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Diffuse scattering is a promising method to gain additional insight into protein

dynamics from macromolecular crystallography experiments. Bragg intensities

yield the average electron density, while the diffuse scattering can be processed

to obtain a three-dimensional reciprocal-space map that is further analyzed

to determine correlated motion. To make diffuse scattering techniques more

accessible, software for data processing called mdx2 has been created that is

both convenient to use and simple to extend and modify. mdx2 is written in

Python, and it interfaces with DIALS to implement self-contained data-reduction

workflows. Data are stored in NeXus format for software interchange and

convenient visualization. mdx2 can be run on the command line or imported as a

package, for instance to encapsulate a complete workflow in a Jupyter notebook

for reproducible computing and education. Here, mdx2 version 1.0 is described,

a new release incorporating state-of-the-art techniques for data reduction. The

implementation of a complete multi-crystal scaling and merging workflow is

described, and the methods are tested using a high-redundancy data set from

cubic insulin. It is shown that redundancy can be leveraged during scaling to

correct systematic errors and obtain accurate and reproducible measurements of

weak diffuse signals.

1. Introduction

Diffuse scattering is the continuous pattern in the background

of X-ray diffraction images from crystals (Welberry & Weber,

2016). It occurs whenever disorder is present, and significant

motion is possible in macromolecular crystals; a typical

protein crystal has 30–70% solvent, which is comparable to the

crowded environment of cells (Zimmerman & Trach, 1991).

Recently, the recognition that experimental data on protein

dynamics are needed to understand their function has led to

renewed interest in diffuse scattering (Wall et al., 2018). In

particular, diffuse scattering encodes unique information on

the correlated displacements of pairs of atoms in the crystal

(Meisburger & Ando, 2017). Such correlated motions result,

for instance, from the thermally excited breathing motions of

proteins, which have long been implicated in mechanisms of

allostery and catalysis, but are challenging to study experi-

mentally (Xu et al., 2021).

A quantitative analysis of diffuse scattering requires care-

fully measured and processed data. In the reciprocal-space

mapping technique, diffraction data from one or more crystals

in multiple orientations are combined to reconstruct the

continuous, three-dimensional scattering pattern (Meisburger

& Ando, 2023). The state of the art in reciprocal-space

mapping has evolved rapidly in recent years, driven by several

technological advances. The availability of direct X-ray

detectors at synchrotrons (Förster et al., 2019) has enabled

new data-collection strategies to maximize data quality
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through fine ’-slicing (Mueller et al., 2012) and averaging

many redundant observations (Winter et al., 2019). The ideal

properties of these detectors allow simultaneous measurement

of Bragg and diffuse scattering in the same data set (Van

Benschoten et al., 2016; Meisburger & Ando, 2017). Software

is then used to reconstruct the three-dimensional diffuse

scattering patterns in reciprocal space. Building on the diffuse

scattering methods used in materials science [exemplified by

programs such as XCAVATE (Estermann & Steurer, 1998;

Scheidegger et al., 2000), Mantid (Arnold et al., 2014) and

Meerkat (Simonov et al., 2020)], software tools including

Lunus (Wall, 2009), EVAL (Schreurs et al., 2010), Diffuse

(Peck et al., 2018) and mdx-lib (Meisburger et al., 2020) have

been developed to address unique challenges in macro-

molecular diffuse scattering. These programs produce patterns

that can be compared quantitatively with various models

(Wych & Wall, 2023; Case, 2023; Peck et al., 2023).

By using these newly available tools, the field has reached a

greater understanding of how different kinds of disorder

contribute to diffuse patterns (Polikanov & Moore, 2015; Peck

et al., 2018; Wall, 2018; De Klijn et al., 2019; Meisburger et al.,

2020, 2023). A key realization has been that atomic motions in

protein crystals have correlations spanning a large range of

distances, for instance from local atomic vibrations correlated

over a few bond lengths to wave-like excitations of the crystal

lattice that may be correlated over many unit cells. As a

consequence of the large range of length scales, diffuse

patterns must be measured on a fine scale (i.e. oversampled

with respect to the reciprocal lattice) in order to account for

all of the observed atomic motion (Meisburger et al., 2020).

Moreover, in reciprocal space the signals from the short-range

and long-range correlations are superimposed, and thus

precise measurements are required in order to disentangle the

signals from protein motions of interest (Meisburger et al.,

2023). Techniques to improve accuracy and precision have

been developed, including experimental background

measurement and subtraction (Pei et al., 2023), procedures to

correct for systematic errors during scaling (Peck et al., 2018;

Meisburger et al., 2020) and the development of new statistical

indicators of data quality (Su et al., 2021) and model–data

agreement (Meisburger et al., 2023).

As the macromolecular diffuse scattering field grows

beyond the community of methods developers, it is important

to build data-processing software that is easy to use, embodies

best practices, promotes reproducibility in research and invites

new communities of users and developers through docu-

mentation and tutorials. To address this community need, we

developed mdx2, a Python package for processing macro-

molecular diffuse scattering data. A development version (0.3)

has been available since 2022 with basic functionality suitable

for education and preliminary data processing (Meisburger &

Ando, 2023). mdx2 is the successor to mdx-lib, a MATLAB

library for diffuse scattering that has been used by the authors

since 2016, and it reimplements many of its successful algo-

rithms. Unlike mdx-lib, mdx2 is designed to interface closely

with the Bragg data-processing program DIALS (Winter et al.,

2022). It features a user-friendly command-line interface, also

inspired by DIALS, and stores intermediate data and meta-

data in standardized, self-describing NeXus-formatted HDF5

files (Könnecke et al., 2015). The NeXus format was chosen to

facilitate interchange with other software, such as the NeXpy

graphical user interface (The NeXpy Development Team,

2023), or Jupyter notebooks via the nexusformat package.

Although successful, the development version of mdx2 lacked

key features needed to handle the large data sets produced

in modern, high-redundancy, fine ’-sliced data collection,

including support for multi-crystal scaling and parallel

processing.

Here, we describe mdx2 version 1.0, the first release

intended for research, which includes an implementation of

the full scaling model from mdx-lib (Meisburger et al., 2020)

and features parallelized data-reduction tasks for multi-CPU

architectures. This article is organized as follows. First, we

provide an overview of data-processing workflows combining

DIALS and mdx2 and describe the tasks performed by each

command-line program. Next, we introduce the scaling model

and refinement algorithm from mdx-lib and describe its

reimplementation in Python. Finally, we demonstrate new

capabilities in mdx2 by processing a large, multi-crystal data

set from cubic insulin collected at room temperature. We take

advantage of the �70-fold redundancy of this data set, which

is unprecedented for macromolecular diffuse scattering, to

examine alternative statistical measures of data quality, and

demonstrate the reproducible detection of very faint diffuse

signals at high resolution.

1.1. Overview of data processing in mdx2

mdx2 is a software package for processing diffraction data

to reconstruct an accurate, three-dimensional map of recip-

rocal space. mdx2 breaks the reconstruction process into

multiple steps that can be chained together to process data

from one or more crystals. In developing the command-line

interface for mdx2, we have focused on data collected using

the traditional rotation method where the background scat-

tering is measured at each rotation angle (Fig. 1a). This

method, particularly when applied to large crystals, can

robustly separate the scattering of the protein crystal from

that of background sources, such as from air and mounting

materials, and it has yielded high-quality maps in previous

diffuse scattering studies (Meisburger et al., 2020, 2023).

1.1.1. Diffraction geometry refinement and data import.

The guiding philosophy of mdx2 is that individual processing

steps should consist of numerical algorithms that do not

depend on experimental or crystallographic details. In prac-

tice, this means that the ‘import’ steps in mdx2 use crystallo-

graphic libraries [dxtbx (Parkhurst et al., 2014) and cctbx

(Grosse-Kunstleve et al., 2002)] in order to pre-compute all

necessary information for subsequent processing steps. For

example, the symmetry operators for the space group are

retrieved and converted to matrix form (Fig. 1b, step 6), and

raw diffraction-image data are re-compressed in a standard

format (Fig. 1b, step 7). This approach has several advantages.

Firstly, standardization of data formats makes it easier to
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optimize the performance of algorithms, particularly when

parallel processing is considered. Secondly, custom algorithms

can be added easily, by developers or users, because they do

not require specialized libraries or expertise in crystallo-

graphic computing. Finally, the pre-computed correction

factors and detector data can be inspected directly before any

processing occurs, which has significant value for education

and exploratory data analysis (Meisburger & Ando, 2023).

In a complete single-crystal workflow (Meisburger & Ando,

2023), DIALS is first used to index the diffraction patterns and

refine the detector geometry (Fig. 1b, steps 1–5). This step is

critical in order to accurately assign each pixel to a location in

three-dimensional reciprocal space (fractional Miller indices

h, k and l). A beamstop mask is also created (step 2 in Fig. 1b),

which will be carried over into diffuse processing. Although

further processing in DIALS is not a necessary condition

research papers

Acta Cryst. (2024). D80, 299–313 Meisburger and Ando � Processing diffuse scattering with mdx2 301

Figure 1
Data-processing workflows. (a) Diffraction images are collected as the crystal rotates, and background images are taken with the crystal moved out of the
beam to record scattering from materials in the beam path (e.g. air and capillaries). Measured intensities are mapped into reciprocal space and corrected
for artifacts to produce a map of diffuse scattering. (b) Sequence of DIALS (blue) and mdx2 (orange) command-line programs to process a single
rotation data set with experimental background corrections. Diffraction geometry is refined by indexing Bragg peaks (steps 1–5) and the diffuse
scattering is then integrated on a three-dimensional grid (steps 6–10). Background corrections are created (steps 11–14) and the integrated data are
corrected, scaled and merged (steps 14–18). NeXus-formatted HDF5 files (.nxs extension, green text) are used by mdx2 for data and metadata
exchange. See Section 2 and Meisburger & Ando (2023) for details of each program. (c) Modified workflow for multi-sweep data. Each sweep is
integrated independently in DIALS and then combined to resolve indexing ambiguities with dials.cosym (Gildea & Winter, 2018). Sweeps are processed
independently in mdx2 through the correct step; the scaling model is then refined globally and sweeps are merged.



for proceeding to mdx2, integration and scaling should be

performed to assess the overall Bragg data quality and to

detect potential issues, such as radiation damage. Ultimately,

the structure solved from the Bragg data will be combined

with diffuse data to build a self-consistent disorder model.

Once Bragg data processing is completed, the geometry

model from DIALS is imported into mdx2 (step 6 in Fig. 1b).

All geometric corrections are pre-computed on a grid of

points, including solid angle, air absorption, polarization and

detector efficiency. In addition, the fractional Miller indices

are computed on a grid sampling detector position and rota-

tion angle. Finally, symmetry information such as the Laue

group operators, reciprocal-space asymmetric unit and

reflection conditions are stored (Meisburger & Ando, 2023).

The pre-computed data and metadata are saved in NeXus

format (geometry.nxs in Fig. 1b).

The data-import step copies the detector image data from

the raw format to NeXus format (step 7 in Fig. 1b). Because

mdx2 and DIALS both use dxtbx (Parkhurst et al., 2014) to

represent experimental geometry and read detector data, any

image format compatible with DIALS can be read by mdx2.

During import, the masks used in DIALS are applied to the

image data (for example to remove bad pixels and the

beamstop shadow). The data are stored as a three-dimensional

array, or image stack, in NeXus format (data.nxs in Fig.

1b). Data are compressed in three-dimensional chunks so that

small segments of the array can be read from disk without

decompressing the entire file, which is useful for certain

algorithms and for parallel processing.

1.1.2. Integration. In order to integrate the diffuse pattern,

it is important to exclude pixels that are potentially contami-

nated by Bragg peaks. The strategy used in mdx2 is to apply a

mask wherever a Bragg peak is predicted to exist, regardless

of its intensity. The mask has an ellipsoidal shape in reciprocal

space (it is a function of the fractional coordinates �hkl

relative to the nearest Bragg peak). Because the extent of a

Bragg peak depends on many factors, including crystal

mosaicity, beam divergence and errors in the geometry model,

the ellipsoidal shape is fitted empirically in order to encom-

pass the most intense features (step 8 in Fig. 1b). Firstly, the

images are searched for all pixels with counts above a set

threshold. For the data set processed here, the threshold was

set to ten times the background scattering level of �2 photons

per pixel. The threshold is tunable, and it can be increased to

allow greater dynamic range in the final diffuse map (for

instance to examine the halo intensity close to intense Bragg

peaks). The detector location of each strong pixel is mapped

to fractional Miller indices relative to the nearest whole

integer. An ellipsoidal Gaussian probability distribution is

then fitted to the resulting point cloud. A binary mask is

generated for each image excluding the Bragg peak regions

(step 9 in Fig. 1b). The spatial extent of the Bragg peak region

is set by a cutoff value expressed as a multiple of the standard

deviation of the Gaussian peak. The sigma-cutoff value is

another tunable parameter that affects how much near-Bragg

scattering is allowed in the final diffuse map. We find that the

default cutoff of 3� is a good compromise between the need to

measure near-Bragg scattering (halos) while robustly masking

all Bragg diffraction. The same cutoff was applied uniformly to

all data sets. Finally, any strong pixels (those exceeding a count

threshold) that are not covered by the ellipsoidal masks are

also flagged as outliers and masked out. Such outliers could

arise, for instance, from broken detector pixels or diffraction

from small salt crystals.

The integration task accumulates photon counts in a three-

dimensional grid of voxels (Fig. 1b, step 10). The axes of the

grid are aligned with the reciprocal lattice and each voxel is

assigned fractional Miller indices. When choosing a grid, the

voxel dimensions must evenly subdivide the reciprocal unit

cell. In mdx2, any integer subdivision is allowed (its prede-

cessor mdx-lib allowed only odd integer subdivisions). During

integration, fractional Miller indices are calculated for each

pixel according to the geometric model and pixels are assigned

to the nearest voxel. For each voxel, mdx2 keeps track of the

number of photon counts accumulated, the number of pixels

contributing and the mean position of the voxel in scan

coordinates (the rotation angle and the location on the

detector). The choice of grid spacing depends on the nature of

the diffuse signal under investigation, as well as experimental

considerations that potentially smear the diffuse pattern (see

Meisburger & Ando, 2023).

1.1.3. Intensity corrections. After integration, the diffuse

intensities are corrected for geometric effects and background

scattering. Background corrections are prepared from a data

set taken with the crystal moved out of the beam (Pei et al.,

2023). These measurements include air scattering, scattering

from mounting materials (such as capillaries) and shadows

cast by the sample pin. The background images are first

imported using DIALS and the beamstop mask is applied

(Fig. 1b, steps 11–12). The image stack is then coarsened

(binned down, potentially in terms of both pixels and frames)

to reduce noise (step 14 in Fig. 1b). Finally, the integrated

photon counts from the crystal images are corrected using the

background map and pre-computed geometric corrections.

For each observation of a particular voxel, the correction

factors are interpolated at the center position of the obser-

vation. The measured intensity and its uncertainty are esti-

mated as follows:

Imeasured ¼
n=�t � rbackground

��EAP
; ð1Þ

�measured ¼
n1=2

�t��EAP
; ð2Þ

where n is the number of accumulated photons, �t is the

cumulative exposure time per voxel (the number of pixels

times the exposure time per image), rbackground is the back-

ground scattering rate (photons per second), �� is the solid

angle per pixel, E is the detector quantum efficiency, A is the

transmission factor of air in the diffracted beam path and P

is the polarization factor (Meisburger & Ando, 2023). The

Poisson error due to background subtraction is reduced

because of binning and is neglected in equation (2).
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1.1.4. Scaling, merging and visualization. Generally, a

diffraction data set contains redundant observations, either

because the same region of reciprocal space is measured

multiple times or because of symmetries in the diffraction

pattern. However, the equivalent observations may disagree

as a result of systematic errors in the measurement, such as

changes in the illuminated volume of the crystal as it is

rotated. In mdx2, the parameters of a scaling model are

refined in order to minimize the discrepancy between

equivalent observations (Fig. 1b, step 16), thereby correcting

the systematic errors. The model describes a correction

applied to each observation that depends on its scan coordi-

nates (such as rotation angle). The scaling-model refinement

procedures implemented in mdx2 are detailed in Section 2.2.

Multi-crystal workflows can also be orchestrated using mdx2

(Fig. 1c). Scaling models for each rotation series are refined

jointly.

Finally, the merging step outputs a table of fractional Miller

indices, intensities and estimated errors. In order to visualize

the data in three dimensions, mdx2 includes a mapping routine

that symmetry-expands the data and places them in a three-

dimensional array (Fig. 1b, step 18) suitable for plotting with

NeXpy.

1.2. Scaling diffuse scattering data

The accuracy of diffuse scattering measurements may be

limited by systematic errors. Artifacts commonly encountered

during macromolecular crystallography experiments include

detector inhomogeneities, scattering from air in the beam

path, scattering from the liquid or solid mounting materials

that intercept the beam, and shadows cast by the sample and

mounting materials. When an irregularly shaped crystal is

partially illuminated by a small beam, which is often the case,

the diffracting volume may also change during the scan,

leading to a change in overall intensity. Additionally, some of

the diffracted X-rays may be absorbed by the sample itself,

leading to variations in intensity across the detector.

In Bragg data processing, scaling is the determination of

scale factors for each independent observation that bring

equivalent observations into agreement. The process of

scaling involves fitting a model for the scale factors. Typically,

the model parameters are physically motivated and are

parameterized to avoid overfitting. Common effects included

in scaling models include rotation-dependent changes in the

illuminated volume, the absorption of diffracted X-rays and

B-factor decay due to radiation damage (Evans, 2006).

Scaling diffuse scattering data has unique challenges. The

diffuse signal of interest is typically a small variation (<10%)

on top of a largely homogeneous background (Wall et al.,

2014). Because of this, errors in scaling can very easily corrupt

the small variations. In Bragg data, the local background is

subtracted from each Bragg peak prior to integration and thus

changes in background scattering do not need to be corrected.

In contrast, for diffuse scattering the excess background

scattering must be considered. Finally, since Bragg data and

diffuse scattering come from the same crystal volume, the

same scaling model should apply to both signals. In practice, it

has not been possible to transfer the Bragg scaling model to

diffuse scattering data, possibly because radiation damage-

induced decay of Bragg intensitites is significant at ambient

temperature. In the workflow presented here, Bragg and

diffuse data are scaled independently.

In general, redundant observations are required in order

to fit a scaling model. High redundancy (much greater than

twofold) has significant advantages for diffuse scattering.

Outliers can more easily be identified and eliminated, scaling-

model refinement is more robust and systematic errors that

are not included in the scaling model are more likely to be

averaged out.

1.2.1. Theoretical background. The scaling process mini-

mizes the discrepancy between the intensity predicted by

the scaling model and each corresponding observation. The

discrepancy can be written as a �2 statistic, which is minimized,

�2 ¼
P

i

ImeasuredðiÞ � IpredictedðiÞ

�measuredðiÞ

� �2

; ð3Þ

where the summation is over all observed voxels indexed by i,

I is the intensity and � is the standard error of the measure-

ment. The predicted intensity (Ipredicted) is initially unknown.

For linear scaling models, the predicted intensity can be

written schematically as a linear transformation of the ‘true’

intensity I0 as follows,

IpredictedðiÞ ¼ oi þmiI0ðiÞ; ð4Þ

where oi is the offset and mi is the scale factor.

Combining equations (3) and (4), and rearranging terms,

�2 ¼
P

i

IscaledðiÞ � I0ðiÞ

�scaledðiÞ

� �2

; ð5Þ

where IscaledðiÞ ¼ m� 1
i ½ImeasuredðiÞ � oi� and �scaledðiÞ ¼ m� 1

i �i

are the inverse-scaled observations and uncertainties.

The equation for optimally merging scaled intensities can be

derived from equation (5) as the value of I0 that minimizes �2,

with the following result,

ImergedðhÞ ¼

P

j

wjIscaledðjÞ

P

j

wj

; ð6Þ

where wj = [�scaled(j)]� 2 are the weights and the sums run over

all equivalent reflections j with Miller index h in the asym-

metric unit of reciprocal space. The uncertainty is as follows:

�ImergedðhÞ ¼
P

j

wj

 !� 1=2

: ð7Þ

Both the model parameters and the merged intensity are

unknown and must be estimated simultaneously. This leads to

a nonlinear optimization problem. An iterative method may

be applied when the scale factors are linear functions of model

parameters (Hamilton et al., 1965). Repeated cycles of

merging and model fitting converge toward the solution that

minimizes �2.
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1.2.2. Scaling-model refinement. The formalism for least-

squares optimization can be expressed conveniently in matrix

form (Press, 2007). Conventionally, �2 is written as the l2-norm

of a vector of residuals as follows,

�2 ¼ kAx � bk2
2; ð8Þ

where x is a vector of unknowns, b is a known vector and A is a

matrix. The unknowns are the solution to the linear equation

ATAx ¼ ATb; ð9Þ

which can be solved directly by matrix inversion if the problem

is not underdetermined. When the model itself is under-

determined by the data, or when there is a danger of over-

fitting, it is often useful to apply restraints to the model, such

as smoothness. In the method of regularized least squares, an

additional term is added:

ðATAþ �BTBÞx ¼ ATb: ð10Þ

The matrix B is an operator that acts on the parameter vector

x to calculate the quantity to minimize in an L2-norm sense.

For instance, B may calculate a discrete representation of the

second derivative in order to obtain solutions that are smooth

(Press, 2007). The pre-factor � is known as the regularization

parameter, and it sets the trade-off between satisfying the

restraints and goodness of fit.

As a concrete example, consider the general scaling model

(equation 4) where the scale factor mi depends only on the ’

angle of the crystal. Let the model be parameterized by a set

of scale factors (the parameters) at regular intervals, where the

scales for each observation are calculated by linear inter-

polation between the control points. The linear interpolation

can be expressed as a linear operator acting on a vector of

parameters as follows:

m ¼ Mx: ð11Þ

By algebraic manipulation of equation (3), it can be shown

that the least-squares solution for x is obtained from equation

(3) with the following substitutions:

A ¼ diagðI0=�ÞM; ð12Þ

b ¼ ð1=�Þ � ðImeasured � oÞ: ð13Þ

In the above notation, the diag function creates a diagonal

matrix from its vector argument, and the open-circle and

forward-slash (/) operators denote element-wise multi-

plication and division of vectors, respectively.

Based on this formalism, we have applied the following

general procedure to derive more complex scaling models.

(i) Write the complete scaling model in terms of its

prediction for each observation given the ‘true’ intensity.

(ii) Choose a convenient parameterization (typically linear

intepolation on a grid of dimension 1–3).

(iii) For each scale factor and offset, derive a linear operator

that calculates the value for each observation given the rele-

vant coordinates of the observation and a vector of para-

meters.

(iv) Rearrange equation (3) to find the A matrix and b

vector to be used in least-squares minimization.

(v) Derive operators to use in regularization (typically

enforcing a notion of smoothness).

2. Methods

2.1. Scaling model

We recently introduced a scaling model that accounts for

common experimental artifacts in diffuse scattering data

(Meisburger et al., 2020). The model contains four physically

motivated parameters, labeled a–d, that describe a linear

transformation of the true intensity I0 at each observation

point i (equation 4), as follows:

IpredictedðiÞ ¼ aidi½biI0ðiÞ þ ci�: ð14Þ

The three scale factors (a, b and d) and the offset term (c) are

themselves functions of the coordinates for each observation:

the rotation angle (’), position on detector (x, y) and scattering-

vector magnitude (s). The coordinate dependence of each

parameter and its physical meaning are summarized in

Table 1.

Numerically, the parameters are represented by discrete

samples on a grid of dimension 1–3, and the value at the

coordinates of each observation is computed by linear inter-

polation (Table 1). Interpolation is computed using a matrix

operator (Meisburger et al., 2021) acting on a vector of control

points, as in equation (11). In one-dimensional interpolation,

the vector is simply an ordered list of the discrete samples. In

higher dimensions, the grid of control points is vectorized, and

the interpolation operators are constructed in a corresponding

manner.

The general procedure to refine a given parameter is to

alternate between two linear least-squares minimizations: first,

to find the ‘true’ intensity I0 that minimizes �2 with the scaling

model held constant (equation 6), and second, to find the

scaling parameter values that minimize �2 plus the regularizing
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Table 1
Scaling-model parameters.

a b c d

Correction Absorption Illuminated volume Background scattering Detector sensitivity

Type Scale factor Scale factor Offset Scale factor
Coordinates x, y, ’ ’ s, ’ x, y
Parameterization 3D linear interpolation 1D linear interpolation 2D linear interpolation 2D linear interpolation
Regularizers Laplacian (x, y), second derivative (’) Second derivative (’) Second derivative (’), second derivative (s), |c|2 Laplacian (x, y)
Restraints None None c > 0 None
mdx2 object AbsorptionModel ScalingModel OffsetModel DetectorModel



terms (equation 10) given the previous value for the merged

intensity. The procedure is repeated for all four parameters in

the scaling model. To simplify the implementation, each least-

squares minimization step is expressed in a common notation,

where the A matrix and b vector appearing in equation (10)

are derived for each parameter, and M represents the linear

interpolation operator (Table 2).

Each parameter has one or more associated regularizing

operators to enforce a notion of smoothness (Table 1). We

have chosen operators with straightforward B-matrix imple-

mentations (Press, 2007): a discrete second-derivative

operator regularizes the ’- and s-dependence and a two-

dimensional discrete Laplacian operator regularizes the

(x, y)-dependent parameters. Each operator is weighted

independently by a regularization parameter during least-

squares minimization (� in equation 10). Reasonable values

for the regularization parameters are estimated by the fitting

program (see Section 2.2), but in general they can be tuned by

the user to control the smoothness of the solution based on an

understanding of the experiment.

The offset parameter (c) has additional restraints and

regularizers in order to make the correction as small as the

data allow. This is important because an arbitrary offset may

be added and subtracted from the merged intensity and the

scaling model, respectively, leading to the same �2 in equation

(8). Physically, it is assumed that at least some of the data do

not require offset corrections; i.e. the beam intersects only the

crystal during at least some part of the scan, and the experi-

mental background has been correctly subtracted. The offset

correction is therefore always positive, and an additional

regularization operator (an identity matrix) penalizes large

values of the parameter. The positivity restraint is nonlinear

and cannot be enforced using the regularized least-squares

formalism of equation (10). Instead, the restraint is applied

during iterative refinement of the offset parameter, an

approach that is widely used for such restraints in the context

of multivariate curve resolution (Cichocki & Zdunek, 2007;

de Juan et al., 2014). After fitting the parameter values, any

negative values are set to zero. If all of the points are positive,

a constant is subtracted to make at least one of the values

equal to zero. The fit is then repeated until convergence is

reached (described further in Section 2.2).

2.2. Implementation of scaling-model refinement in mdx2

The operations for scaling and merging described above

were implemented in Python following the same modular

approach that is used for other functions in mdx2. First, a

library within mdx2 called scaling was created that is essen-

tially a toolkit from which algorithms may be built. The

algorithm itself is implemented in the command-line function

mdx2.scale, which imports the scaling library, handles

file inputs and outputs, sets regularization parameters and

controls flow through the algorithm (such as the order of

refinement operations and halting conditions). To maintain

compabitility with existing tutorials (Meisburger & Ando,

2023), the default behavior of mdx2.scale is to run a

primitive scaling model where only the b term is refined. The

full scaling model is activated using the flag --mca2020,

which tells the program to mimic the behavior and default

parameters from mdx-lib (Meisburger et al., 2020). The full

scaling model with default parameters is designed to work well

for data sets collected in the manner described here (i.e.

rotation data with background subtraction and high redun-

dancy). However, to maintain flexibility the algorithm can be

customized at the command line using non-default parameters

and individual terms in the scaling model can be disabled

entirely if required. As in all mdx2 command-line programs,

the options and their default values are printed using the

--help flag (Section S2).

The scaling library contains a hierarchy of objects (Python

classes) that build on one another to execute scaling opera-

tions for each type of parameter with minimal duplication of

code. At the lowest level of the hierarchy are the linear

interpolation objects (InterpLin1, InterpLin2 and

InterpLin3) that compute sparse-matrix representations

of the linear interpolation operators in 1–3 dimensions, as well

as the Laplacian and second-derivative operators used in

regularization. Corresponding objects were previously imple-

mented in the MATLAB library mdx-lib and were translated

directly into Python following the example in our REGALS

package for small-angle scattering data analysis (Meisburger

et al., 2021), which has both MATLAB and Python imple-

mentations of InterpLin1.

Each type of scaling parameter is stored using a corre-

sponding Python object with a consistent interface (Table 1).

The objects store parameter values on a grid of scan coordi-

nates, and these values can be converted to/from NeXus data

arrays for input and output.

The ScaledData object stores the unscaled observations,

their reciprocal-space indices, the scan coordinates and the

current value of the overall scale and offset for each obser-

vation. It includes functions to facilitate the selection of batches

(i.e. single sweeps of data) via the Python iterator syntax and

for merging equivalent observations using equation (6).

Each scaling-model object (Table 1) has a corresponding

ModelRefiner object with a common interface. The func-

tion calc_problem returns the matrix–matrix and matrix–

vector products used in least-squares minimization (equation

10 and Table 2), and the fit method performs the least-

squares minimization step given the current merged intensity

and scaling parameters. Regularized least squares is used with

regularization parameters passed as arguments to the fit

method. Each regularization parameter is re-normalized

following the approach used in REGALS (Meisburger et al.,

2021),
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Table 2
Least-squares problem for each scaling parameter.

A b

a diag[d * (b * I0 + c)/�]M I/�

b diag(d * a * I0/�)M (I � a * c * d)/�
c diag(d * a/�)M (I � a * c * d * I0)/�
d diag[a * (b * I0 + c)/�]M I/�

http://doi.org/10.1107/S2059798324002705


� ¼ � traceðATAÞ=traceðBTBÞ;

where � is the regularization parameter specified by the user

and � is the pre-factor of the regularization term BTB (see

equation 10). This re-normalization means that a certain value

of � will produce similar results despite different grid spacings,

data-set sizes and noise levels in the data. In general, � � 1

will favor minimization of �2, while � � 1 will favor mini-

mization of the regularizer. For default values of �, see the

supporting information.

2.3. Parallel processing in mdx2

Computationally intensive processing steps in mdx2 can be

efficiently distributed over multiple processors if available.

The image stack is divided among the workers in three-

dimensional segments that are aligned with the HDF5 chunks

specified in mdx2.import_data. In mdx2 version 1.0,

multiprocessing is available in mdx2.import_data,

mdx2.find_peaks, mdx2.mask_peaks and mdx2.

integrate. This feature is activated by specifying the

number of processors with the --nproc flag. Note that in

mdx2.import_data, the performance is currently limited

by the single-threaded HDF5 output file writer. In other cases,

performance scales with the number of processors.

2.4. Experimental methods

Insulin crystals in the zinc-free cubic form were prepared

following published protocols (Faust et al., 2008). Insulin from

bovine pancreas was purchased as a lyophilized powder

(Sigma, catalogue No. I5500) and used without further puri-

fication. Drop volume, pH and precipitant concentration were

optimized to favor the growth of large single crystals (Table 3).

X-ray diffraction data were collected at ambient tempera-

ture on beamline F1 at the Cornell High Energy Synchrotron

Source (CHESS) following diffuse scattering protocols intro-

duced previously (Meisburger et al., 2020; Pei et al., 2023). The

beamline and data-collection parameters are summarized in

Table 4. At the synchrotron, two large insulin crystals were

harvested from the same drop of a crystallization tray using

Kapton loops. The loops were immediately placed in plastic

capillaries pre-loaded with reservoir solution to maintain

hydration. A total of 17 data sets were collected from distinct

locations on the two crystals using fine ’-slicing and low dose

per frame. A total exposure time of 50 s for each location was

chosen to limit radiation damage to tolerable levels, as judged

by the B-factor decay obtained during scaling. For each

crystal, a set of background scattering measurements were

made by translating the crystal out of the beam along the

rotation axis and collecting 360� of data at 1� s� 1 while

acquiring images at 1 Hz (1 s and 1� per frame).

3. Results and discussion

3.1. A high-redundancy room-temperature data set for

diffuse scattering

To validate and test the new capabilities of mdx2, we chose

to process a room-temperature multi-crystal data set from

cubic insulin. Diffraction data were collected from two

nominally identical crystals (Table 4) using a multi-sweep

strategy to distribute the dose (Fig. 2). To determine whether

all frames collected are of consistent quality, we processed the

Bragg data using a DIALS multi-crystal workflow (Fig. 1c).

According to the B-factor decay model fit during scaling, the

onset of radiation damage was immediate and it progressed in

a similar manner at each location (Fig. 2, bottom axes). The

change in overall B factor during exposure ranged from 2 to

4 Å2 per 50� of rotation, which is comparable to previously

reported diffuse scattering data sets from lysozyme (Meis-

burger et al., 2020, 2023). The data were processed to a reso-

lution of 1.20 Å (Table 5). With each crystal processed

separately, statistics such as Rp.i.m., mean I/�(I) and CC1/2

indicate that the data are of excellent quality (Crystal 1 and

Crystal 2, Table 5). These statistics improve further when the

two crystal data sets are processed together (Crystals 1 and 2,

Table 5), indicating that the crystals are highly isomorphous

and of comparable quality. The final merged data set has a

multiplicity of 68.5, which far exceeds that of any macro-

molecular diffuse scattering data set reported to date.

3.2. Data reduction in mdx2

After initial processing in DIALS, each rotation data set

(sweep) was imported into mdx2 (Fig. 1c). In the data-import

step (mdx2.import_data), the diffraction images were

re-compressed with three-dimensional chunks chosen to

encompass each detector panel and 2� of rotation, or 20

images (see supporting information). Because the subsequent
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Table 3
Crystallization.

Method Sitting-drop vapor diffusion
Plate type Cryschem 24-well (Hampton Research)
Temperature (K) 295
Protein concentration (mg ml� 1) 20
Buffer composition of protein

solution

20 mM sodium phosphate dibasic

Composition of reservoir solution 300 mM sodium phosphate pH 10.0,
10 mM sodium EDTA

Volume and ratio of drop 16 ml, 1:1
Volume of reservoir (ml) 500

Table 4
Data collection.

X-ray source CHESS beamline F1
Wavelength (Å) 0.9768
Energy bandwidth (�E/E) (%) �0.05
Beam size, profile 100 mm diameter round, flat-top
Detector PILATUS 3 6M, 1.0 mm silicon sensor

Rotation rate (� s� 1) 1.0
Rotation per image (�) 0.1
Temperature (K) 295
Crystal mount 800 mm diameter loop (MiTeGen DT)

inside PET capillary (MiTeGen
Micro-RT) with 10 ml reservoir solution

No. of crystals 2
No. of diffraction images 8500

http://doi.org/10.1107/S2059798324002705
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processing steps distribute data among workers (CPU cores)

according to chunk shape, the choice can affect performance.

We have not systematically evaluated different chunk sizes;

however, the initial choice worked well in tests. The back-

ground images were also imported and re-binned every 10�

and 20 pixels in each direction, reducing each stack of 360

images with 2463 � 2527 pixels to an array of 36 � 124 � 127

(mdx2.bin_image_series).

The next task in data processing was to accumulate the

diffuse scattering on a three-dimensional grid. In order to

mask out Bragg peaks, the coordinates of all pixels recording

more than 20 photons (see Section 1.1.2) were fitted to a

three-dimensional Gaussian distribution in reciprocal space

(mdx2.find_peaks). A peak mask was created at each

Bragg peak location by thresholding the Gaussian distribution

at three standard deviations (mdx2.mask_peaks). For

integration, a grid was chosen that oversampled the reciprocal

lattice by a factor of three in each direction (for example, each

voxel region spans Miller indices � 1/6 to 1/6, 1/6 to 1/2, 1/2 to

5/6 etc.). Because space group I213 has the reflection condition

h + k + l = 2n, only half of the voxels with all-integer Miller

indices contain Bragg peaks, and thus for every Bragg peak

there are 33 � 2 � 1 = 17 voxels of diffuse scattering. Finally,

the integrated intensities were corrected for the experimen-

tally measured background scattering as well as for polariza-

tion, air absorption, detector efficiency and solid angle

(mdx2.correct).

3.3. Scaling and analysis of systematic errors

In order to correct for systematic errors, a multi-crystal

scaling model was refined (mdx2.scale with the flag

--mca2020). As described in Section 2.1, this model

accounts for changes in illuminated volume, excess back-

ground scattering, absorption of diffracted X-rays and

detector flat-field errors (equation 14 and Table 1). Default

values were used for the grid dimensions, regularization

parameters, outlier rejection thresholds and stopping condi-

tions (see Section 2.2 and the supporting information).

In general, the refined scaling-model parameters offer

insight into the types of systematic errors that are present

during data collection. This is particularly true of the highly

redundant insulin data set, because the model parameters are

expected to be robustly determined. We examined each

correction visually; representative sets are presented in Fig. 3.

The overall scale factor for each frame varies in a similar

manner to the corresponding Bragg scale factor refined in

DIALS (Supplementary Fig. S1), which is significant because

Bragg intensities are not included in the diffuse data set

refined in mdx2. Offset corrections varied greatly among the

different wedges of data (Fig. 3a, Offset column). This varia-

tion is consistent with expectations; the large crystals were

mounted with very little excess liquid on the surface (crystals

in Fig. 2) and thus for most of the rotation range the beam

should pass only through the crystal without encountering the

loop or excess solvent. The absorption corrections were rela-

tively large for this data set (Fig. 3a, Absorption column), with

a variation across the detector of as much as �10%, which is

expected given the exceptionally large crystals used.

The detector flat-field correction was fitted globally to all

data sets. In contrast to the detector gain correction imple-

mented previously in mdx-lib, where a single scale factor was

applied for each detector chip (96 parameters), the flat-field

correction in mdx2 interpolates a grid covering the detector

surface (200 � 200 = 40 000 parameters); the mdx2 correction
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Table 5
Bragg data-collection statistics.

Values in parentheses are for the highest resolution shell. Unit-cell uncertainty
refers to the standard deviation among data sets (sweeps).

Crystals 1 and 2 Crystal 1 Crystal 2

Crystal parameters
Space group I213 I213 I213
a = b = c (Å) 79.48�0.09 79.55�0.11 79.517�0.005

Data-set statistics
Resolution (Å) 28.11–1.20

(1.22–1.20)
28.11–1.20

(1.22–1.20)
28.11–1.20

(1.22–1.20)
CC1/2 1.000 (0.276) 1.000 (0.115) 1.000 (0.226)
Rmerge 0.054 (2.236) 0.058 (2.539) 0.046 (1.758)
Rp.i.m. 0.006 (0.769) 0.009 (1.113) 0.007 (0.868)

Mean I/�(I) 44.8 (0.6) 28.9 (0.3) 37.2 (0.6)
Completeness (%) 99.81 (96.32) 98.38 (77.68) 99.08 (83.97)
Multiplicity 68.5 (8.7) 36.6 (5.7) 32.5 (4.8)
Observations 1795925 (10983) 944563 (5742) 846333 (5241)
Unique reflections 26218 (1256) 25842 (1013) 26026 (1095)

Figure 2
Bragg intensity scaling results from a multi-crystal insulin data set.
Rotation data sets of 50� (500 frames each) were collected from 17
locations on two large insulin crystals (pictured). Each 50� wedge (sweep)
spans the width of the white/gray vertical bars. Correction factors from
global scaling in DIALS are shown for each wedge. The illuminated
volume changes during rotation, as reflected in the overall scale factor
(top axes, blue curves). B factors show a characteristic linear decay with
exposure time due to radiation damage (bottom axes, orange curves). The
overall extent of radiation damage is consistent among the data sets.

http://doi.org/10.1107/S2059798324002705
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Figure 3
Diffuse scattering scaling model after refinement. The model was refined globally in mdx2 to all 17 wedges in the multi-crystal insulin data set. (a)
Columns show each model parameter as a function of observation coordinates (rotation angle ’, detector position and scattering-vector magnitude s).
Each row corresponds to a 50� wedge (sweep) of data (only three are shown for clarity). Panels, from left to right, show the scale correction (b
parameter), the offset correction (c parameter) and the absorption correction (a parameter) at the beginning, middle and end of the rotation range. (b)
The detector correction (d parameter) refined globally to all 17 wedges.



thus contains more potential detail about detector response

than was available previously. Many of the detector errors

were known in advance; for instance, one of the chips along

the top row of the detector had malfunctioned and was

reading lower values than the others. This chip is clearly

visible in the corrections (blue rectangle in Fig. 3b, Detector).

Another striking feature is the vertical stripe of approximately

one panel width through the middle of the image. This feature

results from absorption by the strip of Kapton film that

suspends the beamstop. Finally, we note that data recorded

at the edges of the detector panels have consistently lower

intensity, and are boosted as much as �20% by the scaling

correction (red outlines around each panel in Fig. 3b). After

scaling, the redundant observations were merged according to

the Laue symmetry (mdx2.merge).

3.4. Statistical analysis of intensities and data-quality

indicators

In all previously collected data sets from lysozyme (Meis-

burger et al., 2020, 2023), the voxels near the Bragg peaks

contain more intense diffuse scattering (halos) compared with

voxels further away. This phenomenon is expected to be a

general feature of protein crystal diffuse scattering as it relates

to the long-range coupling of subtle lattice motions (Peck et

al., 2018; Polikanov & Moore, 2015; Wall et al., 1997; De Klijn

et al., 2019). Halo features can be broad and anisotropic

depending on the correlation length of lattice motions. In

lysozyme, halos were found to decay gradually according to

the inverse square of the distance from the Bragg peak

(Meisburger et al., 2020, 2023). Thus, it is not possible in

general to separate the signals from internal molecular motion

versus lattice disorder by filtering the data. Instead, a model

that includes lattice disorder can be fitted to the total scat-

tering, for instance using the GOODVIBES and DISCO-

BALL methods (Meisburger et al., 2023). However, for the

purpose of analyzing data quality, it is good practice to

compute statistics separately for the smoothly varying and

halo-containing parts of the signal, as the intense halos tend to

dominate variances and correlation coefficients.

To roughly quantify the halo scattering present in the

insulin data set, we split the merged data into two parts: the

‘halo’ part consisting of only those voxels with integer Miller

indices satisfying the reflection condition (h + k + l = 2n), and
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Figure 4
Diffuse intensity statistics and data-quality indicators. (a) Merged intensities were split between halo and non-halo voxels (see main text) and binned in
shells of constant scattering vector s, where 1/s is the resolution. The mean intensity (top panel) rises to a peak at �3 Å resolution (�0.3 Å� 1). The
intensities are normalized to 1 at the non-halo maximum. The halo-containing voxels have higher intensity on average than non-halo voxels. The
intensity variations of interest are quantified by the standard deviation within each resolution shell (bottom panel). The halo-containing voxels have an
approximately fivefold greater signal than non-halo voxels. Within each resolution shell, the non-halo variations are less than 10% of the mean
scattering, indicating that this signal is much more subtle. (b) The correlation coefficient for random half-data sets (CC1/2) between crystals 1 and 2 scaled
independently (CCRep) and between half-data sets split according to Friedel symmetry (CCFriedel) are compared for halo-containing voxels (top panel)
and non-halo voxels (bottom panel). Correlation coefficients are close to 1 for much of the resolution range (insets) and decay at high resolution as the
signal-to-noise ratio decreases. The correlations are higher overall for halo-containing voxels, as expected from the higher signal strength. There is no
significant difference between random selection of observations (CC1/2) and grouping observations based on symmetry considerations (CCFriedel), which
is expected for successful scaling. The CCRep statistic closely follows CC1/2, showing that both the measurement and data-processing procedures are
reproducible.



the rest, which we call ‘non-halo’. Note that we do not expect

the ‘non-halo’ fraction for insulin to be completely free of

scattering related to lattice disorder, as halos tend to decay

gradually in protein crystals, as noted above. The ‘halo’ voxels

in this case correspond to a cubic region of reciprocal space

with each side having Miller indices � 1/6 to 1/6 with the

central Bragg peak removed. The ‘halo’ voxels include frac-

tional scattering vectors from the (mean) radius of the peak

mask at 0.102 to the corner of the voxel at 31/2/6 = 0.289,

corresponding to wave-like lattice displacements with wave-

lengths between 275 and 780 Å.

To better understand the components of the diffuse scat-

tering signal, we computed the mean and standard deviation

of the merged intensity within shells of constant resolution

(Fig. 4a). The mean intensity rises to a peak at �3 Å resolu-

tion (Fig. 4a, top panel), a common feature of diffuse scat-

tering from protein crystals originating from multiple sources:

disordered solvent present in the pores of the crystal, uncor-

related atomic motion and some short-range correlated

motion (Meinhold & Smith, 2005; Wall et al., 2014). The mean

intensity for the halo fraction is greater than that of the non-

halo fraction (Fig. 4a, top panel), which is consistent with the

presence of diffuse scattering from lattice disorder. The

intensity variations, which contain the signal of greatest

interest for studies of protein dynamics, can be quantified by

the standard deviation of the intensity in each resolution shell.

The variations are significantly larger for the halo fraction

(Fig. 4a, bottom panel) compared with the non-halo part. The

non-halo variations are small – less than 10% of the mean

diffuse scattering in each resolution shell – underscoring the

importance of careful measurement and scaling to determine

this signal accurately.

The precision of diffraction data may be quantified by

statistics reporting the agreement between equivalent obser-

vations. For diffuse scattering, we have previously quantified

precision within each resolution shell using CC1/2, the Pearson

correlation coefficient of intensity merged from random half-

data sets (Meisburger et al., 2020, 2023). To facilitate this
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Figure 5
Visualization of weak diffuse scattering features. (a) A slice through the symmetry-expanded, three-dimensional map from cubic insulin in a non-halo
plane (l = 2/3). The intensity is normalized as in Fig. 4. (b) The same slice with the mean subtracted from each resolution shell to reveal subtle intensity
variations. Features are visible at high resolution. (c) Comparison of the boxed region in (b) for two maps obtained by independently scaling and merging
data from the two crystals. The pattern is reproduced in both maps and the difference between the two appears to be random (right panel). The code
used to generate this figure is provided in the supporting information.

http://doi.org/10.1107/S2059798324002705


calculation, a data-splitting feature has been implemented in

mdx2.merge, where various criteria may be used. To

compute CC1/2, we split the data using a random-shuffling

algorithm that distributes equal numbers of equivalent

observations between the two half-data sets (--split

randomHalf option). The merged half-data sets are present

as separate columns in the data table output by

mdx2.merge. Because the scattering in halo voxels

exceeds that in non-halo voxels, they will tend to dominate

statistics such as CC1/2. Thus, the halo and non-halo parts

were analyzed separately. Correlation coefficients were close

to 1 for both halo and non-halo parts (Fig. 4b, blue lines in top

and bottom panels, respectively). In general, halo voxels have

a slightly higher correlation than non-halo voxels at all reso-

lutions, consistent with their greater signal-to-noise ratio. The

signals are measured with very high precision in regions of

high signal to noise: within all resolution shells up to 2 Å, CC1/

2 exceeds 0.95 for non-halo voxels and 0.99 for halo voxels. In

both cases, CC1/2 decays at high resolution as the signal

diminishes. However, it remains significantly greater than zero

up to 1.25 Å resolution (s < 0.8 Å� 1), even for the more subtle

non-halo signal (Fig. 4b, bottom panel), suggesting that

meaningful diffuse signal is present throughout reciprocal

space.

A potential limitation of using the correlation between half-

data sets to quantify precision is that such statistics may be

inflated by certain systematic errors. A recent study compared

various statistical measures of precision to address this

possibility (Su et al., 2021). Here, we follow a similar strategy.

One alternative to the random split used in CC1/2 is to split

according to Friedel symmetry (i.e. whether or not the

symmetry operator mapping the observation to the asym-

metric unit contains a center of inversion). Because equivalent

observations differing by a center of inversion tend to be

measured far apart in terms of their scan coordinates (for

example detector position or sample rotation angle), the

correlation coefficients from such a split will emphasize

systematic differences in the data. To test this idea, we

implemented such a split in mdx2.merge, which is activated

by the --split Friedel option.

For the insulin data set, we find that CCFriedel and CC1/2 are

indistinguishable across all resolution shells, both for the halo-

containing voxels (Fig. 4b, top panel) and for the more subtle

patterns in the non-halo voxels (Fig. 4b, bottom panel). The

equivalence of CCFriedel and CC1/2 would be expected if the

scaling model corrects for all of the significant differences

between equivalent observations, and thus it can be used to

verify that a particular scaling model is sufficiently realistic.

A second, alternative splitting scheme is possible if multiple

crystals are measured. In general, crystals have different

shapes and are mounted in different orientations, and thus

when comparing these independent data sets there is less

chance of spurious correlations arising from the chance

alignment of a crystal symmetry with a particular geometric

effect, such as directional differences in absorption (Su et al.,

2021). The correlation coefficient between independent data

sets measures reproducibility, both of the measurement itself

as well as the scaling procedure, and is called CCRep (Su et al.,

2021).

We repeated the scaling and merging steps for each insulin

crystal separately and computed CCRep, the correlation

between independent measurements. We find that CCRep is

very close to CC1/2 in all resolution shells. When examined

closely (Fig. 4b, insets), we find that CCRep is always slightly

below CC1/2, suggesting that CC1/2 overestimates reproduci-

bility by a small margin. The reproducibility is still excellent;

we attribute this result to the high redundancy of the insulin

data and the highly symmetric Laue group, which ensures that

the scaling model is tightly constrained by the data. Next, we

investigated how data quality depends on the number of data

sets that are merged. As expected when the data sets are

equivalent, CC1/2 improves at all resolutions as more data sets

are added (Supplementary Fig. S2). The high multiplicity of

the data was necessary in order to obtain good signal to noise

for the non-halo data beyond �2 Å resolution (s > 0.5 Å� 1).

In summary, this comparison of intensity statistics suggests

that meaningful diffuse signal is present at all resolutions and

that systematic errors have been sufficiently corrected.

3.5. Visualizing weak features

To visualize the diffuse patterns, we symmetry-expanded

and exported the merged data as a three-dimensional array

(mdx2.map). A slice through this map containing only non-

halo voxels (l = 2/3) is shown in Fig. 5(a). The pattern is

dominated by the mostly isotropic scattering. To better

visualize the variational features, we subtracted the isotropic

scattering. Here, we defined the isotropic part as the mean

non-halo scattering from each resolution shell interpolated at

the reciprocal-space coordinates of each voxel (a complete

script is provided in the supporting information). In this

subtracted map, the variations are visible throughout (Fig. 5b).

Our analysis of the data-quality metrics, discussed above,

suggests that the diffuse pattern at high resolution contains

significant signal despite the measurement noise, and that it is

uncorrupted by systematic errors. To verify that the patterns

are indeed accurately determined, we compared maps that

were scaled and merged separately from the two insulin

crystals. As an illustrative example, we chose a small region

containing a recognizable pattern (the boxed region in

Fig. 5b). Agreement between the reciprocal-space maps of the

two crystals is excellent, both in terms of the precise pattern

and its overall magnitude (Fig. 5, left and middle panels).

Moreover, when one crystal map is subtracted from the other,

the residual appears to be random (Fig. 5c, right panel). In

general, such visual tests can be important to build confidence

in the accuracy of a data set, which is especially important

when very subtle diffuse features such as these are used to

support models of correlated motion.

4. Conclusions

We have described mdx2, a user-friendly software package for

processing macromolecular diffuse scattering that incorpo-
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rates state-of-the-art algorithms for data processing. A

detailed scaling model, newly available in mdx2 version 1.0,

fully corrects for systematic errors in multi-crystal experi-

ments. The complete processing of a multi-crystal data set was

demonstrated using the mdx2 and DIALS command-line

interfaces. This application is a clear example of how the close

connection between mdx2 and DIALS can be utilized to build

complete workflows through simple scripting. At the same

time, mdx2 enables interactive data exploration through its

commitment to the NeXus format for data interchange. mdx2

can also be imported as a Python toolkit for implementing

custom algorithms. While most of the data-processing func-

tionality of mdx-lib is now available in mdx2, a few methods

have not yet been reimplemented. In particular, Compton

scattering corrections and absolute intensity scaling (Meis-

burger et al., 2020) are planned for future versions.

The high-quality diffuse scattering maps generated for

insulin highlight the potential benefits of high-redundancy

data collection for diffuse scattering. When paired with the

detailed scaling model in mdx2, redundancy can be leveraged

to reduce the impact of systematic errors. Here, we achieve

�70-fold redundancy by collecting data from two large crys-

tals in a high-symmetry space group. If the crystals are low

symmetry, or cannot be obtained with sufficient size, it may be

necessary to collect data serially (i.e. from a large number of

small crystals). Our results suggest that the high redundancy

inherent to serial crystallography may be a useful feature for

diffuse data processing, so long as background scattering can

be minimized. We expect future versions of mdx2 to include

methods optimized for serial data.

The macromolecular diffuse scattering field is currently

small, in part because substantial technical expertise has been

required to process the data. However, based on the rapid

progress enabled by modern detectors and computational

methods, we can envision a future where diffuse scattering is

part of the standard macromolecular crystallography toolkit.

Ultimately, diffuse scattering promises to enhance our

understanding of protein dynamics and answer fundamental

questions in biochemistry and biophysics. To achieve this goal,

it is important to make diffuse scattering techniques accessible

to researchers addressing important biological questions.

mdx2 represents a step in this direction.

6. Data and software availability

The mdx2 software package is available on GitHub (https://

github.com/ando-lab/mdx2) and is free to use (GNU General

Public License version 3). Version 1.0 as described here has

been archived with Zenodo (https://doi.org/10.5281/zenodo.

10519719). The diffraction images are available for download

from Zenodo (https://doi.org/10.5281/zenodo.10515006). Bash

scripts for reprocessing the data are included in the supporting

information. The figures can be reproduced by executing the

Jupyter notebooks in the insulin-multi-crystal

example included with the mdx2 source code.
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