Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,7,7a-Tri-epi-casuarine pentaacetate

^aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, ^bDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, ^cDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, ^dMNLPharma Limited, Institute of Grassland and Environmental Research, Aberystwyth SY23 3EB, Dyfed, Wales, and ^eGlycobiology Institute, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, England

Visiting Scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail: fpunzo@unict.it

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.003 Å R factor = 0.039 wR factor = 0.091 Data-to-parameter ratio = 11.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved The relative stereochemistry at six contiguous centres in an analogue of the natural product casuarine, *viz.* 3,7,7a-tri-*epi*-casuarine pentaacetate, $C_{18}H_{25}NO_{10}$, has been established by an analysis of a crystalline pentaacetate.

Received 25 January 2006 Accepted 31 January 2006

Comment

The structure of casuarine, (1) (see scheme) (Nash et al., 1994), also isolated as its 6- α -D-glucoside (Wormald *et al.*, 1996), has been determined by X-ray crystallography. The crystal structure of 3-epi-casuarine, (2), has also been reported (Newton et al., 2004). Only two syntheses of casuarine have been published to date (Denmark & Hurd, 2000; Izquierdo et al., 2005). Casuarine, with six contiguous stereogenic centres, is a potent α -glucosidase inhibitor and is the most heavily oxygenated of the polyhydroxylated alkaloids which can be viewed as sugar mimics (Asano et al., 2000; Winchester & Fleet, 1992). Synthetic studies on the epimers of casuarine are scant, and none of the stereoisomers reported significantly inhibited any glycosidase (Bell et al., 1997). Nonetheless, some casuarine analogues have promise as vaccine adjuvants and as potential candidates for viral disease and non-cytotoxic cancer therapies (Nash et al., 2004).

As part of a structure-activity investigation of the stereoisomers of casuarine, the tri-*epi* casuarine (3) was prepared by a route which did not define the relative configuration at two centres. Although (3) has not been crystallized, peracetylation by acetic anhydride in pyridine gave the crystalline pentaacetate, (4), the crystal structure of which is reported in this paper (Fig. 1 and Table 1).

This study firmly establishes the relative configuration at all six stereogenic centres. The absolute configuration of (4) is determined by the use of D-glucose as the starting material in the synthesis. A combination of crystal structures and NMR studies have established solid-state and solution conformations of a number of stereoisomers of the less oxygenated alexines (Wormald *et al.*, 1998; Kato *et al.*, 2003) which may be used to rationalize their biological activity. Similar structural studies on the stereoisomers of casuarine may permit the development of rationales for their novel biological activities. The crystal packing, represented in Fig. 2, highlights longrange interactions between the acetate fragments that are both non-polar, *i.e.* between methyl groups, and polar, *i.e.* between O atoms.

Figure 1

The molecular structure of (4), showing displacement ellipsoids drawn at the 50% probability level.

Figure 2

Packing diagram of (4), viewed down the b axis.

Experimental

Compound (4) was crystallized by dissolving it in cyclohexane, adding ethanol (in an approximate ratio of 9:1), and allowing slow competitive evaporation of the two solvents until clear colourless crystals formed.

Crystal data

 $C_{18}H_{25}NO_{10}$ $M_r = 415.40$ Monoclinic, $P2_1$ a = 9.8357 (3) Å b = 5.9443 (2) Å c = 17.2146 (6) Å $\beta = 97.6513$ (12)° V = 997.51 (6) Å³ Z = 2 $D_x = 1.383 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 2338 reflections $\theta = 5-30^\circ$ $\mu = 0.11 \text{ mm}^{-1}$ T = 120 KNeedle, colourless $0.30 \times 0.10 \times 0.10 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer ω scans Absorption correction: multi-scan (*DENZO/SCALEPACK*; Otwinowski & Minor, 1997) $T_{min} = 0.99, T_{max} = 0.99$ 5106 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.091$ S = 0.943067 reflections 263 parameters H-atom parameters constrained 3067 independent reflections 2513 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$ $\theta_{max} = 30.0^{\circ}$ $h = -13 \rightarrow 13$ $k = -8 \rightarrow 7$ $I = -24 \rightarrow 24$

$$\begin{split} &w = 1/[\sigma^2(F^2) + (0.04P)^2 \\ &+ 0.2P], \\ &where \ P = [\max(F_o^2, 0) + 2F_c^2]/3 \\ (\Delta/\sigma)_{\max} < 0.001 \\ \Delta\rho_{\max} = 0.33 \ e \ \text{\AA}^{-3} \\ \Delta\rho_{\min} = -0.35 \ e \ \text{\AA}^{-3} \\ &\text{Extinction correction: Larson} \\ (1970), equation \ 22 \\ &\text{Extinction coefficient: 1.8 (4)} \times 10^2 \end{split}$$

Table	1
-------	---

Selected geometric parameters (Å, °).

C1-N2	1.486 (2)	C11-C13	1.491 (3)
C1-C5	1.540 (3)	C14-O15	1.448 (2)
C1-C21	1.517 (3)	O15-C16	1.351 (2)
N2-C3	1.466 (2)	C16-O17	1.208 (3)
N2-C19	1.477 (2)	C16-C18	1.483 (3)
C3-C4	1.528 (3)	C19-C20	1.513 (3)
C3-C14	1.508 (3)	C20-C21	1.523 (3)
C4-C5	1.525 (3)	C20-O26	1.456 (2)
C4-O10	1.448 (2)	C21-O22	1.432 (2)
C5-O6	1.453 (2)	O22-C23	1.363 (2)
O6-C7	1.357 (3)	C23-O24	1.197 (3)
C7-O8	1.197 (3)	C23-C25	1.490 (3)
C7-C9	1.493 (4)	O26-C27	1.355 (2)
O10-C11	1.355 (2)	C27-O28	1.193 (3)
C11-O12	1.200 (3)	C27-C29	1.482 (3)
N2-C1-C5	106.11 (15)	O12-C11-C13	126.35 (19)
N2-C1-C21	104.58 (15)	C3-C14-O15	107.24 (15)
C5-C1-C21	118.30 (16)	C14-O15-C16	114.62 (16)
C1-N2-C3	108.97 (14)	O15-C16-O17	122.2 (2)
C1-N2-C19	108.76 (15)	O15-C16-C18	112.17 (18)
C3-N2-C19	116.67 (16)	O17-C16-C18	125.6 (2)
N2-C3-C4	103.27 (16)	N2-C19-C20	105.06 (17)
N2-C3-C14	113.92 (16)	C19-C20-C21	101.52 (15)
C4-C3-C14	112.75 (15)	C19-C20-O26	108.48 (16)
C3-C4-C5	103.33 (15)	C21-C20-O26	109.03 (16)
C3-C4-O10	111.18 (15)	C20-C21-C1	103.69 (16)
C5-C4-O10	106.33 (16)	C20-C21-O22	114.18 (16)
C1-C5-C4	103.08 (15)	C1-C21-O22	110.11 (16)
C1-C5-O6	111.65 (15)	C21-O22-C23	117.04 (16)
C4-C5-O6	104.60 (16)	O22-C23-O24	122.9 (2)
C5-O6-C7	116.67 (17)	O22-C23-C25	110.27 (19)
O6-C7-O8	123.5 (2)	O24-C23-C25	126.8 (2)
O6-C7-C9	110.9 (2)	C20-O26-C27	117.07 (16)
O8-C7-C9	125.6 (2)	O26-C27-O28	122.8 (2)
C4-O10-C11	116.98 (16)	O26-C27-C29	112.16 (18)
O10-C11-O12	122.9 (2)	O28-C27-C29	125.1 (2)
O10-C11-C13	110.71 (19)		

In the absence of significant anomalous scattering effects, Friedel pairs were merged, and the absolute configuration was assigned from the known configuration of the starting material. H atoms were seen in a difference density synthesis. Those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry, after which they were included with riding constraints, with C-H = 0.93-0.98 Å and with $U_{iso}(H)$ values in the range $1.2-1.5U_{eq}$ of the carrier atom.

organic papers

Data collection: *COLLECT* (Nonius, 2001); cell refinement and data reduction: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

References

- Altomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). *Tetrahedron Asymmetry*, **11**, 1645–1680.
- Bell, A. A., Pickering, L., Watson, A. A., Nash, R. J., Pan, Y. T., Elbein, A. D. & Fleet, G. W. J. (1997). *Tetrahedron Lett.* 38, 5869–5872.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Denmark, S. E. & Hurd, A. R. (2000). J. Org. Chem. 65, 2875-2886.
- Izquierdo, I., Plaza, M. T., Juan, A. & Tamayo, J. A. (2005). Tetrahedron, 61, 6527–6533.

- Kato, A., Kano, E., Adachi, I., Molyneux, R. J., Watson, A. A., Nash, R. J., Fleet, G. W. J., Wormald, M. R., Kizu, H., Ikeda, K. & Asano, N. (2003). *Tetrahedron Asymmetry*, 14, 325–331.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
- Nash, R. J., Thomas, P. I., Waigh, R. D., Fleet, G. W. J., Wormald, M. R., Lilley, P. M. Q. & Watkin, D. J. (1994). *Tetrahedron Lett.* **35**, 7849–7852.
- Nash, R. J., Watson, A. A. & Evinson, E. L. (2004). PCT Int. Appl. 2004, WO2004064715.
- Newton, C., van Ameijde, J., Fleet, G. W. J., Nash, R. J. & Watkin, D. J. (2004). Acta Cryst. E60, 01463–01464.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
- Winchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199-210.
- Wormald, M. R., Nash, R. J., Hrnicar, P., White, J. D., Molyneux, R. J. & Fleet, G. W. J. (1998). *Tetrahedron Asymmetry*, 9, 2549–2558.
- Wormald, M. R., Nash, R. J., Watson, A. A., Bhadoria, B. K., Langford, R., Sim, M. & Fleet, G. W. J. (1996). *Carbohydr. Lett.* 2, 169–174.

supporting information

Acta Cryst. (2006). E62, o928-o930 [https://doi.org/10.1107/S1600536806003539]

3,7,7a-Tri-epi-casuarine pentaacetate

Francesco Punzo, David J. Watkin, Jeroen Van Ameijde, Graeme Horne, George W. J. Fleet, Mark R. Wormald and Robert J. Nash

F(000) = 440

 $\theta = 5-30^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

T = 120 K

 $R_{\rm int} = 0.017$

 $h = -13 \rightarrow 13$ $k = -8 \rightarrow 7$ $l = -24 \rightarrow 24$

Plate, colourless

 $0.30 \times 0.10 \times 0.10$ mm

5106 measured reflections 3067 independent reflections 2513 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 5.1^{\circ}$

 $D_{\rm x} = 1.383 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2338 reflections

3,7,7a-triepi-Casuarine pentaacetate

Crystal data

C₁₈H₂₅NO₁₀ $M_r = 415.40$ Monoclinic, P2₁ Hall symbol: P 2yb a = 9.8357 (3) Å b = 5.9443 (2) Å c = 17.2146 (6) Å $\beta = 97.6513$ (12)° V = 997.51 (6) Å³ Z = 2

Data collection

Nonius KappaCCD
diffractometer
Graphite monochromator
ω scans
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor,
1997)
$T_{\min} = 0.99, \ T_{\max} = 0.99$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.039$ H-atom parameters constrained $wR(F^2) = 0.091$ $w = 1/[\sigma^2(F^2) + (0.04P)^2 + 0.2P],$ S = 0.94where $P = [\max(F_0^2, 0) + 2F_c^2]/3$ 3067 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$ 263 parameters $\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$ 1 restraint Primary atom site location: structure-invariant Extinction correction: Larson (1970), equation direct methods 22 Extinction coefficient: 180 (40)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.25143 (19)	0.1388 (3)	0.23642 (10)	0.0187

N2	0.33807 (16)	0.3266 (3)	0.21412 (9)	0.0193
C3	0.2539 (2)	0.4752 (3)	0.15921 (11)	0.0201
C4	0.1427 (2)	0.3181 (4)	0.11951 (11)	0.0219
C5	0.1107 (2)	0.1667 (4)	0.18624 (11)	0.0212
06	0.01706(14)	0.2978 (3)	0.22668 (8)	0.0255
C7	-0.0695(2)	0.1806(5)	0.22000(0) 0.26674(13)	0.0297
08	-0.07114(18)	-0.0205(3)	0.20074(10) 0.27014(10)	0.0297
C9	-0.1587(2)	0.0205(5)	0.27014(10) 0.30573(15)	0.0377
010	0.19617(14)	0.3337(3)	0.06328(7)	0.0417
C11	0.19017(14) 0.1557(2)	0.1727(3) 0.2161(4)	-0.01361(12)	0.0237
012	0.1337(2)	0.2101(4)	0.01301(12) 0.02505(0)	0.0280
012 C12	0.0800(2)	0.3730(4)	-0.03393(9)	0.0480
C13	0.2093(2)	0.0410(4)	-0.00385(12)	0.0333
C14	0.3328(2)	0.5918 (4)	0.10152 (12)	0.0252
015	0.42996 (15)	0.7417(3)	0.14594 (8)	0.0262
C16	0.5080 (2)	0.8625 (4)	0.10221 (13)	0.0279
017	0.49969 (18)	0.8407 (3)	0.03195 (9)	0.0368
C18	0.6021 (3)	1.0182 (4)	0.15052 (15)	0.0370
C19	0.4086 (2)	0.4316 (4)	0.28622 (11)	0.0240
C20	0.3997 (2)	0.2597 (3)	0.35015 (11)	0.0217
C21	0.2588 (2)	0.1574 (3)	0.32480 (11)	0.0197
O22	0.23933 (14)	-0.0592 (2)	0.35803 (8)	0.0226
C23	0.1593 (2)	-0.0686 (4)	0.41678 (12)	0.0253
O24	0.11413 (18)	0.0956 (3)	0.44445 (10)	0.0387
C25	0.1360 (3)	-0.3071 (4)	0.43825 (15)	0.0405
O26	0.50414 (14)	0.0887 (3)	0.34492 (8)	0.0244
C27	0.5616 (2)	-0.0068 (4)	0.41296 (12)	0.0293
O28	0.5325 (2)	0.0480 (4)	0.47537 (9)	0.0593
C29	0.6623 (2)	-0.1838 (4)	0.39999 (13)	0.0326
H11	0.2925	-0.0032	0.2234	0.0223*
H31	0.2060	0.5904	0.1875	0.0248*
H41	0.0609	0.4045	0.0941	0.0275*
H51	0.0706	0.0200	0 1689	0.0255*
H91	-0.2507	0.2740	0.3010	0.0636*
H92	-0.1571	0.4835	0.2819	0.0633*
H93	-0.1231	0.3461	0.3599	0.0636*
H131	0.1851	0.0841	-0.1188	0.0050
H137	0.1720	-0.1038	-0.0543	0.0471
Ш132	0.1720	0.1058	-0.0515	0.0407
Ш135	0.3078	0.0384	0.0515	0.04/1
П141 11142	0.2080	0.0793	0.0040	0.0310*
П142	0.3809	0.4855	0.0723	0.0519
П181 11192	0.5402	1.0880	0.11720	0.0560*
П182	0.3493	1.1500	0.1/29	0.0568*
H183	0.0048	0.9355	0.1916	0.0567*
H191	0.3629	0.5/02	0.2997	0.0295*
H192	0.5052	0.4634	0.2795	0.0288*
H201	0.4091	0.3228	0.4030	0.0262*
H211	0.1877	0.2619	0.3382	0.0231*
H251	0.0736	-0.3105	0.4783	0.0641*

supporting information

H252	0 0947	-0 3875	0 3925	0.0643*	
H253	0.2224	-0.3763	0.4583	0.0642*	
H291	0.7195	-0.2230	0.4466	0.0486*	
H292	0.6200	-0.3170	0.3772	0.0491*	
H293	0.7217	-0.1292	0.3640	0.0489*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
C1	0.0188 (9)	0.0192 (9)	0.0185 (9)	-0.0001 (7)	0.0039 (7)	-0.0001 (7)
N2	0.0206 (8)	0.0185 (8)	0.0186 (7)	-0.0027 (7)	0.0019 (6)	-0.0008 (7)
C3	0.0225 (10)	0.0193 (9)	0.0190 (9)	0.0011 (8)	0.0046 (8)	0.0002 (8)
C4	0.0223 (10)	0.0254 (10)	0.0179 (9)	0.0034 (9)	0.0027 (7)	0.0003 (8)
C5	0.0206 (9)	0.0238 (9)	0.0200 (9)	-0.0014 (8)	0.0050 (7)	-0.0014 (8)
06	0.0186 (7)	0.0320 (8)	0.0268 (7)	0.0007 (6)	0.0061 (6)	0.0013 (6)
C7	0.0168 (10)	0.0447 (14)	0.0277 (11)	-0.0037 (10)	0.0028 (8)	0.0057 (11)
08	0.0318 (9)	0.0436 (10)	0.0464 (10)	-0.0063 (8)	0.0132 (8)	0.0078 (9)
C9	0.0269 (12)	0.0608 (18)	0.0406 (13)	0.0054 (13)	0.0141 (10)	0.0000 (14)
O10	0.0255 (7)	0.0282 (7)	0.0175 (6)	0.0002 (6)	0.0028 (5)	-0.0013 (6)
C11	0.0257 (11)	0.0404 (13)	0.0190 (10)	-0.0031 (10)	0.0007 (8)	0.0007 (9)
012	0.0587 (12)	0.0609 (13)	0.0228 (8)	0.0217 (11)	-0.0005 (8)	0.0080 (9)
C13	0.0285 (11)	0.0487 (15)	0.0228 (10)	-0.0068 (11)	0.0028 (9)	-0.0075 (11)
C14	0.0314 (11)	0.0233 (10)	0.0219 (10)	-0.0036 (9)	0.0072 (8)	0.0001 (9)
O15	0.0310 (8)	0.0242 (7)	0.0251 (7)	-0.0069 (6)	0.0099 (6)	-0.0022 (6)
C16	0.0286 (11)	0.0220 (10)	0.0365 (12)	0.0012 (9)	0.0169 (9)	0.0012 (9)
O17	0.0489 (10)	0.0343 (9)	0.0309 (8)	-0.0048 (8)	0.0194 (7)	0.0041 (8)
C18	0.0356 (13)	0.0320 (12)	0.0469 (14)	-0.0081 (11)	0.0185 (11)	-0.0050 (11)
C19	0.0242 (10)	0.0239 (10)	0.0234 (10)	-0.0037 (8)	0.0015 (8)	-0.0019 (8)
C20	0.0230 (10)	0.0223 (9)	0.0196 (9)	0.0028 (8)	0.0022 (8)	-0.0021 (8)
C21	0.0230 (9)	0.0193 (9)	0.0170 (9)	0.0023 (8)	0.0038 (7)	0.0011 (8)
O22	0.0265 (8)	0.0212 (7)	0.0214 (7)	0.0015 (6)	0.0079 (6)	0.0033 (6)
C23	0.0253 (10)	0.0322 (12)	0.0193 (9)	-0.0023 (9)	0.0066 (8)	0.0013 (9)
O24	0.0484 (10)	0.0351 (9)	0.0377 (9)	-0.0026 (9)	0.0239 (8)	-0.0063 (8)
C25	0.0505 (16)	0.0342 (13)	0.0408 (14)	-0.0034 (12)	0.0212 (12)	0.0090 (11)
O26	0.0220 (7)	0.0304 (8)	0.0203 (7)	0.0037 (7)	0.0011 (6)	-0.0005 (6)
C27	0.0324 (12)	0.0323 (11)	0.0229 (10)	0.0036 (10)	0.0030 (9)	0.0032 (9)
O28	0.0895 (16)	0.0656 (15)	0.0238 (9)	0.0433 (13)	0.0116 (9)	0.0103 (9)
C29	0.0326 (12)	0.0351 (12)	0.0292 (11)	0.0086 (11)	0.0001 (9)	0.0005 (10)

Geometric parameters (Å, °)

C1—N2	1.486 (2)	C14—H142	0.975	
C1—C5	1.540 (3)	O15—C16	1.351 (2)	
C1—C21	1.517 (3)	C16—O17	1.208 (3)	
C1—H11	0.974	C16—C18	1.483 (3)	
N2—C3	1.466 (2)	C18—H181	0.972	
N2—C19	1.477 (2)	C18—H182	0.958	
C3—C4	1.528 (3)	C18—H183	0.956	

C3-C14	1 508 (3)	$C_{19} - C_{20}$	1 513 (3)
C3_H31	0.994	C19 - H191	0.981
CA = C5	1 525 (3)	C10 H102	0.001
$C_4 = C_3$	1.323(3) 1.448(2)	C_{20} C_{21}	1.523(3)
$C_4 = 010$	1.448 (2)	$C_{20} = C_{21}$	1.525(3) 1.456(2)
C_{4}	1.004	C20_020	1.430(2)
$C_{5} = 00$	1.435 (2)	C20—H201	0.970
C5—H51	0.987	C21—022	1.432(2)
06-0	1.337(3)	C21—H211	0.980
C/08	1.197 (3)	022-023	1.363 (2)
C/C9	1.493 (4)	C23—024	1.197 (3)
C9—H91	0.970	C23—C25	1.490 (3)
С9—Н92	0.969	C25—H251	0.982
С9—Н93	0.954	C25—H252	0.964
O10-C11	1.355 (2)	C25—H253	0.966
C11—O12	1.200 (3)	O26—C27	1.355 (2)
C11—C13	1.491 (3)	C27—O28	1.193 (3)
C13—H131	0.977	C27—C29	1.482 (3)
С13—Н132	0.962	C29—H291	0.946
С13—Н133	0.964	С29—Н292	0.954
C14—O15	1.448 (2)	С29—Н293	0.963
C14—H141	0.989		
N2—C1—C5	106.11 (15)	O15—C14—H142	110.3
N2—C1—C21	104.58 (15)	H141—C14—H142	109.0
C5-C1-C21	118.30 (16)	C14—O15—C16	114.62 (16)
N2-C1-H11	108.8	015-016-017	122.2 (2)
C5-C1-H11	109.5	015 - C16 - C18	112.17(18)
$C_{21} - C_{1} - H_{11}$	109.1	017 - C16 - C18	125.6(2)
C1 - N2 - C3	108.97 (14)	C_{16} C_{18} H_{181}	108.6
C1 - N2 - C19	108.76 (15)	C_{16} C_{18} H_{182}	100.0
$C_1 = N_2 = C_{12}$	116.70(15)	H181 C18 H182	109.2
$N_{2} = C_{1}^{2} = C_{1}^{2}$	10.07(10) 102.27(16)	$C_{16} = C_{10} = H_{102}$	100.2
$N_2 = C_3 = C_4$	103.27(10) 112.02(16)	10 - 10 - 1183	109.5
$N_2 = C_3 = C_1 4$	113.92(10) 112.75(15)	$H_{101} - C_{10} - H_{103}$	110.1
C4 - C3 - C14	112.75 (15)	H182 - C18 - H183	109.5
$N_2 - C_3 - H_3 I$	111.3	$N_2 = C_{19} = C_{20}$	105.06 (17)
C4 - C3 - H31	106.4	N2-C19-H191	112.1
C14—C3—H31	108.9	C20—C19—H191	108.8
C3—C4—C5	103.33 (15)	N2—C19—H192	109.5
C3—C4—O10	111.18 (15)	C20—C19—H192	111.2
C5—C4—O10	106.33 (16)	H191—C19—H192	110.1
C3—C4—H41	111.5	C19—C20—C21	101.52 (15)
C5—C4—H41	113.3	C19—C20—O26	108.48 (16)
O10—C4—H41	110.8	C21—C20—O26	109.03 (16)
C1—C5—C4	103.08 (15)	C19—C20—H201	114.2
C1—C5—O6	111.65 (15)	C21—C20—H201	113.0
C4—C5—O6	104.60 (16)	O26—C20—H201	110.2
C1—C5—H51	111.6	C20—C21—C1	103.69 (16)
C4—C5—H51	114.1	C20—C21—O22	114.18 (16)

O6—C5—H51	111.4	C1—C21—O22	110.11 (16)
C5—O6—C7	116.67 (17)	C20—C21—H211	109.2
O6—C7—O8	123.5 (2)	C1—C21—H211	109.9
O6—C7—C9	110.9 (2)	O22—C21—H211	109.6
O8—C7—C9	125.6 (2)	C21—O22—C23	117.04 (16)
С7—С9—Н91	109.0	O22—C23—O24	122.9 (2)
С7—С9—Н92	109.0	O22—C23—C25	110.27 (19)
Н91—С9—Н92	112.0	O24—C23—C25	126.8 (2)
С7—С9—Н93	108.5	С23—С25—Н251	109.0
Н91—С9—Н93	108.8	С23—С25—Н252	109.3
Н92—С9—Н93	109.4	H251—C25—H252	109.2
C4—O10—C11	116.98 (16)	С23—С25—Н253	109.7
O10-C11-O12	122.9 (2)	H251—C25—H253	110.1
O10-C11-C13	110.71 (19)	H252—C25—H253	109.6
O12—C11—C13	126.35 (19)	C20—O26—C27	117.07 (16)
C11—C13—H131	108.8	O26—C27—O28	122.8 (2)
C11—C13—H132	110.7	O26—C27—C29	112.16 (18)
H131—C13—H132	110.5	O28—C27—C29	125.1 (2)
C11—C13—H133	107.9	С27—С29—Н291	112.4
H131—C13—H133	109.0	С27—С29—Н292	112.8
H132—C13—H133	109.8	H291—C29—H292	108.8
C3—C14—O15	107.24 (15)	С27—С29—Н293	109.4
C3—C14—H141	109.4	H291—C29—H293	106.6
O15—C14—H141	109.9	H292—C29—H293	106.6
C3—C14—H142	111.1		