# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 1,1'-(Butane-1,4-diyl)di-1*H*-imidazole– benzene-1,3,5-triol–water (1/1/1)

### Jin-Sheng Gao,\* Ying-Hui Yu and Guang-Feng Hou

College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China Correspondence e-mail: hgf1000@163.com

Received 11 June 2008; accepted 17 July 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.057; wR factor = 0.195; data-to-parameter ratio = 17.8.

The asymmetric unit of the title compound,  $C_{10}H_{14}N_{4}$ .  $C_{6}H_{6}O_{3}$ ·H<sub>2</sub>O, contains one molecule of benzene-1,3,5-triol, two half-molecules of 1,1'-butane-1,4-diyldi-1*H*-imidazole (each molecule is centrosymmetric) and one solvent water molecule. In the crystal structure, intermolecular O-H···O and O-H···N hydrogen bonds link all molecules into a threedimensional supramolecular network.

#### **Related literature**

For background and details of the synthesis of 1,1'-(1,4-butanediyl)diimidazole, see: Ma *et al.* (2003). For the related crystal structure of 1,1'-(1,4-butanediyl)diimidazole, see: Yu *et al.* (2008).



## Experimental

#### Crystal data

 $\begin{array}{lll} C_{10} H_{14} N_4 \cdot C_6 H_6 O_3 \cdot H_2 O & \gamma = 117.47 ~ (3)^{\circ} \\ M_r = 334.38 & V = 861.5 ~ (10) ~ Å^3 \\ \text{Triclinic, } P\overline{1} & Z = 2 \\ a = 7.964 ~ (5) ~ Å & Mo ~ K\alpha ~ \text{radiation} \\ b = 8.405 ~ (7) ~ Å & \mu = 0.09 ~ \text{mm}^{-1} \\ c = 14.800 ~ (9) ~ Å & T = 291 ~ (2) ~ \text{K} \\ \alpha = 98.40 ~ (3)^{\circ} & 0.31 \times 0.19 ~ \text{mm} \\ \beta = 92.93 ~ (2)^{\circ} \end{array}$ 

#### Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995)  $T_{\rm min} = 0.971, T_{\rm max} = 0.982$ 

## Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.057$ |
|---------------------------------|
| $wR(F^2) = 0.195$               |
| S = 1.05                        |
| 3911 reflections                |

## Table 1

| Hydrogen-bond | geometry ( | (A, °) | ). |  |
|---------------|------------|--------|----|--|
|---------------|------------|--------|----|--|

| $D - \mathbf{H} \cdots A$          | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|------------------------------------|------|-------------------------|--------------|---------------------------|
| O4−H22···O2                        | 0.85 | 1.94                    | 2.789 (3)    | 176                       |
| $O4-H21\cdots O1^i$                | 0.85 | 2.02                    | 2.751 (3)    | 143                       |
| O3−H2···O4 <sup>ii</sup>           | 0.82 | 1.84                    | 2.658 (3)    | 173                       |
| $O2-H6 \cdot \cdot \cdot N2^{iii}$ | 0.82 | 1.84                    | 2.636 (3)    | 164                       |
| $O1-H4\cdots N4^{iv}$              | 0.82 | 1.79                    | 2.596 (3)    | 170                       |
| Emmentary and any (i)              |      |                         | (;;;)        | 1 - 1                     |

8527 measured reflections

 $R_{\rm int} = 0.028$ 

220 parameters

 $\Delta \rho_{\text{max}} = 0.20 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\text{min}} = -0.27 \text{ e } \text{\AA}^{-3}$ 

3911 independent reflections

2370 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

Symmetry codes: (i) x, y + 1, z; (ii) x - 1, y - 1, z; (iii) -x + 2, -y + 1, -z + 1; (iv) x, y - 1, z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors thank Heilongjiang University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2422).

#### References

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Ma, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). *Inorg. Chem.* 42, 7531–7534. Rigaku (1998). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yu, Y.-H., Shi, A.-E., Su, Y., Hou, G.-F. & Gao, J.-S. (2008). Acta Cryst. E64, m628.

# supporting information

Acta Cryst. (2008). E64, o1560 [doi:10.1107/S160053680802240X]

# 1,1'-(Butane-1,4-diyl)di-1H-imidazole-benzene-1,3,5-triol-water (1/1/1)

## Jin-Sheng Gao, Ying-Hui Yu and Guang-Feng Hou

## S1. Comment

The 1,1'-(1,4-butanediyl)diimidazole can be used as a flexible ligand to construct coordination polymer materials (Ma *et al.*, 2003; Yu *et al.*, 2008). In this paper, we report the new title compound, (I), synthesized by the reaction of 1,1'-(1,4-butanediyl)diimidazole and *m*-trihydroxybenzene in an methanol solution.

The asymmetric unit of the title compound,  $C_{10}H_{14}N_4.C_6H_6O_3.H_2O$ , contains one molecule of benzene-1,3,5-triol, two halfs of two independent centrosymmetric molecules of 1,1'-butane-1,4-diyldi-1*H*-imidazole and one crystalline water molecule (Figure 1). The two 1,1'-(1,4-butanediyl)diimidazole molecules both lie on inversion center.

There are five symmetry independent 'active' H atoms in the crystal structure; all of them participate in hydrogen bonds, which link the 1,1'-(1,4-butanediyl)diimidazole molecules, *m*-trihydroxybenzene molecule and water solvent molecule into an infinite three-dimensional network (Table 1, Figure 2).

## **S2. Experimental**

1,1'-(1,4-Butanediyl)diimidazole was prepared from imidazole and 1,4-dibromobutane in dimethylsulfoxide solution (Ma *et al.*, 2003). *m*-trihydroxybenzene (0.126 g, 1 mmol) and 1,1'-(1,4-butanediyl)diimidazole (0.380 g, 2 mmol) were dissolved in hot methanol solution (15 ml) then a clear solution was obtained. The resulting solution was allowed to stand in a desiccator at room temperature for several days. Red crystals of (I) were obtained.

## S3. Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic); C—H = 0.97 Å (methylene) and with  $U_{iso}(H) = 1.2U_{eq}(C)$ . The hydroxy H atoms were placed in calculated positions and treated as riding on their parent atoms, with O—H = 0.82 Å and with  $U_{iso}(H) = 1.5U_{eq}(O)$ . Water H atoms were initially located in a difference Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å and with  $U_{iso}(H) = 1.5U_{eq}(O)$ .



## Figure 1

A portion of the crystal structure of (I), showing the atomic numbering and 30% probability displacement ellipsoids [symmetry code: (I) -x, -y, -z + 1; (II) -x, -y, -z]. Dashed line indicates the hydrogen-bonding interaction.



## Figure 2

A partial packing view, showing the three-dimensional hydrogen-bonding network. Dashed lines indicate the hydrogenbonding interactions. H atoms have been omitted for clarity.

## 1,1'-(Butane-1,4-diyl)di-1*H*-imidazole-benzene-1,3,5-triol-water (1/1/1)

| Crystal data                                 |                                                       |
|----------------------------------------------|-------------------------------------------------------|
| $C_{10}H_{14}N_4 \cdot C_6H_6O_3 \cdot H_2O$ | $\gamma = 117.47 \ (3)^{\circ}$                       |
| $M_r = 334.38$                               | $V = 861.5 (10) \text{ Å}^3$                          |
| Triclinic, P1                                | Z = 2                                                 |
| Hall symbol: -P 1                            | F(000) = 356                                          |
| a = 7.964 (5) Å                              | $D_{\rm x} = 1.289 { m Mg} { m m}^{-3}$               |
| b = 8.405 (7)  Å                             | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| c = 14.800 (9) Å                             | Cell parameters from 5362 reflections                 |
| $\alpha = 98.40 \ (3)^{\circ}$               | $\theta = 3.1 - 27.6^{\circ}$                         |
| $\beta = 92.93 \ (2)^{\circ}$                | $\mu = 0.09 \mathrm{~mm^{-1}}$                        |
|                                              |                                                       |

### T = 291 KBlock, red

Data collection

| Rigaku R-AXIS RAPID<br>diffractometer    | 8527 measured reflections<br>3911 independent reflections           |
|------------------------------------------|---------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube | 2370 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                   | $R_{\rm int} = 0.028$                                               |
| ωscans                                   | $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$ |
| Absorption correction: multi-scan        | $h = -10 \rightarrow 10$                                            |
| (ABSCOR; Higashi, 1995)                  | $k = -10 \rightarrow 10$                                            |
| $T_{\min} = 0.971, \ T_{\max} = 0.982$   | $l = -18 \rightarrow 19$                                            |
| Refinement                               |                                                                     |
| Refinement on $F^2$                      | Secondary atom site location: difference Fourier                    |
| Least-squares matrix: full               | map                                                                 |
| $R[F^2 > 2\sigma(F^2)] = 0.057$          | Hydrogen site location: inferred from                               |
| $wR(F^2) = 0.195$                        | neighbouring sites                                                  |
| S = 1.05                                 | H-atom parameters constrained                                       |

 $0.31 \times 0.31 \times 0.19 \text{ mm}$ 

3911 reflections $w = 1/[\sigma^2(F_o^2) + (0.1078P)^2 + 0.0441P]$ 220 parameterswhere  $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{max} < 0.001$ Primary atom site location: structure-invariant<br/>direct methods $\Delta\rho_{max} = 0.20$  e Å<sup>-3</sup>

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x          | У          | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|----|------------|------------|--------------|-----------------------------|--|
| C1 | 0.6082 (3) | 0.4322 (3) | 0.27525 (15) | 0.0495 (5)                  |  |
| H1 | 0.5935     | 0.5359     | 0.2907       | 0.059*                      |  |
| C2 | 0.4512 (3) | 0.2634 (3) | 0.24735 (14) | 0.0463 (5)                  |  |
| C3 | 0.4707 (3) | 0.1074 (3) | 0.22121 (14) | 0.0440 (5)                  |  |
| Н3 | 0.3639     | -0.0060    | 0.2009       | 0.053*                      |  |
| C4 | 0.6534 (3) | 0.1248 (3) | 0.22616 (14) | 0.0431 (5)                  |  |
| C5 | 0.8124 (3) | 0.2923 (3) | 0.25642 (14) | 0.0445 (5)                  |  |
| Н5 | 0.9340     | 0.3024     | 0.2609       | 0.053*                      |  |
| C6 | 0.7880 (3) | 0.4458 (3) | 0.28012 (14) | 0.0461 (5)                  |  |
| C7 | 0.5669 (4) | 0.2164 (4) | 0.62310 (17) | 0.0599 (6)                  |  |
| H7 | 0.5388     | 0.1550     | 0.6722       | 0.072*                      |  |
| C8 | 0.7113 (4) | 0.4008 (4) | 0.5372 (2)   | 0.0807 (9)                  |  |
| H8 | 0.8061     | 0.4952     | 0.5144       | 0.097*                      |  |
| C9 | 0.5333 (4) | 0.2938 (5) | 0.4948 (2)   | 0.0814 (9)                  |  |

| H9  | 0.4827     | 0.2997      | 0.4381        | 0.098*     |
|-----|------------|-------------|---------------|------------|
| C10 | 0.2441 (4) | 0.0249 (4)  | 0.5326 (2)    | 0.0770 (8) |
| H10 | 0.2144     | -0.0270     | 0.5878        | 0.092*     |
| H11 | 0.2360     | -0.0698     | 0.4837        | 0.092*     |
| C11 | 0.0998 (3) | 0.0796 (4)  | 0.50659 (19)  | 0.0655 (7) |
| H12 | 0.1248     | 0.1263      | 0.4498        | 0.079*     |
| H13 | 0.1094     | 0.1768      | 0.5543        | 0.079*     |
| C12 | 0.2720 (3) | 0.5418 (3)  | 0.10952 (16)  | 0.0561 (6) |
| H16 | 0.2520     | 0.5172      | 0.1684        | 0.067*     |
| C13 | 0.3851 (4) | 0.6740 (4)  | -0.00145 (17) | 0.0606 (6) |
| H14 | 0.4595     | 0.7618      | -0.0344       | 0.073*     |
| C14 | 0.2445 (4) | 0.5074 (4)  | -0.03878 (17) | 0.0613 (6) |
| H15 | 0.2052     | 0.4582      | -0.1013       | 0.074*     |
| C15 | 0.0159 (3) | 0.2379 (3)  | 0.02391 (18)  | 0.0572 (6) |
| H17 | -0.0806    | 0.2134      | -0.0265       | 0.069*     |
| H18 | -0.0429    | 0.2277      | 0.0801        | 0.069*     |
| C16 | 0.0830 (3) | 0.0959 (3)  | 0.00706 (15)  | 0.0502 (6) |
| H19 | 0.1731     | 0.1147      | 0.0593        | 0.060*     |
| H20 | 0.1485     | 0.1102      | -0.0471       | 0.060*     |
| N1  | 0.4412 (3) | 0.1758 (3)  | 0.54990 (13)  | 0.0574 (5) |
| N2  | 0.7338 (3) | 0.3514 (3)  | 0.61894 (15)  | 0.0661 (6) |
| N3  | 0.1703 (3) | 0.4238 (2)  | 0.03210 (12)  | 0.0497 (5) |
| N4  | 0.4031 (3) | 0.6959 (3)  | 0.09239 (14)  | 0.0573 (5) |
| 01  | 0.6793 (2) | -0.0244 (2) | 0.20167 (12)  | 0.0587 (5) |
| H4  | 0.5847     | -0.1054     | 0.1677        | 0.088*     |
| O2  | 0.9405 (2) | 0.6159 (2)  | 0.30773 (14)  | 0.0675 (5) |
| H6  | 1.0348     | 0.6068      | 0.3247        | 0.101*     |
| O3  | 0.2755 (2) | 0.2535 (2)  | 0.24808 (13)  | 0.0643 (5) |
| H2  | 0.1939     | 0.1464      | 0.2426        | 0.096*     |
| O4  | 0.9883 (2) | 0.9172 (3)  | 0.23236 (15)  | 0.0838 (6) |
| H21 | 0.8952     | 0.9328      | 0.2485        | 0.101*     |
| H22 | 0.9716     | 0.8225      | 0.2530        | 0.101*     |
|     |            |             |               |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | U <sup>23</sup> |
|-----|-------------|-------------|-------------|-------------|--------------|-----------------|
| C1  | 0.0515 (13) | 0.0396 (12) | 0.0590 (13) | 0.0239 (11) | 0.0033 (10)  | 0.0078 (10)     |
| C2  | 0.0425 (11) | 0.0467 (13) | 0.0518 (12) | 0.0225 (10) | 0.0043 (9)   | 0.0113 (9)      |
| C3  | 0.0374 (10) | 0.0401 (12) | 0.0503 (11) | 0.0165 (9)  | -0.0001 (9)  | 0.0055 (9)      |
| C4  | 0.0432 (11) | 0.0403 (12) | 0.0464 (11) | 0.0210 (10) | 0.0037 (9)   | 0.0067 (9)      |
| C5  | 0.0380 (11) | 0.0443 (13) | 0.0502 (11) | 0.0192 (10) | 0.0014 (9)   | 0.0090 (9)      |
| C6  | 0.0416 (11) | 0.0352 (12) | 0.0532 (12) | 0.0118 (10) | 0.0007 (9)   | 0.0086 (9)      |
| C7  | 0.0559 (14) | 0.0609 (16) | 0.0589 (14) | 0.0246 (13) | 0.0035 (11)  | 0.0120 (12)     |
| C8  | 0.0605 (17) | 0.069 (2)   | 0.117 (2)   | 0.0253 (16) | 0.0187 (17)  | 0.0479 (18)     |
| C9  | 0.074 (2)   | 0.096 (2)   | 0.0739 (17) | 0.0352 (19) | 0.0028 (15)  | 0.0350 (16)     |
| C10 | 0.0540 (16) | 0.0608 (18) | 0.104 (2)   | 0.0216 (14) | -0.0041 (15) | 0.0053 (15)     |
| C11 | 0.0538 (14) | 0.0644 (17) | 0.0701 (15) | 0.0261 (13) | -0.0046 (12) | 0.0007 (13)     |
| C12 | 0.0588 (14) | 0.0445 (14) | 0.0537 (13) | 0.0177 (12) | 0.0049 (11)  | 0.0011 (10)     |

| C13 | 0.0570 (14) | 0.0543 (16) | 0.0706 (16) | 0.0231 (13) | 0.0136 (12)  | 0.0216 (12)  |  |
|-----|-------------|-------------|-------------|-------------|--------------|--------------|--|
| C14 | 0.0626 (15) | 0.0632 (17) | 0.0537 (13) | 0.0266 (14) | 0.0070 (12)  | 0.0095 (12)  |  |
| C15 | 0.0451 (12) | 0.0400 (13) | 0.0717 (15) | 0.0117 (10) | 0.0073 (11)  | -0.0024 (11) |  |
| C16 | 0.0418 (12) | 0.0415 (13) | 0.0559 (12) | 0.0134 (10) | 0.0030 (10)  | 0.0000 (10)  |  |
| N1  | 0.0483 (11) | 0.0548 (13) | 0.0616 (12) | 0.0200 (10) | -0.0006 (9)  | 0.0080 (10)  |  |
| N2  | 0.0545 (13) | 0.0524 (13) | 0.0832 (15) | 0.0220 (11) | -0.0070 (11) | 0.0064 (11)  |  |
| N3  | 0.0477 (10) | 0.0376 (11) | 0.0563 (11) | 0.0159 (9)  | 0.0070 (9)   | 0.0026 (8)   |  |
| N4  | 0.0512 (11) | 0.0358 (11) | 0.0724 (13) | 0.0131 (9)  | 0.0036 (10)  | 0.0020 (9)   |  |
| O1  | 0.0444 (9)  | 0.0438 (9)  | 0.0818 (12) | 0.0222 (8)  | -0.0023 (8)  | -0.0069 (8)  |  |
| O2  | 0.0494 (10) | 0.0371 (9)  | 0.1014 (13) | 0.0126 (8)  | -0.0109 (9)  | 0.0056 (9)   |  |
| O3  | 0.0432 (9)  | 0.0548 (11) | 0.0984 (13) | 0.0274 (8)  | 0.0079 (9)   | 0.0107 (10)  |  |
| O4  | 0.0461 (10) | 0.0723 (14) | 0.1375 (18) | 0.0247 (10) | 0.0120 (11)  | 0.0456 (12)  |  |
|     |             |             |             |             |              |              |  |

Geometric parameters (Å, °)

| C1—C2    | 1.373 (3) | C11—C11 <sup>i</sup>      | 1.512 (5) |  |
|----------|-----------|---------------------------|-----------|--|
| C1—C6    | 1.380 (3) | C11—H12                   | 0.9700    |  |
| C1—H1    | 0.9300    | C11—H13                   | 0.9700    |  |
| C2—O3    | 1.364 (3) | C12—N4                    | 1.306 (3) |  |
| C2—C3    | 1.392 (3) | C12—N3                    | 1.336 (3) |  |
| C3—C4    | 1.390 (3) | C12—H16                   | 0.9300    |  |
| С3—Н3    | 0.9300    | C13—C14                   | 1.335 (4) |  |
| C4—O1    | 1.364 (3) | C13—N4                    | 1.365 (3) |  |
| C4—C5    | 1.378 (3) | C13—H14                   | 0.9300    |  |
| C5—C6    | 1.390 (3) | C14—N3                    | 1.356 (3) |  |
| С5—Н5    | 0.9300    | C14—H15                   | 0.9300    |  |
| C6—O2    | 1.365 (3) | C15—N3                    | 1.458 (3) |  |
| C7—N2    | 1.302 (3) | C15—C16                   | 1.512 (3) |  |
| C7—N1    | 1.326 (3) | C15—H17                   | 0.9700    |  |
| С7—Н7    | 0.9300    | C15—H18                   | 0.9700    |  |
| С8—С9    | 1.334 (4) | C16—C16 <sup>ii</sup>     | 1.516 (4) |  |
| C8—N2    | 1.364 (4) | C16—H19                   | 0.9700    |  |
| С8—Н8    | 0.9300    | C16—H20                   | 0.9700    |  |
| C9—N1    | 1.347 (4) | O1—H4                     | 0.8200    |  |
| С9—Н9    | 0.9300    | O2—H6                     | 0.8200    |  |
| C10—N1   | 1.471 (3) | O3—H2                     | 0.8200    |  |
| C10-C11  | 1.475 (4) | O4—H21                    | 0.8501    |  |
| C10—H10  | 0.9700    | O4—H22                    | 0.8500    |  |
| C10—H11  | 0.9700    |                           |           |  |
| C2—C1—C6 | 119.1 (2) | C10—C11—H13               | 109.4     |  |
| C2—C1—H1 | 120.4     | C11 <sup>i</sup> —C11—H13 | 109.4     |  |
| C6C1H1   | 120.4     | H12—C11—H13               | 108.0     |  |
| O3—C2—C1 | 117.6 (2) | N4—C12—N3                 | 111.8 (2) |  |
| O3—C2—C3 | 121.2 (2) | N4—C12—H16                | 124.1     |  |
| C1—C2—C3 | 121.2 (2) | N3—C12—H16                | 124.1     |  |
| C4—C3—C2 | 118.5 (2) | C14—C13—N4                | 109.7 (2) |  |
| С4—С3—Н3 | 120.7     | C14—C13—H14               | 125.1     |  |

| С2—С3—Н3                  | 120.7       | N4—C13—H14                 | 125.1       |
|---------------------------|-------------|----------------------------|-------------|
| O1—C4—C5                  | 118.36 (19) | C13—C14—N3                 | 106.8 (2)   |
| O1—C4—C3                  | 120.58 (19) | C13—C14—H15                | 126.6       |
| C5—C4—C3                  | 121.07 (19) | N3—C14—H15                 | 126.6       |
| C4—C5—C6                  | 118.88 (19) | N3—C15—C16                 | 112.84 (19) |
| С4—С5—Н5                  | 120.6       | N3—C15—H17                 | 109.0       |
| С6—С5—Н5                  | 120.6       | C16—C15—H17                | 109.0       |
| O2—C6—C1                  | 117.4 (2)   | N3—C15—H18                 | 109.0       |
| O2—C6—C5                  | 121.5 (2)   | C16—C15—H18                | 109.0       |
| C1—C6—C5                  | 121.1 (2)   | H17—C15—H18                | 107.8       |
| N2—C7—N1                  | 112.9 (2)   | C15—C16—C16 <sup>ii</sup>  | 111.3 (2)   |
| N2—C7—H7                  | 123.6       | C15—C16—H19                | 109.4       |
| N1—C7—H7                  | 123.6       | C16 <sup>ii</sup> —C16—H19 | 109.4       |
| C9—C8—N2                  | 110.0 (3)   | C15—C16—H20                | 109.4       |
| С9—С8—Н8                  | 125.0       | C16 <sup>ii</sup> —C16—H20 | 109.4       |
| N2—C8—H8                  | 125.0       | H19—C16—H20                | 108.0       |
| C8—C9—N1                  | 106.8 (3)   | C7—N1—C9                   | 106.2 (2)   |
| С8—С9—Н9                  | 126.6       | C7—N1—C10                  | 125.6 (2)   |
| N1—C9—H9                  | 126.6       | C9—N1—C10                  | 128.2 (2)   |
| N1-C10-C11                | 113.9 (2)   | C7—N2—C8                   | 104.1 (2)   |
| N1-C10-H10                | 108.8       | C12—N3—C14                 | 106.6 (2)   |
| C11—C10—H10               | 108.8       | C12—N3—C15                 | 127.4 (2)   |
| N1—C10—H11                | 108.8       | C14—N3—C15                 | 126.0 (2)   |
| C11—C10—H11               | 108.8       | C12—N4—C13                 | 105.2 (2)   |
| H10—C10—H11               | 107.7       | C4—O1—H4                   | 109.5       |
| C10-C11-C11 <sup>i</sup>  | 111.3 (3)   | С6—О2—Н6                   | 109.5       |
| C10-C11-H12               | 109.4       | С2—О3—Н2                   | 109.5       |
| C11 <sup>i</sup> —C11—H12 | 109.4       | H21—O4—H22                 | 102.9       |
|                           |             |                            |             |

Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y, -z.

## *Hydrogen-bond geometry (Å, °)*

| D—H···A                    | <i>D</i> —Н | H··· <i>A</i> | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|----------------------------|-------------|---------------|--------------|-------------------------|
| O4—H22…O2                  | 0.85        | 1.94          | 2.789 (3)    | 176                     |
| O4—H21···O1 <sup>iii</sup> | 0.85        | 2.02          | 2.751 (3)    | 143                     |
| O3—H2···O4 <sup>iv</sup>   | 0.82        | 1.84          | 2.658 (3)    | 173                     |
| O2—H6…N2 <sup>v</sup>      | 0.82        | 1.84          | 2.636 (3)    | 164                     |
| O1—H4···N4 <sup>vi</sup>   | 0.82        | 1.79          | 2.596 (3)    | 170                     |

Symmetry codes: (iii) *x*, *y*+1, *z*; (iv) *x*-1, *y*-1, *z*; (v) -*x*+2, -*y*+1, -*z*+1; (vi) *x*, *y*-1, *z*.