

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Ethyl {6-[6-(ethoxycarbonyl)picolinamidocarbonyl]picolinamidocarbonyl}picolinate

#### Xiao Li, Yaobing Wang, Chuanlang Zhan and Jiannian Yao\*

Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China, and Graduate University of the Chinese Academy of Sciences (GUCAS), Beijing 100049, People's Republic of China Correspondence e-mail: jnyao@iccas.ac.cn

Received 24 November 2008; accepted 4 December 2008

Key indicators: single-crystal X-ray study; T = 113 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.096; data-to-parameter ratio = 17.2.

The title molecule,  $C_{25}H_{21}N_5O_8$ , adopts a helical conformation, which is stabilized by two intramolecular bifurcated N- $H \cdots (N,N)$  hydrogen bonds.

#### **Related literature**

For a review on aromatic oligoamides (AOAs), see, for example: Huc (2004). For related compounds, see: Li *et al.* (2008).



#### **Experimental**

Crystal data

| $C_{25}H_{21}N_5O_8$ | a = 7.4952 (8) Å    |
|----------------------|---------------------|
| $M_r = 519.47$       | b = 19.998 (2) Å    |
| Monoclinic, $P2_1/c$ | c = 15.9966 (17)  Å |

 $\beta = 96.376 (1)^{\circ}$   $V = 2382.8 (4) \text{ Å}^3$  Z = 4Mo K $\alpha$  radiation

#### Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (CrystalcClear; Rigaku, 1999)  $T_{\rm min} = 0.966, T_{\rm max} = 0.980$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$  $wR(F^2) = 0.096$ S = 1.086101 reflections 354 parameters

Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$               | D-H        | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------|------------|-------------------------|--------------|--------------------------------------|
| N4–H4···N3                     | 0.885 (14) | 2.153 (14)              | 2.6131 (13)  | 111.7 (11)                           |
| N4-H4···N5                     | 0.885 (14) | 2.158 (14)              | 2.6297 (12)  | 112.8 (11)                           |
| $N2 - H2 \cdot \cdot \cdot N3$ | 0.878 (15) | 2.148 (14)              | 2.6006 (12)  | 111.4 (11)                           |
| $N2-H2\cdots N1$               | 0.878 (15) | 2.151 (14)              | 2.6329 (12)  | 114.0 (11)                           |

Data collection: *CrystalClear* (Rigaku, 1999); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *CrystalStructure* (Rigaku, 1999).

We thank the NSFC (Nos. 50221201, 20872145, 20733006), the Chinese Academy of Sciences and the National Research Fund for Fundamental Key Project 973 (2006CB806200, 2007CB936401) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2864).

#### References

Huc, I. (2004). Eur. J. Org. Chem. pp. 17-29.

Li, X., Zhan, C., Wang, Y. & Yao, J. (2008). *Chem. Commun.* pp. 2444–2446. Rigaku (1999). *CrystalClear* and *CrystalStructure*. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 $\mu = 0.11 \text{ mm}^{-1}$ 

T = 113 (2) K

 $R_{\rm int} = 0.025$ 

refinement  $\Delta \rho_{\text{max}} = 0.32 \text{ e} \text{ Å}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$ 

 $0.32 \times 0.22 \times 0.18 \text{ mm}$ 

30537 measured reflections

6101 independent reflections

5457 reflections with  $I > 2\sigma(I)$ 

H atoms treated by a mixture of

independent and constrained

# supporting information

Acta Cryst. (2009). E65, o51 [doi:10.1107/S1600536808040932]

# Ethyl {6-[6-(ethoxycarbonyl)picolinamidocarbonyl]picolinamidocarbonyl}picolinate

# Xiao Li, Yaobing Wang, Chuanlang Zhan and Jiannian Yao

# S1. Comment

The stucture of the title compound is shown in Fig. 1. Dimensions are available in the archived CIF. The hydrogen bonds are listed in Table 1. For background, see for example: Huc (2004). For related compounds, see: Li *et al.* (2008).

# S2. Experimental

The title compound was obtained from 2-ethoxycarbonyl- 6-pyridinoyl amide and 2,6-pyridinoyl dichloride and recrystallised from DMF/ethyl ether to yield colourless prisms of (I).

## S3. Refinement

The N-bound hydrogen atoms were located in a difference map and freely refined. The C-bound hydrogen atoms were geometrically placed (C—H = 0.95-0.99Å) and refined as riding with  $U_{iso}(H) = 1.2U_{eq}(C)$  or  $1.5U_{eq}(methyl C)$ .



# Figure 1

The molecular structure of (I) showing 50% displacement ellipsoids for the non-hydrogen atoms. The hydrogen bonds are shown as double-dashed lines.



### Figure 2

The formation of the title compound.

#### Ethyl {6-[6-(ethoxycarbonyl)picolinamidocarbonyl]picolinamidocarbonyl}picolinate

Crystal data

C<sub>25</sub>H<sub>21</sub>N<sub>5</sub>O<sub>8</sub>  $M_r = 519.47$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 7.4952 (8) Å b = 19.998 (2) Å c = 15.9966 (17) Å  $\beta = 96.376$  (1)° V = 2382.8 (4) Å<sup>3</sup> Z = 4

#### Data collection

Rigaku Saturn diffractometer Radiation source: rotating anode Confocal monochromator Detector resolution: 7.31 pixels mm<sup>-1</sup>  $\omega$  scans Absorption correction: multi-scan (CrystalcClear; Rigaku, 1999)  $T_{\min} = 0.966, T_{\max} = 0.980$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.037$  $wR(F^2) = 0.096$ S = 1.086101 reflections 354 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1080  $D_x = 1.448 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71070 \text{ Å}$ Cell parameters from 6439 reflections  $\theta = 2.6-26.0^{\circ}$   $\mu = 0.11 \text{ mm}^{-1}$  T = 113 KPrism, colorless  $0.32 \times 0.22 \times 0.18 \text{ mm}$ 

30537 measured reflections 6101 independent reflections 5457 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.025$  $\theta_{max} = 28.7^\circ, \ \theta_{min} = 2.4^\circ$  $h = -10 \rightarrow 10$  $k = -27 \rightarrow 24$  $l = -21 \rightarrow 21$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0481P)^2 + 0.4996P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.32$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.17$  e Å<sup>-3</sup>

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ Ζ х v 0.02977 (17) 01 -0.13320(11)0.87694 (4) 0.72665 (5) O2 0.85871 (4) 0.63149 (5) 0.02910(17) 0.06124 (11) O3 -0.16781(12)0.59423 (4) 0.88294 (6) 0.0395(2)04 0.03521 (19) -0.33384(11)0.65393 (4) 1.02334(5)05 -0.24510(13)0.99672 (4) 0.94666(5)0.0397(2)06 0.08420 (13) 1.00415 (4) 0.86648(5)0.0391(2)07 0.21781 (10) 0.70449 (4) 0.93765 (4) 0.02615 (16) 08 0.37042 (9) 0.67410 (4) 0.82982 (4) 0.02587 (16) N1 -0.10247(10)0.74283 (4) 0.76977(5)0.02135 (16) N2 0.70511 (4) -0.21026(12)0.91366 (5) 0.02446 (18) N3 -0.25843(11)0.82284(4)0.97648(5)0.02253(17)N4 -0.04508(12)0.91296 (4) 0.92339(5)0.02641 (18) N5 0.20551 (11) 0.83332 (4) 0.87730(5)0.02099 (16) C1 0.83975 (5) 0.68831 (6) -0.04508(13)0.02336(19)C2 0.02167 (19) -0.03851(12)0.76501 (5) 0.70001 (6) C3 0.02896 (13) 0.72245 (5) 0.64172 (6) 0.0245 (2) 0.029\* H3 0.0764 0.5936 0.7400 C4 0.02507 (13) 0.65399 (5) 0.65576(6) 0.0264(2)H4A 0.032\* 0.0657 0.6237 0.6162 C5 -0.03894(13)0.63047 (5) 0.72829(7)0.0262 (2) 0.031\* H5 -0.04190.5839 0.7398 0.02280 (19) C6 -0.09874(12)0.67674 (5) 0.78370 (6) C7 0.65290 (5) 0.86502(7) 0.0260(2)-0.16141(13)C8 -0.29462(13)0.70359 (5) 0.98611 (6) 0.0248(2)C9 -0.34013(13)0.77315 (5) 1.01301 (6) 0.0241(2)C10 -0.46393(14)0.78407(7)1.07012(7) 0.0334(2)H10 0.040\* -0.51800.7478 1.0961 C11 -0.50571(15)0.84953 (7) 1.08782 (8) 0.0400(3)H11 0.048\* -0.59040.8588 1.1263 C12 0.90164 (6) 1.04950(7) 0.0353(3)-0.42408(15)0.042\* H12 -0.45300.9468 1.0603 0.99470 (6) C13 -0.29831(14)0.88586(5) 0.0263(2)C14 -0.19693(15)0.93888 (5) 0.95273 (6) 0.0287(2)C15 0.08115 (15) 0.94475 (5) 0.88163 (6) 0.0272(2)C16 0.22015 (13) 0.89727 (5) 0.85479 (6) 0.0240(2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C17  | 0.35075 (15) | 0.92050 (6) | 0.80694 (7) | 0.0318 (2)   |
|------|--------------|-------------|-------------|--------------|
| H17  | 0.3587       | 0.9667      | 0.7939      | 0.038*       |
| C18  | 0.46885 (15) | 0.87489 (6) | 0.77877 (8) | 0.0350 (3)   |
| H18  | 0.5603       | 0.8892      | 0.7462      | 0.042*       |
| C19  | 0.45178 (14) | 0.80778 (6) | 0.79891 (7) | 0.0290 (2)   |
| H19  | 0.5286       | 0.7751      | 0.7788      | 0.035*       |
| C20  | 0.31961 (12) | 0.78940 (5) | 0.84913 (6) | 0.02153 (19) |
| C21  | 0.29545 (12) | 0.71868 (5) | 0.87815 (6) | 0.02146 (19) |
| C22  | 0.06263 (18) | 0.92999 (5) | 0.61175 (7) | 0.0342 (2)   |
| H22A | 0.0827       | 0.9568      | 0.6640      | 0.041*       |
| H22B | -0.0532      | 0.9435      | 0.5806      | 0.041*       |
| C23  | 0.2126 (2)   | 0.94046 (6) | 0.55884 (9) | 0.0482 (4)   |
| H23A | 0.3267       | 0.9282      | 0.5912      | 0.072*       |
| H23B | 0.2163       | 0.9876      | 0.5423      | 0.072*       |
| H23C | 0.1931       | 0.9124      | 0.5084      | 0.072*       |
| C24  | 0.35652 (15) | 0.60428 (5) | 0.85650 (7) | 0.0275 (2)   |
| H24A | 0.2315       | 0.5941      | 0.8666      | 0.033*       |
| H24B | 0.4356       | 0.5965      | 0.9094      | 0.033*       |
| C25  | 0.41238 (17) | 0.56010 (6) | 0.78771 (7) | 0.0352 (2)   |
| H25A | 0.3290       | 0.5662      | 0.7366      | 0.053*       |
| H25B | 0.4104       | 0.5133      | 0.8056      | 0.053*       |
| H25C | 0.5341       | 0.5721      | 0.7762      | 0.053*       |
| H4   | -0.0313 (18) | 0.8692 (7)  | 0.9284 (8)  | 0.036 (4)*   |
| H2   | -0.1908 (19) | 0.7449 (8)  | 0.8932 (9)  | 0.040 (4)*   |
|      |              |             |             |              |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |  |
|----|------------|------------|------------|-------------|-------------|-------------|--|
| 01 | 0.0356 (4) | 0.0277 (4) | 0.0269 (4) | 0.0077 (3)  | 0.0077 (3)  | -0.0011 (3) |  |
| O2 | 0.0378 (4) | 0.0242 (4) | 0.0268 (4) | 0.0026 (3)  | 0.0104 (3)  | 0.0007 (3)  |  |
| O3 | 0.0507 (5) | 0.0201 (4) | 0.0503 (5) | -0.0036 (3) | 0.0176 (4)  | 0.0003 (3)  |  |
| O4 | 0.0350 (4) | 0.0360 (4) | 0.0355 (4) | -0.0062 (3) | 0.0075 (3)  | 0.0099 (3)  |  |
| 05 | 0.0549 (5) | 0.0247 (4) | 0.0386 (5) | 0.0185 (4)  | 0.0005 (4)  | -0.0020 (3) |  |
| O6 | 0.0650 (6) | 0.0165 (4) | 0.0358 (4) | -0.0003 (4) | 0.0059 (4)  | 0.0058 (3)  |  |
| 07 | 0.0308 (4) | 0.0222 (4) | 0.0266 (4) | 0.0031 (3)  | 0.0085 (3)  | 0.0035 (3)  |  |
| 08 | 0.0267 (4) | 0.0239 (4) | 0.0280 (4) | 0.0045 (3)  | 0.0076 (3)  | 0.0009 (3)  |  |
| N1 | 0.0193 (4) | 0.0215 (4) | 0.0231 (4) | -0.0004 (3) | 0.0013 (3)  | -0.0035 (3) |  |
| N2 | 0.0272 (4) | 0.0203 (4) | 0.0269 (4) | -0.0018 (3) | 0.0075 (3)  | 0.0004 (3)  |  |
| N3 | 0.0231 (4) | 0.0256 (4) | 0.0186 (4) | 0.0055 (3)  | 0.0007 (3)  | -0.0008(3)  |  |
| N4 | 0.0374 (5) | 0.0147 (4) | 0.0277 (4) | 0.0050 (3)  | 0.0059 (3)  | 0.0009 (3)  |  |
| N5 | 0.0218 (4) | 0.0188 (4) | 0.0218 (4) | -0.0021 (3) | -0.0004 (3) | 0.0022 (3)  |  |
| C1 | 0.0249 (5) | 0.0267 (5) | 0.0179 (4) | 0.0022 (4)  | 0.0001 (3)  | -0.0014 (3) |  |
| C2 | 0.0187 (4) | 0.0245 (5) | 0.0211 (4) | 0.0011 (3)  | -0.0011 (3) | -0.0036 (3) |  |
| C3 | 0.0209 (4) | 0.0301 (5) | 0.0218 (4) | 0.0016 (4)  | 0.0001 (3)  | -0.0058 (4) |  |
| C4 | 0.0223 (4) | 0.0286 (5) | 0.0278 (5) | 0.0021 (4)  | -0.0002 (4) | -0.0109 (4) |  |
| C5 | 0.0234 (5) | 0.0220 (5) | 0.0325 (5) | -0.0012 (4) | 0.0005 (4)  | -0.0084 (4) |  |
| C6 | 0.0194 (4) | 0.0218 (5) | 0.0269 (5) | -0.0022 (3) | 0.0013 (3)  | -0.0053 (4) |  |
| C7 | 0.0241 (5) | 0.0208 (5) | 0.0334 (5) | -0.0028 (4) | 0.0052 (4)  | -0.0024 (4) |  |
|    |            |            |            |             |             |             |  |

# supporting information

| C8  | 0.0197 (4)  | 0.0309 (5) | 0.0239 (5) | -0.0021 (4) | 0.0020 (3)  | 0.0026 (4)  |
|-----|-------------|------------|------------|-------------|-------------|-------------|
| C9  | 0.0190 (4)  | 0.0340 (5) | 0.0189 (4) | 0.0008 (4)  | 0.0009 (3)  | -0.0006 (4) |
| C10 | 0.0233 (5)  | 0.0522 (7) | 0.0254 (5) | -0.0044 (5) | 0.0061 (4)  | -0.0067 (5) |
| C11 | 0.0255 (5)  | 0.0603 (8) | 0.0357 (6) | 0.0018 (5)  | 0.0099 (4)  | -0.0177 (6) |
| C12 | 0.0280 (5)  | 0.0441 (7) | 0.0332 (6) | 0.0112 (5)  | 0.0014 (4)  | -0.0141 (5) |
| C13 | 0.0260 (5)  | 0.0299 (5) | 0.0218 (4) | 0.0099 (4)  | -0.0017 (4) | -0.0048 (4) |
| C14 | 0.0375 (6)  | 0.0245 (5) | 0.0231 (5) | 0.0103 (4)  | -0.0013 (4) | -0.0029 (4) |
| C15 | 0.0412 (6)  | 0.0179 (4) | 0.0219 (4) | -0.0010 (4) | 0.0004 (4)  | 0.0022 (3)  |
| C16 | 0.0281 (5)  | 0.0200 (5) | 0.0230 (4) | -0.0040 (4) | -0.0017 (4) | 0.0036 (3)  |
| C17 | 0.0330 (5)  | 0.0279 (5) | 0.0338 (5) | -0.0085 (4) | 0.0005 (4)  | 0.0108 (4)  |
| C18 | 0.0250 (5)  | 0.0423 (7) | 0.0383 (6) | -0.0051 (4) | 0.0060 (4)  | 0.0166 (5)  |
| C19 | 0.0203 (4)  | 0.0365 (6) | 0.0304 (5) | 0.0028 (4)  | 0.0040 (4)  | 0.0096 (4)  |
| C20 | 0.0183 (4)  | 0.0236 (5) | 0.0220 (4) | 0.0000 (3)  | -0.0007 (3) | 0.0037 (3)  |
| C21 | 0.0180 (4)  | 0.0229 (5) | 0.0229 (4) | 0.0024 (3)  | 0.0001 (3)  | 0.0015 (3)  |
| C22 | 0.0510(7)   | 0.0238 (5) | 0.0287 (5) | 0.0041 (5)  | 0.0082 (5)  | 0.0031 (4)  |
| C23 | 0.0808 (10) | 0.0273 (6) | 0.0419 (7) | -0.0084 (6) | 0.0309 (7)  | -0.0045 (5) |
| C24 | 0.0320 (5)  | 0.0221 (5) | 0.0288 (5) | 0.0063 (4)  | 0.0056 (4)  | 0.0017 (4)  |
| C25 | 0.0420 (6)  | 0.0298 (6) | 0.0350 (6) | 0.0093 (5)  | 0.0095 (5)  | -0.0033 (4) |
|     |             |            |            |             |             |             |

# Geometric parameters (Å, °)

| 01—C1  | 1.2064 (12) | C8—C9    | 1.5063 (15) |
|--------|-------------|----------|-------------|
| O2—C1  | 1.3289 (12) | C9—C10   | 1.3898 (14) |
| O2—C22 | 1.4603 (13) | C10—C11  | 1.3825 (18) |
| O3—C7  | 1.2100 (13) | C10—H10  | 0.9500      |
| O4—C8  | 1.2109 (13) | C11—C12  | 1.3854 (19) |
| O5—C14 | 1.2123 (13) | C11—H11  | 0.9500      |
| O6—C15 | 1.2131 (13) | C12—C13  | 1.3930 (15) |
| O7—C21 | 1.2034 (12) | C12—H12  | 0.9500      |
| O8—C21 | 1.3434 (12) | C13—C14  | 1.5052 (16) |
| O8—C24 | 1.4671 (12) | C15—C16  | 1.5068 (15) |
| N1C2   | 1.3382 (13) | C16—C17  | 1.3880 (15) |
| N1—C6  | 1.3401 (13) | C17—C18  | 1.3809 (17) |
| N2—C7  | 1.3760 (13) | C17—H17  | 0.9500      |
| N2—C8  | 1.3809 (13) | C18—C19  | 1.3893 (16) |
| N2—H2  | 0.878 (15)  | C18—H18  | 0.9500      |
| N3—C13 | 1.3348 (13) | C19—C20  | 1.3924 (14) |
| N3—C9  | 1.3354 (13) | C19—H19  | 0.9500      |
| N4—C15 | 1.3732 (14) | C20—C21  | 1.5057 (13) |
| N4     | 1.3796 (14) | C22—C23  | 1.4949 (18) |
| N4—H4  | 0.885 (14)  | C22—H22A | 0.9900      |
| N5-C16 | 1.3364 (12) | C22—H22B | 0.9900      |
| N5-C20 | 1.3384 (13) | C23—H23A | 0.9800      |
| C1—C2  | 1.5064 (14) | C23—H23B | 0.9800      |
| C2—C3  | 1.3979 (13) | C23—H23C | 0.9800      |
| C3—C4  | 1.3882 (15) | C24—C25  | 1.5064 (14) |
| С3—Н3  | 0.9500      | C24—H24A | 0.9900      |
| C4—C5  | 1.3859 (15) | C24—H24B | 0.9900      |
|        |             |          |             |

| C4—H4A      | 0.9500      | С25—Н25А      | 0.9800      |
|-------------|-------------|---------------|-------------|
| С5—С6       | 1.3895 (14) | С25—Н25В      | 0.9800      |
| С5—Н5       | 0.9500      | С25—Н25С      | 0.9800      |
| C6—C7       | 1.5086 (14) |               |             |
|             |             |               |             |
| C1—O2—C22   | 116.47 (8)  | C12—C13—C14   | 122.10 (10) |
| C21—O8—C24  | 114.60 (8)  | O5—C14—N4     | 125.50 (11) |
| C2—N1—C6    | 117.56 (8)  | O5—C14—C13    | 123.18 (10) |
| C7—N2—C8    | 129.30 (9)  | N4            | 111.32 (8)  |
| C7—N2—H2    | 114.2 (9)   | O6—C15—N4     | 125.43 (11) |
| C8—N2—H2    | 116.3 (9)   | O6—C15—C16    | 122.08 (10) |
| C13—N3—C9   | 118.83 (9)  | N4—C15—C16    | 112.49 (8)  |
| C15—N4—C14  | 129.10 (9)  | N5-C16-C17    | 123.57 (10) |
| C15—N4—H4   | 115.0 (9)   | N5-C16-C15    | 116.50 (9)  |
| C14—N4—H4   | 115.7 (9)   | C17—C16—C15   | 119.90 (9)  |
| C16—N5—C20  | 117.56 (9)  | C18—C17—C16   | 118.41 (10) |
| O1—C1—O2    | 125.14 (10) | С18—С17—Н17   | 120.8       |
| 01—C1—C2    | 124.11 (9)  | С16—С17—Н17   | 120.8       |
| O2—C1—C2    | 110.75 (8)  | C17—C18—C19   | 118.91 (10) |
| N1—C2—C3    | 122.96 (9)  | С17—С18—Н18   | 120.5       |
| N1—C2—C1    | 114.99 (8)  | C19—C18—H18   | 120.5       |
| C3—C2—C1    | 122.04 (9)  | C18—C19—C20   | 118.59 (10) |
| C4—C3—C2    | 118.48 (10) | С18—С19—Н19   | 120.7       |
| С4—С3—Н3    | 120.8       | С20—С19—Н19   | 120.7       |
| С2—С3—Н3    | 120.8       | N5—C20—C19    | 122.90 (9)  |
| C5—C4—C3    | 119.04 (9)  | N5-C20-C21    | 114.16 (8)  |
| C5—C4—H4A   | 120.5       | C19—C20—C21   | 122.92 (9)  |
| C3—C4—H4A   | 120.5       | O7—C21—O8     | 124.66 (9)  |
| C4—C5—C6    | 118.31 (10) | O7—C21—C20    | 123.41 (9)  |
| C4—C5—H5    | 120.8       | O8—C21—C20    | 111.94 (8)  |
| С6—С5—Н5    | 120.8       | O2—C22—C23    | 106.44 (9)  |
| N1—C6—C5    | 123.57 (9)  | O2—C22—H22A   | 110.4       |
| N1—C6—C7    | 116.89 (8)  | C23—C22—H22A  | 110.4       |
| C5—C6—C7    | 119.53 (9)  | O2—C22—H22B   | 110.4       |
| O3—C7—N2    | 125.58 (10) | C23—C22—H22B  | 110.4       |
| O3—C7—C6    | 122.35 (9)  | H22A—C22—H22B | 108.6       |
| N2—C7—C6    | 112.06 (8)  | C22—C23—H23A  | 109.5       |
| O4—C8—N2    | 126.13 (10) | С22—С23—Н23В  | 109.5       |
| O4—C8—C9    | 122.81 (9)  | H23A—C23—H23B | 109.5       |
| N2—C8—C9    | 111.02 (8)  | С22—С23—Н23С  | 109.5       |
| N3—C9—C10   | 122.87 (10) | H23A—C23—H23C | 109.5       |
| N3—C9—C8    | 115.64 (8)  | H23B—C23—H23C | 109.5       |
| С10—С9—С8   | 121.45 (10) | O8—C24—C25    | 108.13 (8)  |
| C11—C10—C9  | 117.80 (11) | O8—C24—H24A   | 110.1       |
| C11—C10—H10 | 121.1       | C25—C24—H24A  | 110.1       |
| С9—С10—Н10  | 121.1       | O8—C24—H24B   | 110.1       |
| C10—C11—C12 | 120.02 (10) | C25—C24—H24B  | 110.1       |
| C10—C11—H11 | 120.0       | H24A—C24—H24B | 108.4       |
|             |             |               |             |

| C12—C11—H11     | 120.0        | C24—C25—H25A    | 109.5        |
|-----------------|--------------|-----------------|--------------|
| C11—C12—C13     | 118.10(11)   | C24—C25—H25B    | 109.5        |
| C11—C12—H12     | 121.0        | H25A—C25—H25B   | 109.5        |
| C13—C12—H12     | 121.0        | С24—С25—Н25С    | 109.5        |
| N3—C13—C12      | 122.34 (11)  | H25A—C25—H25C   | 109.5        |
| N3—C13—C14      | 115.55 (9)   | H25B—C25—H25C   | 109.5        |
|                 |              |                 |              |
| C22—O2—C1—O1    | -3.25 (15)   | C9—N3—C13—C12   | -0.98 (14)   |
| C22—O2—C1—C2    | 177.85 (8)   | C9—N3—C13—C14   | 178.44 (8)   |
| C6—N1—C2—C3     | 0.73 (13)    | C11—C12—C13—N3  | 1.89 (16)    |
| C6—N1—C2—C1     | -179.54 (8)  | C11—C12—C13—C14 | -177.48 (10) |
| O1—C1—C2—N1     | -15.36 (14)  | C15—N4—C14—O5   | -0.58 (18)   |
| O2—C1—C2—N1     | 163.55 (8)   | C15—N4—C14—C13  | 179.72 (9)   |
| O1—C1—C2—C3     | 164.37 (10)  | N3-C13-C14-O5   | 162.22 (10)  |
| O2—C1—C2—C3     | -16.71 (12)  | C12—C13—C14—O5  | -18.36 (16)  |
| N1—C2—C3—C4     | 1.73 (14)    | N3-C13-C14-N4   | -18.07 (12)  |
| C1—C2—C3—C4     | -177.98 (8)  | C12-C13-C14-N4  | 161.35 (9)   |
| C2—C3—C4—C5     | -2.40 (14)   | C14—N4—C15—O6   | 3.77 (18)    |
| C3—C4—C5—C6     | 0.72 (14)    | C14—N4—C15—C16  | -175.83 (9)  |
| C2—N1—C6—C5     | -2.58 (14)   | C20—N5—C16—C17  | -2.57 (14)   |
| C2—N1—C6—C7     | 176.59 (8)   | C20-N5-C16-C15  | 175.38 (8)   |
| C4—C5—C6—N1     | 1.87 (15)    | O6-C15-C16-N5   | 178.10 (10)  |
| C4—C5—C6—C7     | -177.27 (9)  | N4-C15-C16-N5   | -2.29 (12)   |
| C8—N2—C7—O3     | -8.40 (18)   | O6—C15—C16—C17  | -3.88 (15)   |
| C8—N2—C7—C6     | 170.93 (9)   | N4-C15-C16-C17  | 175.74 (9)   |
| N1—C6—C7—O3     | 178.12 (10)  | N5-C16-C17-C18  | 2.05 (16)    |
| C5—C6—C7—O3     | -2.68 (15)   | C15—C16—C17—C18 | -175.83 (10) |
| N1—C6—C7—N2     | -1.24 (12)   | C16—C17—C18—C19 | 0.37 (16)    |
| C5—C6—C7—N2     | 177.96 (9)   | C17—C18—C19—C20 | -2.07 (16)   |
| C7—N2—C8—O4     | 4.13 (18)    | C16—N5—C20—C19  | 0.70 (14)    |
| C7—N2—C8—C9     | -173.76 (9)  | C16—N5—C20—C21  | 179.34 (8)   |
| C13—N3—C9—C10   | -0.73 (14)   | C18-C19-C20-N5  | 1.58 (15)    |
| C13—N3—C9—C8    | 177.19 (8)   | C18—C19—C20—C21 | -176.94 (9)  |
| O4—C8—C9—N3     | 167.30 (9)   | C24—O8—C21—O7   | -1.92 (13)   |
| N2-C8-C9-N3     | -14.72 (12)  | C24—O8—C21—C20  | 178.12 (8)   |
| O4—C8—C9—C10    | -14.75 (15)  | N5-C20-C21-O7   | -19.00 (13)  |
| N2-C8-C9-C10    | 163.23 (9)   | C19—C20—C21—O7  | 159.64 (10)  |
| N3-C9-C10-C11   | 1.43 (15)    | N5-C20-C21-O8   | 160.96 (8)   |
| C8—C9—C10—C11   | -176.37 (10) | C19—C20—C21—O8  | -20.40 (13)  |
| C9—C10—C11—C12  | -0.44 (17)   | C1—O2—C22—C23   | 170.48 (10)  |
| C10-C11-C12-C13 | -1.12 (17)   | C21—O8—C24—C25  | 168.94 (8)   |

# Hydrogen-bond geometry (Å, °)

| D—H···A  | <i>D</i> —Н | H···A      | D····A      | <i>D</i> —H··· <i>A</i> |
|----------|-------------|------------|-------------|-------------------------|
| N4—H4…N3 | 0.885 (14)  | 2.153 (14) | 2.6131 (13) | 111.7 (11)              |
| N4—H4…N5 | 0.885 (14)  | 2.158 (14) | 2.6297 (12) | 112.8 (11)              |
| N2—H2…N3 | 0.878 (15)  | 2.148 (14) | 2.6006 (12) | 111.4 (11)              |

|            |            | supporting information |                                   |  |
|------------|------------|------------------------|-----------------------------------|--|
| 0.878 (15) | 2.151 (14) | 2.6329 (12)            | 114.0 (11)                        |  |
|            | 0.878 (15) | 0.878 (15) 2.151 (14)  | 0.878 (15) 2.151 (14) 2.6329 (12) |  |