise human-readable report. EMinsight can be

executed from the command line or a simple user interface, as

shown in Fig. 2.
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Table 1
A representation of the directory data structure expected by EMinsight.

Directory structure Notes

Unique-session-identifier

|- atlas
| |- Supervisor_[date]_[time]-session-identifier_Atlas EPU atlas directory
| | |- ScreeningSession.dm Screening metadata
| | |- Atlas
| | | |- Atlas.dm
| | |- Sample1
| | | |- Sample.dm

| | | |- Atlas
| | | | |- Atlas.dm Atlas metadata
| | | | |- Atlas.jpg/mrc Atlas montage
| | | | |- Atlas.xml Atlas metadata
|– processed
| |– raw

| | |- relion Preprocessing results
|– processing
| |– gain
| | |- README Facility metadata
|- raw
| |- GridSquare_[Square-ID]
| | |- Data Raw data for grid square

| | ||-FoilHole_[Hole-ID]_Data_[Acquisition-ID]_[date]_[time]_fractions.mrc Raw data image
| |- metadata
| | |- Supervisor_YYYYMMDD_HHMMSS_unique-session-identifier_EPU
| | | |- Images-Disc1
| | | | |- GridSquare_[Square-ID]
| | | | | |- GridSquare_[date]_[time].jpg/mrc Grid-square image JPG/MRC

| | | | | |- GridSquare_[date]_[time].xml Grid-square image metadata
| | | | | |- Data
| | | | | | |- FoilHole_[Hole-ID]_Data_[Acquisition-ID]_[date]_[time].jpg/mrc Data-image sum JPG/MRC
| | | | | | |- FoilHole_[Hole-ID]_Data_[Acquisition-ID]_[date]_[time].xml Data-image metadata
| | | | | |- FoilHoles
| | | | | | |- FoilHoles_[Hole-ID]_[date]_[time].jpg/mrc Foil-hole image JPG/MRC
| | | | | | |- FoilHoles_[Hole-ID]_[date]_[time].xml Foil-hole image metadata



Example PDF reports are shown in Supplementary Section

S1 and are expected to be useful as reference documents when

stored as part of an electronic laboratory notebook by the

microscope operator and EMinsight user. The types of

metadata that are captured and exposed by EMinsight are

summarized in Table 2. In addition to capturing Instrument

Configuration metadata, additional properties of an SPA

session may be described as Experimental Outcomes, Calcu-

lated Parameters and Analytical Outcomes. Many of these

descriptors are displayed in the PDF reports, but all exposed

descriptors are written to CSV files serving as a simple collated

data for each session, as shown in Supplementary Section S2.1.

EMinsight is further capable of parsing multiple experiments

and globally aggregating collated data, as shown in Supple-

mentary Section S2.2.

3.2. Instrument-performance assessments

EMinsight performs systematic analyses on individual data-

collection sessions as well as comparing these analyses across

multiple sessions from a cryoEM instrument as part of a

facility or user programme. In one example, this type of

analysis confirms the speed gains that can be attained on

an eBIC microscope (TFS Titan Krios) by increasing the

magnification and employing multi-shot collection facilitated

by aberration-free image shifting (AFIS). However, it is

important to note that these speed gains are not sufficient to

offset the loss of field of view incurred due to the increase in

magnification (Fig. 3a). A systematic analysis of collection

rates across multiple Titan Krios instruments confirms this

behaviour (Fig. 3b), where multiple strategies may have been

employed to enhance collection rates but are still unable to

collect the same amount of usable area as the magnification is

increased. In the light of this, microscope operators might first

consider the resolution that they need to achieve, using the

largest pixel size appropriate for this and then carefully

assessing how long they need to collect given expected data-

collection rates with a particular magnification and experi-

mental setup. Considering efficient data collection using larger

pixel sizes has been suggested elsewhere (Harrison et al.,

2023). EMinsight provides a means to empirically assess the

data-collection rates that can be expected on an instrument in

a particular configuration, allowing these calculations to be

driven by historical performance data. Indeed, a Titan Krios

that has a significant configuration difference in its detection

system performs differently (see Supplementary Fig. S1) to the

analyses presented in Fig. 3. As vendors improve instrument

and data-collection workflows, further gains in speed may be
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Table 2
A selection of the metadata captured and exposed by EMinsight to the user.

Instrument Configuration Experimental Outcomes Calculated Parameters Analytical Outcomes

C2 aperture size Total available squares Dose rate (e� Å� 2 s� 1) Motion (early/late/total)

Spot size Targeted squares Rate (micrographs per hour) CTF resolution (min/max)
Beam size (mm) Collected squares Rate (mm2 h� 1) Particle size
Magnification (�) Collected images Particle count
Defocus range (mm) Collected area (mm) Particle density
Grid type Acquisition time stamps Particle clustering
Hole size/spacing (mm) Acquisition locations Class assignment resolution
Shots per hole Acquisition data structure

Figure 2
The EMinsight user interface (left) for analysing a single cryoEM SPA data-collection session and (right) for analysing and collating session analyses
across multiple directories from an SPA user programme.

http://doi.org/10.1107/S2059798324001578
http://doi.org/10.1107/S2059798324001578
http://doi.org/10.1107/S2059798324001578
http://doi.org/10.1107/S2059798324001578
http://doi.org/10.1107/S2059798324001578
http://doi.org/10.1107/S2059798324001578


realized. In the meantime, the community may want to

consider utilizing the gains in speed and area achievable from

low-magnification collection (i.e. 1.5 Å per pixel; super reso-

lution 0.75 Å per pixel) in combination with super-resolution

camera detection modes to allow the recapitulation of high-

resolution information.

3.3. Experimental performance assessments

As automatic processing pipelines increasingly become

adopted at cryoEM facilities, it is possible to rapidly inform

the operator of the quality of their sample (Punjani et al., 2017;

Fernandez-Leiro & Scheres, 2017; Gómez-Blanco et al., 2018;

Caesar et al., 2020) and critically to provide feedback with

increasing detail and as early as possible during experimental

time. Pipeline implementations may be customized by the

facility to suit the local compute infrastructure, but off-the-

shelf solutions are publicly available in packages such as

RELION (Fernandez-Leiro & Scheres, 2017), cryoSPARC

(Live) (Punjani et al., 2017), Scipion (Gómez-Blanco et al.,

2018) and Warp (Tegunov & Cramer, 2019). Many of these

pipelines attempt to perform analyses all the way to a three-

dimensional reconstruction without user intervention; however,

preprocessing pipelines are more commonplace in facilities. In

this manuscript, reference is made to a pipeline that performs

preprocessing steps including motion correction, CTF esti-

mation, particle picking and initial 2D classification and

averaging. Fig. 4 shows typical picked-particle coordinates for

a micrograph as shown to the user in the EMinsight report and

frequently reported by common image-processing software.

EMinsight additionally performs a density and clustering

analysis, as well as labelling each particle with the resolution of

the 2D class that it is assigned to during preprocessing. We

note that the crYOLO particle picker used already excludes
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Figure 3
Multi-shot data-acquisition approaches achievable by increasing the microscope magnification. Representations are shown in (a) with their session-
associated collection performance on a Titan Krios equipped with a Gatan K3/BioQuantum camera/filter system. (b) The collection performance in
micrographs per hour (mic h� 1) and mm2 h� 1 for the same Titan Krios microscopes with a Gatan K3/BioQuantum camera/filter system is expressed as
boxplots, robustly revealing that the speed gains that are obtained from increasing magnification do not offset the loss in field of view.



some particle picks found in clusters and thus cases exhibiting

severe particle clustering may be underestimated. These

particle-quality metrics can then be averaged to describe each

micrograph quality as a singular value. Whilst this averaging

may hide subtle trends in the data, it is expected that these

metrics will be useful for reporting global trends across data

sets analysed by EMinsight.

The particle-quality metrics are stored along with specimen

motion (early/late/total) and CTF maximum resolution for

each micrograph of the data set in an attempt to concisely

represent the quality and variation in the whole SPA experi-

ment. Specimen motion is characterized using the default

RELION convention, where the cumulative motion in

ångströms up to a dose of 4 e� Å� 2 is characterized as early

motion and the cumulated motion after this dose to the end of

the exposure as late motion. Fig. 5 shows the representation

of these quality metrics for a single SPA experiment. The

preprocessing results captured by EMinsight will reflect the

quality of the specimen, but may also be influenced by the

performance of the instrument in recording high-quality

information on the specimen and so should be considered on a

case-by-case basis. Where the collated data CSV outputs of

EMinsight connect preprocessing results with instrument,

experimental and derived metadata describing an SPA
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Figure 5
A representative set of analyses of preprocessing results prepared by EMinsight showing (a) specimen motion early (top) and late (bottom) during an
image acquisition with a total dose of 50 e� Å� 2, (b) normalized particle density for a particle with a measured diameter of 136 Å (top) and degree of
particle clustering where particles are closer than 109 Å (bottom), and (c) micrograph CTF maximum resolution (top) and the mean resolution of the 2D
classes to which particles from a micrograph are assigned.

Figure 4
A representative set of particle-coordinate analyses showing (a) micrographs, (b) the associated picks, where clustered particles are represented in red,
and (c) the resolution of 2D classes to which particles within a micrograph are assigned.



experiment, it may be possible to investigate whether parti-

cular instrument configurations are deterministic in pre-

processing pipeline outcomes. EMinsight thus provides a way

for microscope operators, facilities or data scientists to rapidly

quantify and identify sessions that were experimentally

successful and provides a framework for investigating how the

instrument and specimen may together influence experimental

success.

3.4. Analytical outcomes linked to specimen location

Every micrograph name is stored by EMinsight in a way

that allows the identification of all low-magnification images

used to locate that target on the specimen. Additionally, the

characteristics of each micrograph from the preprocessing

pipelines are exposed by EMinsight and stored in the context

of their locating atlas, grid square, hole and hole acquisition

area image. Thus, micrograph characteristics from preproces-

sing pipelines can be displayed for specific areas of the grid.

Metadata and preprocessing results may be analysed at

various hierarchical levels of the imaging experiment. For

instance, aggregating all data would reveal the overall beha-

viour of the specimen with respect to the entire grid or atlas.

Data can then be separated at the level of the grid square or

the data-acquisition area within a hole of the specimen

support. At the level of the grid square the user may learn

about the variability in the sample due to large variations in

vitreous ice properties from the plunge-freezing process,

whereas at the level of shots per hole a user may learn about

the behaviour of the specimen inside the hole of the specimen

support. Analysing the behaviour of the specimen inside the

hole may be particularly interesting if a user could learn from

this analysis to retarget their data collection. Fig. 6 shows an

analysis of particle behaviour and quality from all micrographs

of a data set separated into those exposures taken at the top or

bottom of the foil hole. The resolutions of the 2D classes to

which individual particles are assigned ultimately suggests that

the particles are of equivalent quality in both target areas,

despite differences in packing density and clustering.

However, for data sets that exhibit pathological problems in

particle distribution in holes it is expected that this type of

analysis could be beneficial to retarget the data collection to

collect higher quality data.

3.5. Instrument setup, performance and experimental

outcome described in one database

The data structure at eBIC separates experimental visits by

instrument, year, user group and visit number, as shown in

Table 3. Due to the predictable data structure at eBIC and

given the established methodology for parsing a single EPU

SPA experimental metadatum, it is possible to systematically

query every experimental visit on an instrument, for a parti-

cular user group or across the whole user programme. All of

these data can then be aggregated to analyse trends across

multiple data collections.

Fig. 7 depicts several common performance metrics

recorded from SPA cryoEM experiments. EMinsight performs

data reduction to produce a single value, either as an average

or a maximum/minimum value to describe a collection session.

Whilst these metrics will vary for each micrograph within each

data collection itself, histograms of the single reduced values

aim to provide a rapid overview of the performance of an

instrument or user programme. The CTF best resolutions are
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Figure 6
Analysing experiment performance in the context of instrument location metadata reveals trends in the particle density, aggregation and quality of
particles in an SPA specimen. (a) The two exposure areas targeted for collection. The statistics for all exposures taken in the hole location for the top
exposure (b) are shown in comparison to the bottom exposure (c).

Table 3
Global data structure for experimental visits at a large user facility.

Directory structure Note

Instrument-unique-identifier

|- year
| |- Data
| | |- [userID-visitNumber] Directory data structure depicted

in Table 1



most commonly less than 3 Å; many sessions are subject to

high levels of specimen motion, but the trend is towards data

exhibiting motion of less than 200 Å. At the level of the

specimen, most data sets are collected with micrographs

exhibiting particles at less than ideal occupancy (optimal

would equal a normalized value of 1) and most commonly data

sets on average have low levels (�20%) of particles found to

be clustered, but all data sets suffer from a degree of particle

clustering.

3.6. Deposition-ready data

EMinsight reinforces the concept for configuration files that

can inform image processing or even deposition, as has been

developed by other software packages (Gómez-Blanco et al.,

2018; Kimanius et al., 2021). From metadata that are captured

and exposed by EMinsight, as reported in Table 2, a subset is

extracted and stored with a view to be useful for the deposi-

tion of SPA data and three-dimensional reconstructions in the

archives. EMinsight prepares a single JSON file with many of

the data fields that are necessary to populate the ‘Experiment:

Microscopy’ sections of an EMDB archive entry. A checksum

file is produced as a method to verify the integrity of the data

within the deposition JSON file. Table 4 shows the deposition

file fields generated by EMinsight.

3.7. Machine learning-ready data

As described previously, each micrograph that is assigned

quality metrics is stored in a way that associates that micro-

graph with the lower magnification images in the hierarchical

image structure taken to target that micrograph (see Section

2.5.1). EMinsight then introduces the concept that metadata

describing high-magnification images could be used as quality

labels for lower magnification images that would have been

collected prior to high-magnification acquisition. This could

be leveraged to allow the application of ML techniques in

recognizing features in low-magnification images that lead to

high-quality data acquisition in micrographs.

Further, the automatic collection of metadata sufficient for

the experimental section of an EMDB deposition by EM-

insight may represent one potential avenue towards inter-

facing with EMDB (Lawson et al., 2016) and EMPIAR (Iudin

et al., 2023), perhaps in future deposition procedures. Table 4

reports the fields that are collected by EMinsight. Some of

these fields are not currently stored in archive depositions, but

these extended metadata fields may prove to be relevant for

increasing the descriptive power of an EMDB deposition

entry. All in all, EMinsight could represent the type of end-

user tool that is required to minimize the barrier to data

submission to archives, whilst also maximizing opportunities

for data reuse through metadata deposition carefully consid-

ered within recommended frameworks (Sarkans et al., 2021).

We envisage this to greatly benefit future ML projects relying

on open-access, accurate and descriptive metadata of database

entries.

4. Discussion

The widespread use of software-based solutions for inter-

action with the electron microscope has improved the effi-

ciency of data collection and enabled almost continuous

automated instrument utilization. Despite these advances,

there is still a need for effective record-keeping of instrument

and experimental setups, especially given the complexity of

SPA experiments. An SPA cryoEM experiment is often fully

described in the metadata output by the instrument itself;

however, these are not practically human-readable. EMinsight

addresses this by converting intricate metadata into human-

readable reports, aiding in the documentation of SPA

experiments and potentially assisting with deposition to

archives.

The capture of instrument configuration and experimental

outcomes to derive calculated parameters then presents the

opportunity for systematic analyses into factors affecting

instrument performance. EMinsight offers insights into

instrument performance by drawing from recorded metadata,

but can further make inferences about the quality of the

experiment and specimen by analysing preprocessing meta-

data. By capturing location data, analysis at various levels is

enabled, such as a grid square or exposures within a hole, to

identify issues with cryoEM SPA specimens. These tools help

to correlate instrument configurations with experimental

outcomes, which is expected to be useful to microscope

operators, EMinsight users and facility managers in evaluating

session success.

For deposition, EMinsight facilitates the recall of experi-

mental details, which could be leveraged for populating

metadata fields in structural biology archives such as EMDB

and EMPIAR. When EPU has been used for data collection,

EMinsight can produce files that could support the parsing

of metadata in preparation for deposition, in a concept
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Table 4
An example of the fields populated by EMinsight in an example
deposition file with extended metadata expected to be beneficial to
complement those currently required for an EMDB archive deposition.

Microscope TITAN52334150
epuversion 3.0.0446.0
date YYYY/MM/DD
eV 300000
Mag 81000

Apix 2.3
nominal_defocus_min_microns � 1
nominal_defocus_max_microns � 3
spot_size 5
C2_micron 50
Objective_micron 100
beam_diameter_micron 1.1

Collection AFIS
number_of_images 254
grid_type HoleyCarbon
available_squares 62
collected_squares 3
average_foils_per_square 140

hole_size_micron 1.2
hole_space_micron 1.3
shots_per_hole 2
total_dose_eA2 34.6
fraction_dose_eA2 0.6



analogous to harvesting data from structure-determination

applications in X-ray crystallography (Yang et al., 2004;

Potterton et al., 2018). The development of automatic

deposition workflows for cryoEM, possibly involving archive-

deposition APIs, is anticipated to benefit from the deposition

files produced by software such as EMinsight, but the func-

tionality could also be incorporated into other software such

as Scipion (Gómez-Blanco et al., 2018) or CCP-EM (Burnley

et al., 2017). However, the heterogeneity in data-collection

software and processing pipelines, and the potential for

existing local procedures in metadata capture and storage in

laboratory information-management systems already having

been applied, increases the complexity in creating a unified

system for metadata capture and automatic deposition.

EMinsight is then representative of what is possible, but must

be considered as an example of what could be performed

rather than a final solution to this problem, which ultimately

will require coordination from major instrument manu-

facturers, software developers and database developers.

Altogether, EMinsight represents a tool that gathers and

relates instrument configuration, experimental outcomes and

analytical outcomes in concise reports for immediate and

historical analysis of SPA data-collection sessions. It could

equally be adapted as a standalone tool or be incorporated

into systems that feed back on cryoEM SPA experiments in

real time. The coordinated recording of metadata of various

kinds allows global analyses of the performance of instru-

ments and the user programmes that they run. As a tool that

interprets and exposes the hierarchical image structure of a

cryoEM SPA experiment, each micrograph is related to its

low-magnification images along with quality metrics and could

be used as a precursor for training neural networks to

recognize high-quality collection areas from low and medium-

magnification images.

We envisage that software such as EMinsight will incenti-

vize the retention of metadata produced by cryoEM instru-

mentation performing SPA experiments or derived databases

that describe how experiments were performed. This will

improve the ability of scientists to more easily recall how

experiments were performed and what their outcomes were as

they develop structural biology projects aiming to determine

the structures of macromolecules. These types of software

could robustly inform downstream analytical processes of

microscope configurations and metadata describing the

experiment to automatically run image analyses. In particular,

we envisage that microscope metadata could be extracted

automatically at the point of map deposition or associated and

retained throughout image processing to then be ready to

automatically populate the archives at the time of map

deposition. More descriptive metadata in the structural

biology archives themselves could facilitate better under-

standing of the relationship between how an SPA experiment

was performed and the quality of the resulting map, as well as

enabling future ML applications on archived cryoEM data.
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Figure 7
Several common performance metrics for cryoEM SPA experiments assessed across several months of a cryoEM Krios user programme.



5. Data availability

A representative data structure on which EMinsight can be

run to reproduce the analysis in this manuscript has been

uploaded to EMPIAR under the accession code 11895.

6. Source-code availability

EMinsight is available in the repository at https://github.com/

kylelmorris/EMinsight and is distributed under the BSD-3-

Clause licence.
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