

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,4-Dihydro-1,4-benzothiazepin-5(2H)one

Zhi-Long Chen,^a Feng Hong^a and Sheng-Yin Zhao^{b*}

^aInstitute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China, and ^bDepartment of Chemistry, Donghua University, Shanghai 201620, People's Republic of China Correspondence e-mail: syzhao8@dhu.edu.cn

Received 21 November 2007; accepted 22 November 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.006 Å; R factor = 0.062; wR factor = 0.166; data-to-parameter ratio = 15.6.

In the molecule of the title compound, C₉H₉NOS, the sevenmembered ring has a twist conformation. In the crystal structure, intermolecular $N-H \cdots O$ hydrogen bonds link the molecules into centrosymmetric dimers.

Related literature

For general background, see: Arya et al. (1977). For related literature, see: Ishibashi et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

C₉H₉NOS $M_r = 179.23$ Orthorhombic, Pbca a = 8.0510 (16) Å b = 8.9580 (18) Å c = 24.220(5) Å

V = 1746.8 (6) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.32 \text{ mm}^-$ T = 294 (2) K $0.20 \times 0.20 \times 0.10 \ \text{mm}$ Data collection

Enraf–Nonius CAD-4	1704 independent reflections
diffractometer	1089 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.022$
(North et al., 1968)	3 standard reflections
$T_{\min} = 0.939, \ T_{\max} = 0.969$	frequency: 120 min
1704 measured reflections	intensity decay: none
Refinement	

 $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.166$ S = 1.021704 reflections

reflections with $I > 2\sigma(I)$ 0.022 dard reflections uency: 120 min ensity decay: none

109 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N-H0A\cdots O^{i}$	0.86	2.05	2.824 (4)	149
	. 1 . 1			

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$

Data collection: CAD-4 Software (Enraf-Nonius,1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Testing and Analysis, Nanjing University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2393).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
- Arya, V. P., Kaul, C. L., Grewal, R. S., David, J., Talwalker, P. K. & Shenoy, S. J. (1977). Indian J. Chem. B, 15, 720-726.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Ishibashi, H., Uegaki, M., Sakai, M. & Takeda, Y. (2001). Tetrahedron, 57, 2115-2120.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2008). E64, o113 [https://doi.org/10.1107/S1600536807062046]

3,4-Dihydro-1,4-benzothiazepin-5(2H)-one

Zhi-Long Chen, Feng Hong and Sheng-Yin Zhao

S1. Comment

The title compound, (I), is an important intermediate used in the synthesis of dipeptidyl peptidase-IV inhibitors, cysteine proteases inhibitors and antihypertensive agent (Arya *et al.*, 1977). As part of our ongoing studies in this area, we report herein its synthesis and crystal structure.

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). Ring A (C3–C8) is, of course, planar, while ring B (S/N/C1–C3/C8/C9) is not planar and has a twisted conformation.

In the crystal structure, intermolecular N—H0A····Oⁱ hydrogen bonds [H0A····O 2.05 Å, N···O 2.824 (3) Å and N—H0A····O 149.4°] [symmetry code: (i) x + 1/2, 1/2 - y, -z] link the molecules into centrosymmetric dimers (Fig. 2), in which they seem to be effective in the stabilization of the structure.

S2. Experimental

The title compound, (I), was prepared by the literature method with a minor change (Ishibashi *et al.*, 2001). 2-Mercaptobenzoic acid methyl ester (3.3 g, 19.6 mmol) was added to the solution of sodium (0.5 g, 22.0 mmol) in ethanol (20 ml). The mixture was stirred at room temperature for 10 min, and then 2-oxazolidinone (1.7 g, 19.8 mmol) was added. The mixture was heated under reflux for 6 h. The solvent was evaporated off, water (15 ml) was added to the residue, and the whole mixture was extracted with ethyl acetate (15 ml×3). The combined ester layer was dried with sodium sulfate and evaporated. The residue was recrystallized from ethanol and dried in vacuum at 323 K to give the title compound as a white solid (yield; 60%, m.p. 466–468 K) (Ishibashi *et al.*, 2001, m.p. 465–466 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

S3. Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

3,4-Dihydro-1,4-benzothiazepin-5(2H)-one

Crystal data	
C ₉ H ₉ NOS	V = 1746.8 (6) Å ³
$M_r = 179.23$	Z = 8
Orthorhombic, Pbca	F(000) = 752
Hall symbol: -P 2ac 2ab	$D_{\rm x} = 1.363 {\rm ~Mg} {\rm ~m}^{-3}$
a = 8.0510 (16) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 8.9580 (18) Å	Cell parameters from 25 reflections
c = 24.220 (5) Å	$\theta = 9-13^{\circ}$

 $\mu = 0.32 \text{ mm}^{-1}$ T = 294 K

Data collection

Enraf–Nonius CAD-4	1704 independent reflections
diffractometer	1089 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.022$
Graphite monochromator	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 1.7^\circ$
$\omega/2\theta$ scans	$h = 0 \rightarrow 9$
Absorption correction: ψ scan	$k = 0 \rightarrow 10$
(North <i>et al.</i> , 1968)	$l = 0 \rightarrow 29$
$T_{\min} = 0.939, \ T_{\max} = 0.969$	3 standard reflections every 120 min
1704 measured reflections	intensity decay: none
Refinement	

Block, colorless

 $0.20 \times 0.20 \times 0.10 \text{ mm}$

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.062$	Hydrogen site location: inferred from
$wR(F^2) = 0.166$	neighbouring sites
S = 1.02	H-atom parameters constrained
1704 reflections	$w = 1/[\sigma^2(F_o^2) + (0.060P)^2 + 2.7P]$
109 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.23 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S	0.20239 (14)	0.28682 (12)	0.17431 (4)	0.0620 (4)	
0	-0.0306 (4)	0.2669 (4)	0.02305 (13)	0.0753 (10)	
Ν	0.2218 (4)	0.3438 (3)	0.04867 (12)	0.0452 (8)	
H0A	0.2651	0.2918	0.0225	0.054*	
C1	0.3328 (4)	0.4320 (4)	0.08290 (17)	0.0507 (10)	
H1A	0.2801	0.5269	0.0911	0.061*	
H1B	0.4336	0.4525	0.0623	0.061*	
C2	0.3779 (5)	0.3569 (5)	0.1361 (2)	0.0674 (13)	
H2A	0.4376	0.4275	0.1591	0.081*	
H2B	0.4524	0.2746	0.1282	0.081*	
C3	0.0396 (4)	0.4103 (4)	0.15575 (16)	0.0439 (9)	
C4	-0.0452 (5)	0.4849 (5)	0.19751 (19)	0.0633 (12)	
H4A	-0.0085	0.4768	0.2338	0.076*	

supporting information

C5	-0.1832 (6)	0.5708 (5)	0.1857 (2)	0.0695 (13)	
H5A	-0.2375	0.6212	0.2140	0.083*	
C6	-0.2398 (5)	0.5822 (5)	0.1333 (2)	0.0710 (14)	
H6A	-0.3327	0.6402	0.1255	0.085*	
C7	-0.1587 (4)	0.5068 (4)	0.09133 (18)	0.0518 (10)	
H7A	-0.1988	0.5141	0.0554	0.062*	
C8	-0.0196 (4)	0.4211 (4)	0.10152 (14)	0.0377 (8)	
C9	0.0579 (4)	0.3377 (4)	0.05503 (16)	0.0449 (9)	

)
)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S	0.0642 (7)	0.0529 (7)	0.0691 (7)	0.0009 (6)	-0.0161 (5)	0.0134 (5)
0	0.0568 (18)	0.088 (2)	0.081 (2)	-0.0102 (17)	-0.0143 (16)	-0.0395 (18)
Ν	0.0378 (18)	0.0425 (17)	0.0553 (17)	0.0002 (15)	0.0038 (14)	-0.0121 (14)
C1	0.0335 (19)	0.040 (2)	0.079 (3)	-0.0057 (18)	0.0068 (18)	-0.014 (2)
C2	0.038 (2)	0.059 (3)	0.106 (4)	0.001 (2)	-0.013 (2)	0.000 (3)
C3	0.0356 (19)	0.0351 (19)	0.061 (2)	-0.0092 (17)	0.0057 (17)	-0.0101 (17)
C4	0.061 (3)	0.062 (3)	0.067 (3)	-0.024 (2)	0.010 (2)	-0.012 (2)
C5	0.052 (3)	0.060 (3)	0.097 (4)	-0.008(2)	0.030 (3)	-0.024 (3)
C6	0.037 (2)	0.041 (2)	0.135 (4)	0.007 (2)	0.012 (3)	-0.007 (3)
C7	0.038 (2)	0.047 (2)	0.071 (2)	0.0017 (19)	0.0021 (19)	0.010(2)
C8	0.0312 (17)	0.0319 (18)	0.050(2)	-0.0033 (16)	-0.0032 (15)	-0.0037 (15)
C9	0.040 (2)	0.040 (2)	0.055 (2)	0.0005 (18)	-0.0045 (17)	-0.0031 (17)

Geometric parameters (Å, °)

SC3	1.773 (4)	C3—C4	1.391 (6)	
S—C2	1.802 (5)	C3—C8	1.401 (5)	
N—C9	1.330 (4)	C4—C5	1.382 (6)	
N—C1	1.453 (4)	C4—H4A	0.9300	
N—H0A	0.8600	C5—C6	1.354 (7)	
О—С9	1.229 (4)	С5—Н5А	0.9300	
C1—C2	1.499 (6)	C6—C7	1.384 (6)	
C1—H1A	0.9700	C6—H6A	0.9300	
C1—H1B	0.9700	C7—C8	1.380 (5)	
C2—H2A	0.9700	С7—Н7А	0.9300	
C2—H2B	0.9700	C8—C9	1.488 (5)	
C3—S—C2	103.42 (19)	C5—C4—C3	120.8 (4)	
C9—N—C1	124.5 (3)	C5—C4—H4A	119.6	
C9—N—H0A	117.8	C3—C4—H4A	119.6	
C1—N—H0A	117.8	C6—C5—C4	120.5 (4)	
N—C1—C2	113.3 (3)	C6—C5—H5A	119.8	
N—C1—H1A	108.9	C4—C5—H5A	119.8	
C2-C1-H1A	108.9	C5—C6—C7	119.5 (4)	
N—C1—H1B	108.9	С5—С6—Н6А	120.2	
C2-C1-H1B	108.9	С7—С6—Н6А	120.2	

supporting information

H1A—C1—H1B	107.7	C8—C7—C6	121.6 (4)
C1—C2—S	114.1 (3)	С8—С7—Н7А	119.2
C1—C2—H2A	108.7	С6—С7—Н7А	119.2
S—C2—H2A	108.7	C7—C8—C3	118.8 (3)
C1—C2—H2B	108.7	С7—С8—С9	119.0 (3)
S—C2—H2B	108.7	C3—C8—C9	122.2 (3)
H2A—C2—H2B	107.6	O—C9—N	121.5 (4)
C4—C3—C8	118.8 (4)	О—С9—С8	119.5 (3)
C4—C3—S	118.6 (3)	N—C9—C8	118.9 (3)
C8—C3—S	122.1 (3)		
C9—N—C1—C2	82.3 (5)	C6—C7—C8—C9	177.5 (4)
N—C1—C2—S	-49.9 (4)	C4—C3—C8—C7	0.8 (5)
C3—S—C2—C1	-29.6 (4)	S-C3-C8-C7	172.7 (3)
C2—S—C3—C4	-124.1 (3)	C4—C3—C8—C9	-176.4 (3)
C2—S—C3—C8	63.9 (3)	S-C3-C8-C9	-4.4 (5)
C8—C3—C4—C5	-1.4 (6)	C1—N—C9—O	176.3 (4)
S—C3—C4—C5	-173.6 (3)	C1—N—C9—C8	-2.7 (6)
C3—C4—C5—C6	1.0 (6)	С7—С8—С9—О	-45.4 (5)
C4—C5—C6—C7	0.1 (7)	C3—C8—C9—O	131.8 (4)
C5—C6—C7—C8	-0.7 (6)	C7—C8—C9—N	133.6 (4)
C6—C7—C8—C3	0.3 (6)	C3—C8—C9—N	-49.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N—H0A····O ⁱ	0.86	2.05	2.824 (4)	149

Symmetry code: (i) -x, y+1/2, -z+1/2.