Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[(5,5'-dimethyl- 2,2'-bipyri-dine- $\kappa^{2} N, N^{\prime}$)cadmium(II)]-di- μ-chlorido]

Roya Ahmadi, ${ }^{\text {a }}$ Aida Khalighi, ${ }^{\text {a }}$ Khadijeh Kalateh, ${ }^{\text {a }}$ Vahid

 Amani ${ }^{\text {a* }}$ and Hamid Reza Khavasi ${ }^{\text {b }}$${ }^{\text {a }}$ Islamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and ${ }^{\mathbf{b}}$ Department of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
Correspondence e-mail: v_amani2002@yahoo.com

Received 26 August 2008; accepted 28 August 2008

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.033 ; w R$ factor $=0.090 ;$ data-to-parameter ratio $=22.1$.

The asymmetric unit of the title compound, $\left[\mathrm{CdCl}_{2}-\right.$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]_{n}$, contains one half-molecule; a twofold rotation axis passes through the Cd atom. The $\mathrm{Cd}^{\mathrm{II}}$ atom is sixcoordinated in a distorted octahedral configuration by two N atoms from 2,2'-bipyridine-5,5'-dimethyl and four bridging Cl atoms. The bridging function of the chloro atoms leads to a one-dimensional chain structure. There is a $\pi-\pi$ contact between the pyridine rings [centroid-centroid distance $=$ 3.9807 (9) Å].

Related literature

For related literature, see: Chen et al. (2003); Flook et al. (1973); Hu \& Englert (2002); Janiak et al. (1999); Satoh et al. (2001); Zhou et al. (2003); Khalighi et al. (2008).

Experimental

Crystal data

$\left[\mathrm{CdCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$
$M_{r}=367.55$

Monoclinic, C2/c
$a=20.365$ (4) A

$$
\begin{aligned}
& b=9.3135(19) \AA \\
& c=7.2313(14) \AA \\
& \beta=107.53(3)^{\circ} \\
& V=1307.9(5) \AA^{3} \\
& Z=4
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=2.06 \mathrm{~mm}^{-1}$
$T=298$ (2) K
$0.20 \times 0.17 \times 0.15 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)
$T_{\text {min }}=0.666, T_{\text {max }}=0.740$

4283 measured reflections 1724 independent reflections 1585 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.052$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
78 parameters
$w R\left(F^{2}\right)=0.089$
-atom parameters constrained
$S=1.08$
1724 reflections
$\Delta \rho_{\max }=0.68$ e \AA^{-3}
$\Delta \rho_{\min }=-0.76 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$2.7668(10)$	$\mathrm{N} 1-\mathrm{Cd} 1$	$2.355(2)$
$\mathrm{Cl} 1-\mathrm{Cd} 1$	$2.5457(9)$		
$\mathrm{Cl} 1-\mathrm{Cd} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$85.18(2)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl} 1$	$93.57(6)$
$\mathrm{C} 1-\mathrm{Cd} 1-\mathrm{Cl} 1^{\mathrm{ii}}$	$96.22(3)$	$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{Cl} 1$	$159.71(6)$
$\mathrm{Cl} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Cl} 1^{\mathrm{ii}}$	$177.73(2)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$93.89(5)$
$\mathrm{Cl} 1^{\mathrm{iii}}-\mathrm{Cd} 1-\mathrm{Cl} 1$	$104.77(4)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl} 1^{\mathrm{ii}}$	$84.24(5)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl} 1^{\mathrm{iii}}$	$159.71(6)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{iii}}$	$69.98(10)$

Symmetry codes: (i) $-x,-y+1,-z+2$; (ii) $x,-y+1, z-\frac{1}{2}$; (iii) $-x, y,-z+\frac{3}{2}$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2520).

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, H.-B., Zhou, Z.-H., Wan, H.-L. \& Ng, S. W. (2003). Acta Cryst. E59, m845-m846
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flook, R. J., Freeman, H. C., Huq, F. \& Rosalky, J. M. (1973). Acta Cryst. B29, 903-906.
Hu, C. \& Englert, U. (2002). CrystEngComm, 4, 20-25.
Janiak, C., Deblon, S., Wu, H. P., Kolm, M. J., Klufers, P., Piotrowski, H. \& Mayer, P. (1999). Eur. J. Inorg. Chem. pp. 1507-1521.
Khalighi, A., Ahmadi, R., Amani, V. \& Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.
Satoh, K., Suzuki, T. \& Sawada, K. (2001). Monatsh. Chem. 132, 1145-1155.
Sheldrick, G. M. (1998). SADABS. Bruker AXS, Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhou, Y.-F., Xu, Y., Yuan, D.-Q. \& Hong, M.-C. (2003). Acta Cryst. E59, m821m823.

supporting information

catena-Poly[[(5,5'-dimethyl- 2,2'-bipyridine- $\left.\kappa^{2} N, N^{\prime}\right)$ cadmium(II)]-di- μ-chlorido]

Roya Ahmadi, Aida Khalighi, Khadijeh Kalateh, Vahid Amani and Hamid Reza Khavasi

S1. Comment

In a recent paper, we reported the synthesis and crystal structure of $\left[\mathrm{Zn}\left(5,5^{\prime}-\mathrm{dmbpy}\right) \mathrm{Cl}_{2}\right]$, (Khalighi et al., 2008) [where $5,5^{\prime}$-dmbpy is $5,5^{\prime}$-dimethyl-2, 2^{\prime}-bipyridine]. Several $\mathrm{Cd}^{\text {II }}$ polymer complexes, with formula, $\left[\mathrm{Cd}(\mathrm{N}-\mathrm{N})(\mu-\mathrm{Cl})_{2}\right]_{\mathrm{n}}$, such as $\left[\mathrm{Cd}(\text { phen })(\mu-\mathrm{Cl})_{2}\right]_{\mathrm{n}}$, (II) (Chen et al., 2003), $\left\{\left[\mathrm{Cd}\left(5,5^{\prime}-\text { dabpy }\right)(\mu-\mathrm{Cl})_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}$, (III) (Janiak et al., 1999) and $[\mathrm{Cd}($ bipy $)(\mu-$ $\left.\mathrm{Cl})_{2}\right]_{\mathrm{n}}$, (IV) (Zhou et al., 2003) [where bipy is $2,2^{\prime}$-bipyridine, $5,5^{\prime}$-dabpy is $5,5^{\prime}$-diamino $-2,2^{\prime}$-bipyridine and phen is 1,10-phenanthroline] have been synthesized and characterized by single-crystal X-ray diffraction methods. There are also several $\mathrm{Cd}^{\text {II }}$ polymer complexes, with formula, $\left[\mathrm{Cd}(\mu-\mathrm{Cl})_{2} L_{2}\right]_{\mathrm{n}}$, such as $\left[\mathrm{Cd}(\mu-\mathrm{Cl})_{2}\left(3,5-\mathrm{Me}_{2} \mathrm{py}\right)_{2}\right]_{\mathrm{n}},(\mathrm{V}),\left[\mathrm{Cd}(\mu-\mathrm{Cl})_{2}(3,5-\right.$ $\left.\left.\mathrm{Br}_{2} \mathrm{py}\right)_{2}\right]_{\mathrm{n}}$, (VI) and $\left[\mathrm{Cd}(\mu-\mathrm{Cl})_{2}\left(3,5-\mathrm{Cl}_{2} \mathrm{py}\right)_{2}\right]_{\mathrm{n}}$, (VII) (Hu \& Englert, 2002), $\left[\mathrm{Cd}(\mu-\mathrm{Cl})_{2}(3-\mathrm{Mepy})_{2}\right]_{\mathrm{n}}$, (VIII) (Satoh, et al., 2001) and $\left[\mathrm{Cd}(\mu-\mathrm{Cl})_{2}(\mathrm{im})_{2}\right]_{\mathrm{n}}$, (IX) (Flook et al., 1973) [where py is pyridine and im is imidazole] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).

The asymmetric unit of the title compound, (I), contains one half-molecule (Fig. 1). The $\mathrm{Cd}^{\mathrm{II}}$ atom is six-coordinated in a distorted octahedral configuration by two N atoms from 2, 2^{\prime}-bipyridine- $5,5^{\prime}$-dimethyl and four bridging Cl atoms. The bridging function of chloro atoms leads to a one-dimensional chain structure. The $\mathrm{Cd}-\mathrm{Cl}$ and $\mathrm{Cd}-\mathrm{N}$ bond lengths and angles (Table 1) are within normal ranges, as in (II), (III) and (IV).

In the crystal structure, the $\pi-\pi$ contact (Fig. 2) between the pyridine rings, $\mathrm{Cg} 4 \cdots \mathrm{Cg} 4^{\mathrm{i}}$ [symmetry code: (i) $\mathrm{x}, 1 / 2-\mathrm{y}, \mathrm{z}$, where Cg 4 is centroid of the ring ($\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4-\mathrm{C} 6)]$ may stabilize the structure, with centroid-centroid distance of 3.9807 (9) Å.

S2. Experimental

For the preparation of the title compound, a solution of $5,5^{\prime}$-dimethyl-2, 2^{\prime}-bipyridine ($0.25 \mathrm{~g}, 1.33 \mathrm{mmol}$) in methanol $(10 \mathrm{ml})$ was added to a solution of $\mathrm{CdCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.27 \mathrm{~g}, 1.33 \mathrm{mmol})$ in methanol $(10 \mathrm{ml})$ at room temperature. The suitable crystals for X-ray analysis were obtained by methanol diffusion to a colorless solution in DMSO. Suitable crystals were isolated after one week (yield; $0.35 \mathrm{~g}, 71.6 \%$, m.p. $<573 \mathrm{~K}$).

S3. Refinement

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$ for aromatic and methyl H , respectively, and constrained to ride on their parent atoms with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) $-\mathrm{x}, \mathrm{y}, 3 / 2-\mathrm{z}$].

Figure 2
A packing diagram of the title compound.
catena-Poly[[(5,5'-dimethyl-2,2'-bipyridine- $\left.\kappa^{2} N, N^{\prime}\right)$ cadmium(II)]-di- μ-chlorido]

Crystal data

$\left[\mathrm{CdCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$
$M_{r}=367.55$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=20.365$ (4) \AA
$b=9.3135(19) \AA$
$c=7.2313(14) \AA$
$\beta=107.53$ (3) ${ }^{\circ}$
$V=1307.9(5) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=720 \\
& D_{\mathrm{x}}=1.867 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1004 \text { reflections } \\
& \theta=4.1-29.2^{\circ} \\
& \mu=2.06 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Block, colorless } \\
& 0.20 \times 0.17 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
$T_{\text {min }}=0.666, T_{\text {max }}=0.740$

> 4283 measured reflections
> 1724 independent reflections
> 1585 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.052$
> $\theta_{\max }=29.2^{\circ}, \theta_{\min }=4.1^{\circ}$
> $h=-27 \rightarrow 18$
> $k=-12 \rightarrow 11$
> $l=-9 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.089$
$S=1.08$
1724 reflections
78 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors $(\mathrm{gt}) \mathrm{etc}$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Cd1	0.0000	$0.58047(2)$	0.7500	$0.03912(12)$
C11	$0.07886(4)$	$0.41364(6)$	$0.99832(11)$	$0.04502(17)$
N1	$0.06292(10)$	$0.7876(2)$	$0.8828(3)$	$0.0383(4)$
C1	$0.12723(13)$	$0.7815(3)$	$1.0067(4)$	$0.0460(5)$
H1	0.1458	0.6918	1.0488	0.055^{*}
C2	$0.16716(14)$	$0.9023(3)$	$1.0746(5)$	$0.0480(6)$
C3	$0.23917(17)$	$0.8878(5)$	$1.2093(6)$	$0.0674(9)$
H3A	0.2665	0.8339	1.1466	0.081^{*}
H3B	0.2381	0.8389	1.3251	0.081^{*}
H3C	0.2589	0.9815	1.2422	0.081^{*}
C4	$0.13695(15)$	$1.0347(3)$	$1.0145(4)$	$0.0484(6)$
H4	0.1612	1.1187	1.0594	0.058^{*}
C5	$0.07094(15)$	$1.0418(3)$	$0.8883(4)$	$0.0435(5)$
H5	0.0504	1.1303	0.8486	0.052^{*}
C6	$0.03548(12)$	$0.9157(2)$	$0.8213(4)$	$0.0344(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.04181(17)$	$0.02643(15)$	$0.04102(17)$	0.000	$0.00027(11)$	0.000
C11	$0.0458(3)$	$0.0370(3)$	$0.0479(3)$	$0.0092(2)$	$0.0074(3)$	$0.0073(2)$
N1	$0.0373(9)$	$0.0313(9)$	$0.0426(10)$	$0.0009(8)$	$0.0064(8)$	$-0.0023(8)$
C1	$0.0381(11)$	$0.0426(13)$	$0.0501(13)$	$0.0045(10)$	$0.0024(10)$	$-0.0068(11)$
C2	$0.0364(12)$	$0.0536(16)$	$0.0507(14)$	$-0.0035(10)$	$0.0080(11)$	$-0.0133(11)$
C3	$0.0394(14)$	$0.082(2)$	$0.070(2)$	$-0.0029(15)$	$-0.0003(14)$	$-0.0177(18)$
C4	$0.0448(13)$	$0.0457(14)$	$0.0529(15)$	$-0.0112(11)$	$0.0117(11)$	$-0.0135(12)$
C5	$0.0487(13)$	$0.0303(10)$	$0.0533(14)$	$-0.0046(10)$	$0.0179(12)$	$-0.0062(10)$
C6	$0.0339(10)$	$0.0296(11)$	$0.0406(11)$	$0.0012(7)$	$0.0129(9)$	$-0.0020(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cd} 1-\mathrm{Cl1}^{\text {i }}$	2.5457 (9)	C2-C3	1.502 (4)
$\mathrm{Cd} 1-\mathrm{Cl}^{\text {ii }}$	2.7668 (10)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9600
$\mathrm{Cd} 1-\mathrm{Cl1}{ }^{\text {iii }}$	2.7668 (10)	C3-H3B	0.9600
Cl1-Cd1	2.5457 (9)	C3-H3C	0.9600
$\mathrm{Cl1}-\mathrm{Cd1}{ }^{\text {ii }}$	2.7668 (10)	C4-C5	1.380 (4)
Cd1-N1 ${ }^{\text {i }}$	2.355 (2)	C4-H4	0.9300
N1-Cd1	2.355 (2)	C5-C6	1.387 (3)
C1-N1	1.347 (3)	C5-H5	0.9300
C1-C2	1.389 (4)	C6-N1	1.336 (3)
C1-H1	0.9300	C6- $\mathrm{C}^{\text {i }}$	1.501 (5)
C2-C4	1.388 (4)		
$\mathrm{Cd} 1-\mathrm{Cl1}-\mathrm{Cd1} 1^{\text {ii }}$	94.82 (2)	N1-C1-H1	118.3
$\mathrm{Cl1}{ }^{\text {i }}-\mathrm{Cd1}-\mathrm{Cl}^{\text {ii }}$	96.22 (3)	C2- $\mathrm{C} 1-\mathrm{H} 1$	118.3
$\mathrm{Cl1}-\mathrm{Cd} 1-\mathrm{Cl1}{ }^{\text {ii }}$	85.18 (2)	C4-C2-C1	116.9 (3)
$\mathrm{Cl1}{ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{Cl1}^{\text {iii }}$	85.18 (2)	C4-C2-C3	122.5 (3)
$\mathrm{Cl1}-\mathrm{Cd} 1-\mathrm{Cl1}^{\text {iii }}$	96.22 (3)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	120.6 (3)
$\mathrm{Cl1}^{\text {iii-}} \mathrm{Cd} 1-\mathrm{Cl}^{\text {iii }}$	177.73 (2)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
$\mathrm{Cl1} 1{ }^{\text {i }} \mathrm{Cd} 1-\mathrm{Cl} 1$	104.77 (4)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl1}^{\text {i }}$	159.71 (6)	H3A-C3-H3B	109.5
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Cl}^{\text {i }}$	93.57 (6)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
N1-Cd1-Cl1	93.57 (6)	H3A-C3-H3C	109.5
N 1 - $\mathrm{Cd} 1-\mathrm{Cl1}$	159.71 (6)	$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl1}{ }^{\text {ii }}$	93.89 (5)	C5-C4-C2	120.1 (3)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{Cl1}^{\text {ii }}$	84.24 (5)	C5-C4-H4	120.0
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl}^{\text {iii }}$	84.24 (5)	C2-C4-H4	120.0
N1 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{Cl1} 1^{\text {iii }}$	93.89 (5)	C4-C5-C6	119.4 (3)
N1-Cd1-N1 ${ }^{\text {i }}$	69.98 (10)	C4-C5-H5	120.3
C6-N1-C1	119.0 (2)	C6-C5-H5	120.3
C6-N1-Cd1	118.31 (15)	N1-C6-C5	121.2 (2)
C1-N1-Cd1	122.49 (18)	N1-C6-C6 ${ }^{\text {i }}$	116.64 (13)
N1-C1-C2	123.3 (3)	C5-C6-C6 ${ }^{\text {i }}$	122.15 (16)

N1-C1-C2-C4	2.3 (5)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\text {i }}$	-176.1 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-178.6 (3)	C6-N1-Cd1- $\mathrm{Cl}^{1}{ }^{\text {i }}$	36.2 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 5$	-1.9 (4)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl1}{ }^{\text {i }}$	-138.71 (19)
C3-C2-C4-C5	179.1 (3)	C6-N1-Cd1-Cl1	-168.97 (17)
C2-C4-C5-C6	-0.5 (4)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl1}$	16.1 (2)
C4-C5-C6-N1	2.8 (4)	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl1}^{\text {ii }}$	-83.57 (18)
C4-C5-C6-C6 ${ }^{\text {i }}$	-177.9 (3)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl1}{ }^{\text {ii }}$	101.5 (2)
C5-C6-N1-C1	-2.5 (4)	C6-N1-Cd1- $\mathrm{Cl}^{1 i i}$	95.14 (18)
C6i-C6-N1-C1	178.2 (3)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl1}{ }^{\text {iii }}$	-79.8 (2)
C5-C6-N1-Cd1	-177.59 (18)	$\mathrm{Cd} 1{ }^{\text {ii }}-\mathrm{Cl1}-\mathrm{Cd} 1-\mathrm{N} 1$	93.61 (5)
C6 - 6 - $-\mathrm{N} 1-\mathrm{Cd} 1$	3.0 (3)	$\mathrm{Cd} 1{ }^{\mathrm{ii}}-\mathrm{Cl1}-\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{i}}$	58.77 (15)
C2- $21-\mathrm{N} 1-\mathrm{C} 6$	-0.1 (4)	$\mathrm{Cd1} 1{ }^{\text {ii }}-\mathrm{Cl} 1-\mathrm{Cd} 1-\mathrm{Cl1}^{\text {i }}$	-95.17 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1$	174.8 (2)	$\mathrm{Cd1} 1{ }^{\text {ii }}-\mathrm{Cl} 1-\mathrm{Cd} 1-\mathrm{Cl}^{\text {ii }}$	0.0
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\text {i }}$	-1.14 (13)	Cd1 ${ }^{\text {iii }} \mathrm{Cl1}-\mathrm{Cd} 1-\mathrm{Cl1}^{\text {iii }}$	178.20 (2)

Symmetry codes: (i) $-x, y,-z+3 / 2$; (ii) $-x,-y+1,-z+2$; (iii) $x,-y+1, z-1 / 2$.

