organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Muhammad Zia-ur-Rehman,^a Jamil Anwar Choudary,^b Mark R. J. Elsegood,^c* Hamid Latif Siddiqui^b and Saeed Ahmad^d

^aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, ^bInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, ^cChemistry Department, Loughborough University, Loughborough LE11 3TU, England, and ^dDepartment of Chemistry, University of Science and Technology, Bannu, Pakistan

Correspondence e-mail: m.r.j.elsegood@lboro.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.003 Å R factor = 0.041 wR factor = 0.105 Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2007 International Union of Crystallography All rights reserved

o900

N-[2-(Aminocarbonyl)phenyl]-4-hydroxy-2-methyl-2*H*-1,2-benzothiazine-3-carboxamide 1,1-dioxide dimethyl sulfoxide solvate

In the title compound, $C_{17}H_{15}N_3O_5S \cdot C_2H_6OS$, the thiazine ring adopts a distorted half-chair conformation. The enolic H atom is involved in both intramolecular and intermolecular $O-H \cdots O$ hydrogen bonds, the latter linking the molecules into centrosymmetric pairs. Both anthranilamide H atoms are involved in hydrogen bonding to O atoms of dimethyl sulfoxide molecules, linking the pairs of molecules into chains.

Comment

Owing to their application as non-steroidal anti-inflammatory agents (Turck *et al.*, 1996; Bihovsky *et al.*, 2004), considerable attention has been given to synthetic and structural investigations of 1,2-benzothiazine 1,1-dioxides and their precursor intermediates (Golič & Leban, 1987). During our syntheses of various benzothiazine derivatives (Rehman *et al.*, 2005; Rehman *et al.*, 2006) the crystal structure of the title compound, (I), has been determined.

In (I) (Fig. 1), the thiazine ring adopts a distorted half-chair conformation. The geometry at N1 is pyramidal, with the methyl group pointing approximately perpendicular to the thiazine ring. Atoms O3 and O1 lie approximately in the plane of the thiazine ring, while atom O2 lies approximately perpendicular to it. Atoms N1, C8, C9, O4 and N2 are coplanar to within 0.093 (2) Å. The S1–N1 bond length of 1.6427 (15) Å is as expected for a sulfonamide.

Like other 1,2-benzothiazine 1,1-dioxide molecules (Golič & Leban, 1987; Fabiola *et al.*, 1998), the enolic hydrogen on O3 is involved in intramolecular hydrogen bonding (Table 1), and there is a shortening of the C7–C8 bond [1.362 (3) Å] due to partial double-bond character. Two further intramolecular hydrogen bonds are also present in (I) that are not observed in related benzothiazine molecules such as piroxicam (Kojić-Prodić *et al.*, 1982) and meloxicam (Fabiola *et al.*, 1998). Specifically, atom H2 forms hydrogen bonds with both N1 and the anthranilamide atom O5. Atom H3 is also involved in intermolecular hydrogen bonding with atom O4 of an adjacent molecule (Table 1 and Fig. 2), linking the molecules into centrosymmetric pairs.

The O atoms of two symmetry-related dimethyl sulfoxide molecules link adjacent benzothiazine molecules through N-

Received 19 December 2006 Accepted 16 January 2007 $H \cdots O$ hydrogen bonds from H3A and H3B of the benzothiazine amino group (Table 1). These interactions link the centrosymmetric pairs of molecules into chains (Fig. 2).

Experimental

N-[2-(Aminocarbonyl)phenyl]-4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide was synthesized according to a literature method (Rehman *et al.*, 2006). The compound was dissolved in a mixture of methanol and DMSO (80:20 ν/ν) at room temperature. Crystals were obtained by slow evaporation and dried under high vacuum.

V = 1016.75 (6) Å³

 $D_x = 1.475 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 0.31 \text{ mm}^{-1}$ T = 120 (2) K

Plate, colourless

 $R_{\rm int} = 0.049$

 $\theta_{\rm max} = 27.6^{\circ}$

 $0.54 \times 0.42 \times 0.11 \text{ mm}$

20897 measured reflections

4663 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0532P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.2807P]

 $\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.28 \text{ e} \text{ Å}^{-3}$

3397 reflections with $I > 2\sigma(I)$

Z = 2

Crystal data

 $\begin{array}{l} C_{17}H_{15}N_{3}O_{5}S\cdot C_{2}H_{6}OS\\ M_{r}=451.51\\ \text{Triclinic, }P\overline{1}\\ a=8.4973~(2)~\text{\AA}\\ b=10.1959~(4)~\text{\AA}\\ c=12.0545~(4)~\text{\AA}\\ \alpha=92.132~(2)^{\circ}\\ \beta=101.540~(2)^{\circ}\\ \gamma=95.550~(2)^{\circ} \end{array}$

Data collection

Bruker–Nonius KappaCCD diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{\rm min} = 0.853, T_{\rm max} = 0.967$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.105$ S = 1.044663 reflections 286 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
O3-H3···O4	0.91 (2)	1.75 (2)	2.5771 (18)	150 (2)
$O3-H3\cdots O4^i$	0.91(2)	2.48 (2)	2.9028 (19)	108.4 (17)
$N2-H2\cdots O5$	0.87(2)	1.84 (2)	2.583 (2)	142.8 (18)
$N2-H2 \cdot \cdot \cdot N1$	0.87(2)	2.27 (2)	2.720 (2)	112.0 (16)
N3−H3A···O6	0.905 (17)	2.043 (18)	2.911 (2)	160 (2)
$N3-H3B\cdots O6^{ii}$	0.896 (17)	2.064 (18)	2.941 (2)	166 (2)

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x - 1, -y + 1, -z + 1.

H atoms bound to C atoms were placed geometrically and refined using a riding model, with C–H = 0.95 Å, $U_{\rm iso}({\rm H}) = 1.2 \ U_{\rm eq}({\rm C})$ for aryl H, or C–H = 0.98 Å, $U_{\rm iso}({\rm H}) = 1.5 \ U_{\rm eq}({\rm C})$ for methyl H. The methyl groups were allowed to rotate about their local threefold axes. H atoms bound to N and O atoms were located in difference Fourier maps and their coordinates were refined freely with $U_{\rm iso}({\rm H}) = 1.2 \ U_{\rm eq}({\rm N})$ or $1.5 \ U_{\rm eq}({\rm O})$.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *DENZO*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000);

Figure 1

The molecular structure of (I), showing displacement ellipsoids at the 50% probability level for non-H atoms. Dashed lines denote hydrogen bonds.

Figure 2

Projection approximately on to the plane of one hydrogen-bonded chain in (I). H atoms not involved in hydrogen bonding have been omitted. Dashed lines denote hydrogen bonds. (Symmetry operators to generate molecules containing O4A and O6A, respectively: 1 - x, 2 - y, 1 - z; -x - 1, 1 - y, 1 - z.)

program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the EPSRC National Crystallography Service at the University of Southampton for data collection.

References

- Bihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). *Bioorg. Med. Chem. Lett.* **14**, 1035–1038.
- Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001–2003.
- Golič, L. & Leban, I. (1987). Acta Cryst. C43, 280-282.
- Kojić-Prodić, B. & Ružić -Toroš, Z. (1982). Acta Cryst. B38, 2948-2951.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Rehman, M. Z., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1175.
- Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
- Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). *Clin. Pharm.* **36**, 79–84.

Acta Cryst. (2007). E**63**, o900–o901 [https://doi.org/10.1107/S1600536807002309]

N-[2-(Aminocarbonyl)phenyl]-4-hydroxy-2-methyl-2*H*-1,2-benzothiazine-3carboxamide 1,1-dioxide dimethyl sulfoxide solvate

Muhammad Zia-ur-Rehman, Jamil Anwar Choudary, Mark R. J. Elsegood, Hamid Latif Siddiqui and Saeed Ahmad

N-[2-(Aminocarbonyl)phenyl]-4-hydroxy-2-methyl-2*H*-1,2-benzothiazine- 3-carboxamide-1,1-dioxide dimethyl sulfoxide solvate

Z = 2

F(000) = 472

 $\theta = 1.0-27.5^{\circ}$

 $\mu = 0.31 \text{ mm}^{-1}$ T = 120 K

Lath, colourless

 $0.54 \times 0.42 \times 0.11 \text{ mm}$

 $D_{\rm x} = 1.475 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4596 reflections

Crystal data

 $C_{17}H_{15}N_{3}O_{5}S \cdot C_{2}H_{6}OS$ $M_{r} = 451.51$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.4973 (2) Å b = 10.1959 (4) Å c = 12.0545 (4) Å $a = 92.132 (2)^{\circ}$ $\beta = 101.540 (2)^{\circ}$ $\gamma = 95.550 (2)^{\circ}$ $V = 1016.75 (6) \text{ Å}^{3}$

Data collection

Bruker–Nonius KappaCCD	20897 measured reflections
diffractometer	4663 independent reflections
Radiation source: Bruker–Nonius FR591	3397 reflections with $I > 2\sigma(I)$
rotating anode	$R_{\rm int} = 0.049$
Graphite monochromator	$\theta_{\rm max} = 27.6^\circ, \ \theta_{\rm min} = 2.0^\circ$
φ and ω scans	$h = -10 \rightarrow 11$
Absorption correction: multi-scan	$k = -13 \rightarrow 13$
(SADABS; Sheldrick, 2003)	$l = -15 \rightarrow 15$
$T_{\min} = 0.853, T_{\max} = 0.967$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.105$ S = 1.044663 reflections 286 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: geom except NH & OH coords freely refined H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0532P)^2 + 0.2807P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.48 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm ea}$ х Ζ v N1 0.0181 (3) 0.28059 (17) 0.69118 (16) 0.73479 (12) **S**1 0.02156 (14) 0.31964 (5) 0.72519 (5) 0.87245(4)01 0.25883 (16) 0.61339 (15) 0.92530(11) 0.0299(4)02 0.26700 (16) 0.0273 (3) 0.85129 (15) 0.89310(11) C1 0.5321(2)0.7427(2)0.90615 (15) 0.0201 (4) C2 0.6158(2)0.7076(2)1.01020(16) 0.0249(4)H2A 0.5599 0.030* 0.6651 1.0620 C3 0.7825(2)0.7359 (2) 0.0275(5)1.03684 (16) 0.033* H₃C 0.8413 0.7143 1.1083 C4 0.8639(2)0.7955(2)0.95985 (17) 0.0275 (5) H4 0.033* 0.9780 0.8149 0.9792 0.0242 (4) C5 0.7805(2)0.8270(2)0.85511 (16) H5 0.8668 0.8027 0.029* 0.8376 C6 0.80042 (19) 0.0192 (4) 0.6125 (2) 0.82632 (15) C7 0.83103 (19) 0.71524 (15) 0.0182(4)0.5221(2)03 0.60524 (15) 0.91569 (14) 0.65984 (11) 0.0229(3)H3 0.034* 0.538(3)0.923(2)0.592(2)C8 0.3662(2)0.78096 (19) 0.67303 (15) 0.0176 (4) C9 0.2777(2)0.82173 (19) 0.56403 (15) 0.0182(4)04 0.35180(15) 0.88358 (14) 0.49923 (11) 0.0229(3)N2 0.11631 (18) 0.78914 (16) 0.54384(13)0.0182(3)0.022* H2 0.079(2)0.746(2)0.5958 (17) C10 -0.0048(2)0.82649 (19) 0.45632 (15) 0.0170 (4) C11 0.77877 (19) -0.1670(2)0.45693 (15) 0.0178 (4) C12 -0.2889(2)0.8181 (2) 0.37254 (16) 0.0218(4)-0.39840.026* H12 0.7879 0.3721 0.0220 (4) C13 -0.2542(2)0.8996(2)0.28999 (16) H13 -0.33880.9243 0.2331 0.026* C14 -0.0952(2)0.9451(2)0.29050 (15) 0.0207(4)H14 -0.07110.025* 1.0012 0.2336 C15 0.0293(2)0.90964 (19) 0.0199(4)0.37341 (15) H15 0.1380 0.9422 0.3735 0.024* C16 0.6900(2)0.54534 (15) 0.0206 (4) -0.2088(2)C17 0.2645 (2) 0.5504(2)0.69573 (18) 0.0264 (5) 0.040* H17A 0.2273 0.5416 0.6132

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H17B	0.1860	0.5003	0.7318	0.040*	
H17C	0.3695	0.5158	0.7164	0.040*	
O5	-0.10788 (16)	0.67029 (16)	0.63157 (11)	0.0305 (4)	
N3	-0.35961 (19)	0.63182 (17)	0.53030 (14)	0.0225 (4)	
H3A	-0.434 (2)	0.640 (2)	0.4664 (15)	0.027*	
H3B	-0.380 (3)	0.573 (2)	0.5803 (16)	0.027*	
S2	-0.77356 (5)	0.63477 (5)	0.27891 (4)	0.02196 (14)	
O6	-0.60908 (15)	0.59061 (14)	0.32438 (12)	0.0289 (3)	
C18	-0.7341 (2)	0.7773 (2)	0.20325 (17)	0.0266 (5)	
H18A	-0.6739	0.8483	0.2565	0.040*	
H18B	-0.8365	0.8062	0.1645	0.040*	
H18C	-0.6701	0.7557	0.1472	0.040*	
C19	-0.8603 (2)	0.5220 (2)	0.16109 (16)	0.0265 (5)	
H19A	-0.7847	0.5181	0.1097	0.040*	
H19B	-0.9612	0.5519	0.1206	0.040*	
H19C	-0.8828	0.4341	0.1882	0.040*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0168 (8)	0.0205 (9)	0.0170 (8)	-0.0005 (6)	0.0034 (6)	0.0058 (6)
S 1	0.0178 (2)	0.0313 (3)	0.0169 (2)	0.0041 (2)	0.00510 (17)	0.0078 (2)
O1	0.0246 (7)	0.0407 (10)	0.0257 (7)	-0.0008 (6)	0.0076 (6)	0.0167 (7)
O2	0.0248 (7)	0.0377 (9)	0.0220 (7)	0.0128 (6)	0.0060 (6)	0.0027 (6)
C1	0.0189 (9)	0.0239 (11)	0.0178 (9)	0.0043 (8)	0.0030 (7)	0.0028 (8)
C2	0.0276 (10)	0.0302 (12)	0.0186 (10)	0.0068 (9)	0.0059 (8)	0.0059 (8)
C3	0.0270 (11)	0.0365 (13)	0.0182 (10)	0.0106 (9)	-0.0011 (8)	0.0019 (9)
C4	0.0197 (10)	0.0349 (13)	0.0254 (10)	0.0030 (9)	-0.0008 (8)	0.0002 (9)
C5	0.0219 (10)	0.0281 (12)	0.0215 (10)	-0.0003 (8)	0.0028 (8)	0.0016 (9)
C6	0.0184 (9)	0.0198 (11)	0.0188 (9)	0.0017 (8)	0.0026 (7)	0.0022 (8)
C7	0.0182 (9)	0.0203 (11)	0.0169 (9)	0.0016 (7)	0.0054 (7)	0.0031 (8)
O3	0.0180 (7)	0.0283 (8)	0.0208 (7)	-0.0041 (6)	0.0017 (5)	0.0083 (6)
C8	0.0166 (9)	0.0198 (11)	0.0173 (9)	0.0000 (7)	0.0055 (7)	0.0045 (7)
C9	0.0167 (9)	0.0202 (11)	0.0174 (9)	0.0006 (7)	0.0037 (7)	0.0005 (8)
O4	0.0176 (7)	0.0315 (9)	0.0195 (7)	-0.0014 (6)	0.0041 (5)	0.0084 (6)
N2	0.0173 (8)	0.0224 (9)	0.0149 (8)	-0.0007 (6)	0.0039 (6)	0.0055 (7)
C10	0.0174 (9)	0.0181 (10)	0.0148 (9)	0.0022 (7)	0.0021 (7)	0.0004 (7)
C11	0.0171 (9)	0.0185 (10)	0.0176 (9)	-0.0001 (7)	0.0039 (7)	0.0017 (7)
C12	0.0164 (9)	0.0256 (12)	0.0224 (10)	0.0011 (8)	0.0022 (7)	0.0023 (8)
C13	0.0205 (9)	0.0239 (11)	0.0201 (9)	0.0040 (8)	-0.0003 (7)	0.0039 (8)
C14	0.0227 (10)	0.0223 (11)	0.0175 (9)	0.0027 (8)	0.0042 (7)	0.0047 (8)
C15	0.0182 (9)	0.0216 (11)	0.0204 (9)	0.0014 (8)	0.0052 (7)	0.0009 (8)
C16	0.0166 (9)	0.0242 (11)	0.0205 (9)	0.0005 (8)	0.0039 (7)	0.0008 (8)
C17	0.0282 (11)	0.0206 (11)	0.0306 (11)	-0.0008(8)	0.0075 (8)	0.0023 (9)
O5	0.0189 (7)	0.0467 (10)	0.0237 (7)	-0.0035 (6)	-0.0001 (5)	0.0151 (7)
N3	0.0171 (8)	0.0264 (10)	0.0226 (9)	-0.0020(7)	0.0017 (6)	0.0070 (7)
S2	0.0187 (2)	0.0272 (3)	0.0195 (2)	0.0017 (2)	0.00293 (18)	0.0031 (2)
O6	0.0183 (7)	0.0301 (9)	0.0342 (8)	-0.0006 (6)	-0.0042(6)	0.0099 (7)

C18	0.0276 (11)	0.0270 (12)	0.0251 (10)	0.0038 (9)	0.0047 (8)	0.0036 (9)
C19	0.0258 (10)	0.0291 (12)	0.0222 (10)	0.0012 (9)	0.0002 (8)	0.0014 (9)

Geometric parameters (Å, °)

N1—C8	1.435 (2)	C10—C11	1.418 (3)
N1—C17	1.479 (3)	C11—C12	1.399 (2)
N1—S1	1.6427 (15)	C11—C16	1.497 (3)
S101	1.4298 (15)	C12—C13	1.378 (3)
S1—O2	1.4308 (15)	C12—H12	0.950
S1—C1	1.7591 (18)	C13—C14	1.384 (3)
C1—C2	1.390 (3)	C13—H13	0.950
C1—C6	1.402 (3)	C14—C15	1.389 (2)
C2—C3	1.387 (3)	C14—H14	0.950
C2—H2A	0.950	C15—H15	0.950
C3—C4	1.388 (3)	C16—O5	1.244 (2)
С3—НЗС	0.950	C16—N3	1.334 (2)
C4—C5	1.384 (3)	C17—H17A	0.980
C4—H4	0.9500	C17—H17B	0.980
C5—C6	1.397 (3)	C17—H17C	0.980
С5—Н5	0.950	N3—H3A	0.905 (17)
С6—С7	1.465 (2)	N3—H3B	0.896 (17)
С7—О3	1.343 (2)	S2—O6	1.5133 (13)
С7—С8	1.362 (3)	S2—C19	1.782 (2)
O3—H3	0.91 (2)	S2—C18	1.784 (2)
С8—С9	1.473 (2)	C18—H18A	0.980
С9—О4	1.249 (2)	C18—H18B	0.980
C9—N2	1.350 (2)	C18—H18C	0.980
N2-C10	1.410 (2)	C19—H19A	0.980
N2—H2	0.87 (2)	C19—H19B	0.980
C10—C15	1.390 (3)	C19—H19C	0.980
C8—N1—C17	115.86 (15)	C12—C11—C10	118.03 (17)
C8—N1—S1	114.28 (12)	C12—C11—C16	120.32 (16)
C17—N1—S1	116.99 (12)	C10—C11—C16	121.64 (15)
01—S1—O2	119.20 (9)	C13—C12—C11	121.63 (17)
01—S1—N1	108.26 (9)	C13—C12—H12	119.2
02—S1—N1	108.19 (8)	C11—C12—H12	119.2
01—S1—C1	109.62 (9)	C12—C13—C14	119.62 (16)
O2—S1—C1	107.77 (9)	C12—C13—H13	120.2
N1—S1—C1	102.52 (8)	C14—C13—H13	120.2
C2—C1—C6	121.65 (17)	C13—C14—C15	120.62 (18)
C2C1S1	121.18 (15)	C13—C14—H14	119.7
C6C1S1	117.07 (13)	C15—C14—H14	119.7
C3—C2—C1	118.69 (19)	C14—C15—C10	120.03 (17)
С3—С2—Н2А	120.7	C14—C15—H15	120.0
C1—C2—H2A	120.7	C10—C15—H15	120.0
C2—C3—C4	120.44 (17)	O5-C16-N3	119.78 (18)
			x - /

С2—С3—Н3С	119.8	O5-C16-C11	122.02 (16)
C4—C3—H3C	119.8	N3-C16-C11	118.20 (16)
C5—C4—C3	120.66 (18)	N1—C17—H17A	109.5
C5—C4—H4	119.7	N1-C17-H17B	109.5
C3-C4-H4	119.7	H17A—C17—H17B	109.5
C_{4} C_{5} C_{6}	120.12 (10)	$\frac{11}{11} \frac{11}{11} 11$	109.5
$C_4 = C_5 = C_0$	120.12 (19)	H17A C17 H17C	109.5
	119.9	H1/A - C1/-H1/C	109.5
C6—C5—H5	119.9	HI/B - CI/-HI/C	109.5
C5-C6-C1	118.38 (16)	C16—N3—H3A	121.7 (14)
C5—C6—C7	121.02 (17)	C16—N3—H3B	116.8 (14)
C1—C6—C7	120.59 (16)	H3A—N3—H3B	121 (2)
O3—C7—C8	122.88 (16)	O6—S2—C19	104.83 (9)
O3—C7—C6	114.00 (15)	O6—S2—C18	104.89 (9)
C8—C7—C6	123.09 (17)	C19—S2—C18	98.74 (10)
С7—О3—Н3	105.3 (15)	S2	109.5
C7—C8—N1	121.42 (16)	S2-C18-H18B	109.5
C7—C8—C9	120.78 (17)	H18A—C18—H18B	109.5
N1	117 76 (15)	S2-C18-H18C	109.5
04 - C9 - N2	124 97 (16)	H18A - C18 - H18C	109.5
$O_4 = C_2 = N_2$	124.97(10) 120.22(16)		109.5
04 - 05 - 08	120.22(10) 114.80(16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$N_2 - C_9 - C_8$	114.00(10)	S2	109.5
C_{2} N2 L_{2}	129.47 (16)	S2	109.5
C9—N2—H2	116.2 (13)	H19A—C19—H19B	109.5
C10—N2—H2	113.9 (13)	S2—C19—H19C	109.5
C15—C10—N2	122.55 (16)	H19A—C19—H19C	109.5
C15—C10—C11	120.06 (16)	H19B—C19—H19C	109.5
N2-C10-C11	117.37 (16)		
C8—N1—S1—O1	-166.38 (12)	O3—C7—C8—C9	-2.2 (3)
C17—N1—S1—O1	-26.32(15)	C6—C7—C8—C9	176.05 (16)
C8—N1—S1—O2	63.14 (14)	C17—N1—C8—C7	-102.3(2)
C17 - N1 - S1 - O2	-156.80(13)	S1—N1—C8—C7	38.2 (2)
C8-N1-S1-C1	-50.56(14)	C17—N1—C8—C9	80.1 (2)
C_{17} N1 S_{1} C_{1}	89 49 (14)	S1_N1_C8_C9	-13940(14)
01 - S1 - C1 - C2	-32.8(2)	C7 - C8 - C9 - 04	130.10(11)
01 - 31 - 01 - 02	32.0(2)	$C^{-} C^{-} C^{-$	-160.42(16)
02 - 31 - C1 - C2	96.55(16)	$N1 - C_0 - C_9 - U_4$	-109.42(10)
NI = SI = CI = C2	-147.03(17)	C/-C8-C9-N2	-105.83(17)
01-S1-C1-C6	150.75 (15)	NI-C8-C9-N2	11.8 (2)
02—\$1—C1—C6	-/8.09 (17)	04—C9—N2—C10	-7.4 (3)
N1—S1—C1—C6	35.92 (17)	C8—C9—N2—C10	171.31 (17)
C6—C1—C2—C3	2.8 (3)	C9—N2—C10—C15	-0.7 (3)
S1—C1—C2—C3	-173.53 (16)	C9—N2—C10—C11	-178.94 (18)
C1—C2—C3—C4	-1.4 (3)	C15-C10-C11-C12	-0.1 (3)
C2—C3—C4—C5	-0.4 (3)	N2-C10-C11-C12	178.18 (16)
C3—C4—C5—C6	0.8 (3)	C15-C10-C11-C16	-179.47 (17)
C4—C5—C6—C1	0.5 (3)	N2-C10-C11-C16	-1.2 (3)
C4—C5—C6—C7	-179.02 (18)	C10-C11-C12-C13	0.7 (3)
C2-C1-C6-C5	-2.3(3)	C16—C11—C12—C13	-179.92 (18)
			(-0)

S1-C1-C6-C5 $C2-C1-C6-C7$ $S1-C1-C6-C7$ $C5-C6-C7-O3$ $C1-C6-C7-O3$ $C5-C6-C7-C8$ $C1-C6-C7-C8$ $O3-C7-C8-N1$	174.08 (15) 177.22 (18) -6.4 (3) -17.1 (3) 163.34 (17) 164.54 (19) -15.0 (3) -179.67 (16)	C11—C12—C13—C14 C12—C13—C14—C15 C13—C14—C15—C10 N2—C10—C15—C14 C11—C10—C15—C14 C12—C11—C16—O5 C10—C11—C16—O5 C12—C11—C16—N3	-0.6 (3) -0.1 (3) 0.6 (3) -178.75 (17) -0.6 (3) -168.09 (19) 11.3 (3)
C1—C6—C7—C8	-15.0 (3)	C10—C11—C16—O5	11.3 (3)
O3—C7—C8—N1	-179.67 (16)	C12—C11—C16—N3	11.4 (3)
C6—C7—C8—N1	-1.5 (3)	C10—C11—C16—N3	-169.20 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
O3—H3…O4	0.91 (2)	1.75 (2)	2.5771 (18)	150 (2)	
O3—H3…O4 ⁱ	0.91 (2)	2.48 (2)	2.9028 (19)	108.4 (17)	
N2—H2…O5	0.87 (2)	1.84 (2)	2.583 (2)	142.8 (18)	
N2—H2…N1	0.87 (2)	2.27 (2)	2.720 (2)	112.0 (16)	
N3—H3A…O6	0.91 (2)	2.04 (2)	2.911 (2)	160 (2)	
N3—H3 <i>B</i> ···O6 ⁱⁱ	0.90 (2)	2.06 (2)	2.941 (2)	166 (2)	

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*-1, -*y*+1, -*z*+1.