Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ashley T. Hulme* and Derek A. Tocher

Christopher Ingold Laboratory, Department of Chemistry, 20 Gordon Street, London WC1H 0 AJ , England

Correspondence e-mail: a.hulme@ucl.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
Disorder in main residue
R factor $=0.036$
$w R$ factor $=0.090$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

5-Fluorouracil-dimethyl sulfoxide (1/1)

The title compound, $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{FN}_{2} \mathrm{O}_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$, crystallizes in the monoclinic space group $P 2_{1} / c$, with one molecule of 5-fluorouracil and one molecule of dimethyl sulfoxide (DMSO) in the asymmetric unit. The crystal structure contains hydrogen-bonded ribbons of alternating 5-fluorouracil and DMSO molecules which stack, forming non-interacting layers parallel to the (100) planes.

Comment

In the course of a polymorph screen performed on 5-fluorouracil three solvates were discovered; the crystal structure of one of these solvates is reported here. The title compound, (I), crystallizes in the space group $P 2_{1} / c$ with one molecule of 5-fluorouracil and one molecule of dimethyl sulfoxide (DMSO) in the asymmetric unit.

(I)

The S atom in the DMSO molecule is disordered over two sites, with a $95: 5$ occupancy ratio. The minor site (S20') exhibits the opposite pyrimidisation of the DMSO molecule, compared to the major site (S20). Fig. 1 shows the asymmetric unit, with only the major sulfur position shown.

Figure 1
View (Watkin et al., 1996) of the asymmetric unit of the title compound, with 50% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.

Received 1 September 2004
Accepted 8 September 2004 Online 18 September 2004

Two conventional hydrogen bonds, of the type $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, occur in the structure. The O atom of the DMSO molecule acts as a hydrogen-bond acceptor for two symmetry-related 5fluorouracil molecules (Table 1).

The crystal structure contains hydrogen-bonded ribbons of alternating 5-fluorouracil and DMSO molecules (Fig. 2). These ribbons stack, forming form non-interacting layers parallel to the (100) planes.

Experimental

5-Fluorouracil was obtained from the Aldrich Chemical Company Inc. The crystals of the title compound were grown by vapour diffusion of diethyl ether into a saturated solution of 5-fluorouracil in DMSO.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{FN}_{2} \mathrm{O}_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS} \\
& M_{r}=208.21 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=9.8831(10) \AA \\
& b=10.8128(11) \AA \\
& c=8.6842(9) \AA \\
& \beta=107.397(2)^{\circ} \\
& V=885.58(16) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.562 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 3031 \\
& \quad \text { reflections } \\
& \theta=2.9-28.0^{\circ} \\
& \mu=0.36 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.29 \times 0.21 \times 0.11 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX diffractometer
Narrow-frame ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.903, T_{\text {max }}=0.962$
7672 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.090$
$S=1.07$
2127 reflections
140 parameters
H atoms treated by a mixture of independent and constrained refinement

2128 independent reflections
1922 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-13 \rightarrow 12$
$k=-14 \rightarrow 14$
$l=-11 \rightarrow 11$

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0401 P)^{2}\right.
$$

$$
+0.5099 P]
$$

$$
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.40 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.54 \mathrm{e}^{-3}$

Table 1
Hydrogen-bonding geometry ($\left(\mathrm{A},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 \cdots O20	$0.79(2)$	$2.04(2)$	$2.838(2)$	$175(2)$
N3-H3 \cdots O20	$0.82(2)$	$1.97(2)$	$2.790(2)$	$173(2)$
N1-H1 $\mathrm{S}^{\mathrm{S}} \mathrm{S}^{\prime}$	$0.79(2)$	$2.56(2)$	$3.266(8)$	$149(2)$
N3-H3 $\mathrm{S}^{\mathrm{S}} 0^{\mathrm{i}}$	$0.82(2)$	$2.89(2)$	$3.666(1)$	$157(2)$

Symmetry code: (i) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$.

The S atom in the DMSO molecule is disordered over two sites and was modelled anisotropically, with site occupancy 95:5. The S-O and $\mathrm{S}-\mathrm{C}$ distances in the major and minor components were restrained to be equal within $\pm 0.01 \AA$. All H atoms on 5 -fluorouracil were located in a difference map and were refined isotropically; $\mathrm{N}-\mathrm{H}=$ 0.79 (2) and 0.82 (2) \AA, and $\mathrm{C}-\mathrm{H}=0.94$ (2) \AA. The H -atom positions on the methyl group were idealized and refined using a riding model $\left[\mathrm{C}-\mathrm{H}=0.96 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$.

Figure 2
Hydrogen-bonded ribbon motif, made up of alternating 5-fluorouracil and DMSO molecules. Hydrogen bonds are shown as dashed lines.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: SHELXL97.

The authors acknowledge the Research Councils UK Basic Technology Programme for supporting 'Control and Prediction of the Organic Solid State'.

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

supporting information

Acta Cryst. (2004). E60, o1786-o1787 [https://doi.org/10.1107/S1600536804022275]
5-Fluorouracil-dimethyl sulfoxide (1/1)

Ashley T. Hulme and Derek A. Tocher

5-Fluorouracil Dimethylsulfoxide (1/1)

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS} \cdot \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{FN}_{2} \mathrm{O}_{2}$
$M_{r}=208.21$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=9.8831$ (10) \AA
$b=10.8128$ (11) \AA
$c=8.6842$ (9) \AA
$\beta=107.397$ (2) ${ }^{\circ}$
$V=885.58(16) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX
diffractometer
Radiation source: sealed tube
Graphite monochromator
ω rotation with narrow frames scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.903, T_{\text {max }}=0.962$
$F(000)=432$
$D_{\mathrm{x}}=1.562 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3031 reflections
$\theta=2.9-28.0^{\circ}$
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, colourless
$0.29 \times 0.21 \times 0.11 \mathrm{~mm}$

7672 measured reflections
2128 independent reflections
1922 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-13 \rightarrow 12$
$k=-14 \rightarrow 14$
$l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.090$
$S=1.07$
2127 reflections
140 parameters
7 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: found from delta F
Hydrogen site location: found from delta F
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0401 P)^{2}+0.5099 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.40$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.54 \mathrm{e} \AA^{-3}$

Special details

Experimental. The sulfur atom in the DMSO molecule is disordered and is modelled anisotropically, with site occupancy 95:5.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
S20	0.15779 (4)	0.27388 (4)	-0.05029 (5)	0.01947 (14)	0.9452 (19)
S20'	0.1956 (8)	0.3387 (7)	0.0775 (10)	0.047 (3)	0.0548 (19)
O20	0.27984 (12)	0.22286 (10)	0.08812 (14)	0.0242 (3)	
C20	0.02017 (18)	0.30934 (19)	0.0348 (2)	0.0310 (4)	
H20A	-0.0187	0.2340	0.0621	0.047*	0.9452 (19)
H20B	-0.0530	0.3549	-0.0420	0.047*	0.9452 (19)
H20C	0.0576	0.3583	0.1303	0.047*	0.9452 (19)
H20D	0.0033	0.2592	0.1184	0.047*	0.0548 (19)
H20E	-0.0138	0.2671	-0.0667	0.047*	0.0548 (19)
H20F	-0.0289	0.3867	0.0289	0.047*	0.0548 (19)
C21	0.20530 (19)	0.42683 (17)	-0.0857 (2)	0.0296 (4)	
H21A	0.2812	0.4246	-0.1335	0.044*	0.9452 (19)
H21B	0.2356	0.4710	0.0147	0.044*	0.9452 (19)
H21C	0.1249	0.4678	-0.1576	0.044*	0.9452 (19)
H21D	0.3041	0.4445	-0.0672	0.044*	0.0548 (19)
H21E	0.1541	0.5029	-0.0904	0.044*	0.0548 (19)
H21F	0.1691	0.3833	-0.1860	0.044*	0.0548 (19)
C6	0.57652 (17)	0.24074 (15)	0.4738 (2)	0.0203 (3)	
F9	0.76106 (11)	0.21144 (9)	0.71240 (12)	0.0274 (2)	
O7	0.48751 (13)	0.49901 (12)	0.21670 (14)	0.0288 (3)	
O8	0.84328 (13)	0.45295 (12)	0.68615 (15)	0.0300 (3)	
N1	0.50578 (15)	0.31511 (13)	0.34764 (17)	0.0202 (3)	
N3	0.66006 (14)	0.47552 (13)	0.45536 (16)	0.0195 (3)	
C2	0.54651 (16)	0.43374 (15)	0.33165 (18)	0.0194 (3)	
C4	0.73994 (16)	0.40891 (15)	0.58632 (19)	0.0197 (3)	
C5	0.68843 (17)	0.28387 (14)	0.58802 (19)	0.0199 (3)	
H1	0.439 (2)	0.2926 (18)	0.276 (2)	0.019 (5)*	
H3	0.685 (2)	0.548 (2)	0.448 (2)	0.027 (5)*	
H6	0.5414 (19)	0.1598 (18)	0.474 (2)	0.020 (5)*	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S20	$0.0212(2)$	$0.0176(2)$	$0.0164(2)$	$0.00214(15)$	$0.00069(16)$	$-0.00209(14)$

S20	$0.066(7)$	$0.043(6)$	$0.032(5)$	$0.012(5)$	$0.014(5)$	$-0.003(4)$
O20	$0.0213(6)$	$0.0183(6)$	$0.0276(6)$	$0.0039(4)$	$-0.0006(5)$	$-0.0006(4)$
C20	$0.0207(8)$	$0.0428(11)$	$0.0277(9)$	$0.0050(7)$	$0.0044(7)$	$0.0087(8)$
C21	$0.0272(9)$	$0.0267(9)$	$0.0331(10)$	$0.0027(7)$	$0.0064(7)$	$0.0094(7)$
C6	$0.0245(8)$	$0.0151(7)$	$0.0226(8)$	$-0.0018(6)$	$0.0091(7)$	$-0.0008(6)$
F9	$0.0293(5)$	$0.0233(5)$	$0.0253(5)$	$0.0022(4)$	$0.0017(4)$	$0.0084(4)$
O7	$0.0295(6)$	$0.0268(6)$	$0.0237(6)$	$-0.0024(5)$	$-0.0019(5)$	$0.0068(5)$
O8	$0.0273(6)$	$0.0261(6)$	$0.0280(7)$	$-0.0053(5)$	$-0.0048(5)$	$0.0013(5)$
N1	$0.0190(7)$	$0.0211(7)$	$0.0173(7)$	$-0.0046(5)$	$0.0007(5)$	$-0.0029(5)$
N3	$0.0211(7)$	$0.0140(6)$	$0.0212(7)$	$-0.0032(5)$	$0.0029(5)$	$-0.0001(5)$
C2	$0.0195(7)$	$0.0206(7)$	$0.0176(7)$	$-0.0001(6)$	$0.0050(6)$	$-0.0008(6)$
C4	$0.0194(7)$	$0.0199(7)$	$0.0190(7)$	$-0.0005(6)$	$0.0043(6)$	$-0.0004(6)$
C5	$0.0223(7)$	$0.0180(7)$	$0.0188(7)$	$0.0020(6)$	$0.0050(6)$	$0.0033(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

S20-O20	1.5288 (12)	C21-H21D	0.96
S20-C21	1.7710 (18)	C21-H21E	0.96
$\mathrm{S} 20-\mathrm{C} 20$	1.7729 (18)	$\mathrm{C} 21-\mathrm{H} 21 \mathrm{~F}$	0.96
S20 - O20	1.492 (7)	C6-C5	1.330 (2)
S20'-C20	1.691 (7)	C6-N1	1.371 (2)
S20'-C21	1.734 (7)	C6-H6	0.94 (2)
C20-H20A	0.96	F9-C5	1.3534 (18)
C20-H20B	0.96	O7-C2	1.2192 (19)
C20-H20C	0.96	O8-C4	1.2215 (19)
C20-H20D	0.96	N1-C2	1.364 (2)
C20-H20E	0.96	N1-H1	0.79 (2)
C20-H20F	0.96	N3-C2	1.377 (2)
C21-H21A	0.96	N3-C4	1.378 (2)
C21-H21B	0.96	N3-H3	0.82 (2)
C21-H21C	0.96	C4-C5	1.446 (2)
O20-S20-C21	106.60 (8)	C2-N1-C6	122.53 (14)
O20-S20-C20	105.89 (8)	C2-N1-H1	114.2 (14)
C21-S20-C20	98.44 (9)	C6-N1-H1	123.3 (14)
O20-S20-H20E	126.7	C2-N3-C4	127.20 (14)
C21-S20-H20E	110.1	C2-N3-H3	116.1 (14)
O20-S20-H21F	126.7	C4-N3-H3	116.6 (14)
$\mathrm{C} 20-\mathrm{S} 20-\mathrm{H} 21 \mathrm{~F}$	110.9	O7-C2-N1	122.98 (15)
$\mathrm{H} 20 \mathrm{E}-\mathrm{S} 20-\mathrm{H} 21 \mathrm{~F}$	104.4	O7-C2-N3	121.84 (15)
O20-S20'-C20	111.9 (5)	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	115.18 (14)
$\mathrm{O} 20-\mathrm{S} 20{ }^{\prime} \mathrm{C} 21$	110.2 (4)	$\mathrm{O} 8-\mathrm{C} 4-\mathrm{N} 3$	122.22 (15)
C20-S20'-C21	103.2 (4)	O8-C4-C5	125.40 (15)
S20'-C20-H20C	66.5	N3-C4-C5	112.37 (13)
C5-C6-N1	120.15 (15)	C6-C5-F9	121.11 (14)
C5-C6-H6	123.3 (12)	C6-C5-C4	122.48 (14)
N1-C6-H6	116.6 (12)	F9-C5-C4	116.41 (14)

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$	$0.9(2)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 7$	$177.16(15)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	$-2.8(2)$
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 2-\mathrm{O} 7$	$-176.16(16)$
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 2-\mathrm{N} 1$	$3.8(2)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{O} 8$	$176.46(16)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$	$-2.5(2)$

$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5-\mathrm{F} 9$	$-179.01(14)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$0.5(2)$
$\mathrm{O} 8-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-178.74(17)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.2(2)$
$\mathrm{O} 8-\mathrm{C} 4-\mathrm{C} 5-\mathrm{F} 9$	$0.8(2)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{F} 9$	$179.76(13)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 20$	$0.79(2)$	$2.04(2)$	$2.838(2)$	$175(2)$
$\mathrm{N} 3 — \mathrm{H} 3 \cdots \mathrm{O} 20^{\mathrm{i}}$	$0.82(2)$	$1.97(2)$	$2.790(2)$	$173(2)$
$\mathrm{N} 1 — \mathrm{H} 1 \cdots \mathrm{~S} 20^{\prime}$	$0.79(2)$	$2.56(2)$	$3.266(8)$	$149(2)$
$\mathrm{N} 3 — \mathrm{H} 3 \cdots \mathrm{~S}^{\prime} 0^{\mathrm{i}}$	$0.82(2)$	$2.89(2)$	$3.666(1)$	$157(2)$

Symmetry code: (i) $-x+1, y+1 / 2,-z+1 / 2$.

