organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

P-[N-(Diphenylphosphorothioyl)isopropylamino]-N-isopropyl-P-phenylthiophosphinic amide

Normen Peulecke,^a* Bhaskar R. Aluri,^a Anina Wöhl,^b Anke Spannenberg^a and Mohammed H. Al-Hazmi^c

^aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany, ^bLinde AG, Linde Engineering Division, Dr-Carl-von-Linde-Strasse 6-14, 82049 Pullach, Germany, and ^cSabic R&T Complex, Catalysis and Specialty Section, Chemical Research Department, PO Box 42503, Riyadh 11551, Saudi Arabia

Correspondence e-mail: normen.peulecke@catalysis.de

Received 6 April 2009; accepted 16 April 2009

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.002 Å; R factor = 0.028; wR factor = 0.074; data-to-parameter ratio = 20.2.

The title compound, C₂₄H₃₀N₂P₂S₂, was obtained by the reaction of Ph₂PN(*i*Pr)P(Ph)N(*i*Pr)H with elemental sulfur in tetrahydrofuran. In the solid state, intramolecular N-H···S hydrogen bonding influences the molecular conformation; a P-N-P-N torsion angle of 2.28 (9) $^{\circ}$ is observed. The two phenyl rings attached to one P atom form a dihedral angle of 74.02 (4)°.

Related literature

For the crystal structures of similar compounds, see: Alouani et al. (2007); Bent et al. (1990); Simón-Manso et al. (2002); Ziegler & Weiss (1968). Synthesis of the starting compound Ph₂PN(*i*Pr)P(Ph)N(*i*Pr)H was reported by Müller et al. (2009).

Experimental

Crystal data

$C_{24}H_{30}N_2P_2S_2$	$V = 2426.26 (10) \text{ Å}^3$
$M_r = 472.56$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 9.08354 (19) Å	$\mu = 0.37 \text{ mm}^{-1}$
b = 25.4654 (7) Å	$T = 200 { m K}$
c = 10.6557 (2) Å	$0.45 \times 0.25 \times 0.20 \text{ mm}$
$\beta = 100.1488 \ (17)^{\circ}$	

Data collection

Stoe IPDS-II diffractometer Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005) $T_{\min} = 0.835, T_{\max} = 0.954$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$ vR(F^2) = 0.074	H atoms treated by a mixture of independent and constrained
S = 1.02	refinement
561 reflections	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
275 parameters	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

40233 measured reflections

 $R_{\rm int} = 0.032$

5561 independent reflections

4459 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond	geometry	(Å,	°).	
---------------	----------	-----	-----	--

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N2-H2\cdots S1$	0.860 (19)	2.578 (19)	3.2963 (12)	141.7 (16)

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock. The authors thank Professor Uwe Rosenthal for his support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2547).

References

Alouani, K., Raouafi, N. & Guesmi, A. (2007). Struct. Chem. 18, 569-572.

- Bent, E. G., Schaeffer, R., Haltiwanger, R. C. & Norman, A. D. (1990). Inorg. Chem. 29, 2608-2613.
- Müller, B. H., Fritz, P., Bölt, H., Wöhl, A., Müller, W., Winkler, F., Wellenhofer, A., Rosenthal, U., Hapke, M., Peulecke, N., Al-Hazmi, M. H., Aliyev, V. O. & Mosa, F. M. (2009). WO Patent No. 2009006979. (Linde AG, Saudi Basic Industries Corporation, January 15, 2009.)

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Simón-Manso, E., Valderrama, M., Gantzel, P. & Kubiak, C. P. (2002). J. Organomet. Chem. 651, 90-97.
- Stoe & Cie (2005). X-SHAPE, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.
- Ziegler, M. L. & Weiss, J. (1968). Z. Anorg. Allg. Chem. 361, 136-146.

supporting information

Acta Cryst. (2009). E65, o1084 [doi:10.1107/S1600536809014238]

P-[*N*-(Diphenylphosphorothioyl)isopropylamino]-*N*-isopropyl-*P*-phenylthio-phosphinic amide

Normen Peulecke, Bhaskar R. Aluri, Anina Wöhl, Anke Spannenberg and Mohammed H. Al-Hazmi

S1. Comment

Linear phosphazanes can act as chelate ligands containing both hard (nitrogen) and soft (phosphorus) donor atoms. Often these compounds are thermally unstable and undergo rapid oxidation. Crystal structures of the compounds with a P(S)– N–P(S) unit are already known *e.g.* [(Me₂N)₂P(S)]₂NMe (Alouani *et al.*, 2007), C₆H₄(NH)P(S)EtNP(S)(NEt₂)Et (Bent *et al.*, 1990), [Ph₂P(S)]₂N(CHMePh) (Simón-Manso *et al.*, 2002) and NH₂(NHMe)P(S)N(Me)P(S)(NH₂)₂ (Ziegler *et al.*, 1968). In the present publication, we report on the formation and molecular structure of C₂₄H₃₀N₂P₂S₂, which was observed to be the single product of a complete oxidation of Ph₂PN(*i*Pr)P(Ph)N(*i*Pr)H with sulfur. The starting compound was synthesized as described in the patent WO 2009006979 (Müller *et al.*, 2009).

In the solid state a torsion angle P1—N1—P2—N2 of 2.28 (9)° was found for the title compound. The two phenyl rings attached to P1 form a dihedral angle of 74.02 (4)°. A weak intramolecular hydrogen bond N2—H2…S1 (Table 1) was observed.

S2. Experimental

204 mg (0,5 mmol) $Ph_2PN(iPr)P(Ph)N(iPr)H$ and 38.5 mg (1.2 mmol) sulfur were solved in 10 ml tetrahydrofuran and stirred for 24 h at 40°C. The solution was filtrated to remove unreacted sulfur. The major part of tetrahydrofuran was removed and the remaining solution was over-layered with *n*-hexane to get single crystals of the title compound, which are suitable for X-ray analysis. The white compound was fully characterized by standard analytical methods *e.g.* ³¹P NMR: (C₆D₆): 73.7, 65.9 (broad).

S3. Refinement

Atom H2 attached to N2 was found on a difference Fourier map and refined isotropically. All other H atoms were placed in idealized positions with d(C-H) = 0.98 (CH₃) and 0.95–1.00 Å (CH) and refined using a riding model with $U_{iso}(H)$ fixed at 1.5 $U_{eq}(C)$ for CH₃ and 1.2 $U_{eq}(C)$ for CH.

Figure 1

The molecular structure of the title compound showing the labelling scheme. Atomic displacement ellipsoids are drawn at the 30% probability level.

P-[N-(Diphenylphosphorothioyl)isopropylamino]-N- isopropyl-P-phenylthiophosphinic amide

Crystal data	
$C_{24}H_{30}N_{2}P_{2}S_{2}$ $M_{r} = 472.56$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc $a = 9.08354 (19) \text{ Å}$ $b = 25.4654 (7) \text{ Å}$ $c = 10.6557 (2) \text{ Å}$ $\beta = 100.1488 (17)^{\circ}$ $V = 2426.26 (10) \text{ Å}^{3}$ $Z = 4$	F(000) = 1000 $D_x = 1.294 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 32201 reflections $\theta = 1.6-29.6^{\circ}$ $\mu = 0.37 \text{ mm}^{-1}$ T = 200 K Prism, colourless $0.45 \times 0.25 \times 0.20 \text{ mm}$
Data collection Stoe IPDS-II diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005) $T_{min} = 0.835, T_{max} = 0.954$	40233 measured reflections 5561 independent reflections 4459 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -11 \rightarrow 11$ $k = -32 \rightarrow 32$ $l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: inferred from
$wR(F^2) = 0.074$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
5561 reflections	and constrained refinement
275 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0472P)^2]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.10362 (14)	0.36285 (5)	0.96160 (12)	0.0273 (3)	
C2	0.03459 (17)	0.41159 (5)	0.96335 (13)	0.0340 (3)	
H2A	-0.0041	0.4289	0.8855	0.041*	
C3	0.02223 (19)	0.43493 (6)	1.07847 (14)	0.0408 (3)	
H3A	-0.0262	0.4680	1.0794	0.049*	
C4	0.0804 (2)	0.41023 (6)	1.19223 (14)	0.0420 (4)	
H4A	0.0722	0.4264	1.2711	0.050*	
C5	0.15020 (18)	0.36216 (6)	1.19100 (14)	0.0390 (3)	
H5A	0.1908	0.3454	1.2691	0.047*	
C6	0.16137 (15)	0.33825 (6)	1.07616 (13)	0.0322 (3)	
H6A	0.2086	0.3050	1.0758	0.039*	
C7	-0.07285 (15)	0.29565 (5)	0.77859 (13)	0.0291 (3)	
C8	-0.19321 (16)	0.31171 (6)	0.83371 (15)	0.0368 (3)	
H8A	-0.1839	0.3417	0.8876	0.044*	
C9	-0.32629 (17)	0.28415 (7)	0.81026 (17)	0.0457 (4)	
H9A	-0.4081	0.2954	0.8482	0.055*	
C10	-0.34149 (18)	0.24077 (7)	0.73275 (16)	0.0444 (4)	
H10A	-0.4343	0.2227	0.7150	0.053*	
C11	-0.22185 (19)	0.22362 (7)	0.68090 (16)	0.0450 (4)	
H11A	-0.2314	0.1932	0.6286	0.054*	
C12	-0.08742 (17)	0.25057 (6)	0.70473 (15)	0.0382 (3)	
H12A	-0.0045	0.2380	0.6701	0.046*	
C13	0.00109 (16)	0.38464 (6)	0.57993 (13)	0.0356 (3)	
H13A	0.0478	0.4120	0.5323	0.043*	

C14	-0.14292 (18)	0.40909 (7)	0.60510 (17)	0.0489 (4)
H14A	-0.1196	0.4391	0.6628	0.073*
H14B	-0.1998	0.3830	0.6444	0.073*
H14C	-0.2026	0.4210	0.5244	0.073*
C15	-0.0230 (2)	0.33753 (7)	0.49071 (15)	0.0519 (4)
H15A	0.0741	0.3238	0.4780	0.078*
H15B	-0.0812	0.3483	0.4084	0.078*
H15C	-0.0773	0.3101	0.5283	0.078*
C16	0.47654 (15)	0.43480 (5)	0.92161 (13)	0.0312 (3)
H16A	0.4224	0.4681	0.9341	0.037*
C17	0.5216 (2)	0.40897 (7)	1.05016 (16)	0.0526 (5)
H17A	0.4318	0.4007	1.0856	0.079*
H17B	0.5854	0.4329	1.1078	0.079*
H17C	0.5767	0.3766	1.0405	0.079*
C18	0.61096 (18)	0.44872 (7)	0.86165 (17)	0.0447 (4)
H18A	0.5771	0.4653	0.7786	0.067*
H18B	0.6671	0.4167	0.8502	0.067*
H18C	0.6755	0.4731	0.9174	0.067*
C19	0.34557 (15)	0.40237 (5)	0.57479 (12)	0.0284 (3)
C20	0.39580 (17)	0.35128 (6)	0.56205 (13)	0.0353 (3)
H20A	0.3719	0.3245	0.6171	0.042*
C21	0.48033 (17)	0.33927 (6)	0.46965 (14)	0.0387 (3)
H21A	0.5154	0.3045	0.4621	0.046*
C22	0.51353 (17)	0.37820 (6)	0.38836 (13)	0.0385 (3)
H22A	0.5725	0.3702	0.3256	0.046*
C23	0.46149 (18)	0.42831 (6)	0.39823 (14)	0.0411 (4)
H23A	0.4831	0.4547	0.3410	0.049*
C24	0.37749 (17)	0.44093 (6)	0.49107 (13)	0.0349 (3)
H24A	0.3420	0.4758	0.4974	0.042*
N1	0.11346 (12)	0.37534 (4)	0.70123 (10)	0.0262 (2)
N2	0.37172 (13)	0.39982 (5)	0.83996 (11)	0.0284 (2)
H2	0.392 (2)	0.3668 (8)	0.8425 (17)	0.047 (5)*
P1	0.10723 (4)	0.328578 (13)	0.81322 (3)	0.02526 (8)
P2	0.25813 (4)	0.418481 (13)	0.71077 (3)	0.02554 (8)
S1	0.26642 (4)	0.275781 (13)	0.82829 (4)	0.03334 (9)
S2	0.20212 (4)	0.491907 (14)	0.71375 (3)	0.03440 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0269 (6)	0.0265 (6)	0.0292 (6)	-0.0029 (5)	0.0068 (5)	0.0017 (5)
C2	0.0442 (8)	0.0298 (7)	0.0289 (7)	0.0034 (6)	0.0086 (6)	0.0017 (5)
C3	0.0550 (10)	0.0326 (8)	0.0375 (8)	0.0051 (7)	0.0156 (7)	-0.0029 (6)
C4	0.0554 (10)	0.0430 (9)	0.0294 (7)	-0.0052 (7)	0.0122 (7)	-0.0048 (6)
C5	0.0424 (8)	0.0451 (9)	0.0291 (7)	-0.0018 (7)	0.0052 (6)	0.0054 (6)
C6	0.0317 (7)	0.0325 (7)	0.0331 (7)	0.0000 (6)	0.0073 (5)	0.0054 (5)
C7	0.0267 (6)	0.0282 (6)	0.0330 (7)	-0.0016 (5)	0.0072 (5)	0.0023 (5)
C8	0.0300 (7)	0.0338 (7)	0.0485 (8)	0.0001 (6)	0.0119 (6)	-0.0020 (6)

C9	0.0288 (7)	0.0477 (9)	0.0627 (10)	-0.0018 (7)	0.0144 (7)	0.0030 (8)
C10	0.0320 (8)	0.0465 (9)	0.0526 (9)	-0.0124 (7)	0.0017 (7)	0.0090 (7)
C11	0.0451 (9)	0.0409 (9)	0.0476 (9)	-0.0132 (7)	0.0046 (7)	-0.0073 (7)
C12	0.0363 (8)	0.0358 (8)	0.0439 (8)	-0.0054 (6)	0.0113 (6)	-0.0072 (6)
C13	0.0334 (7)	0.0448 (8)	0.0270 (7)	-0.0068 (6)	0.0008 (6)	0.0053 (6)
C14	0.0325 (8)	0.0620 (11)	0.0488 (9)	0.0044 (7)	-0.0019 (7)	0.0148 (8)
C15	0.0611 (11)	0.0634 (11)	0.0297 (7)	-0.0207 (9)	0.0038 (7)	-0.0062 (7)
C16	0.0304 (7)	0.0290 (7)	0.0332 (7)	-0.0036 (5)	0.0029 (5)	-0.0045 (5)
C17	0.0590 (11)	0.0577 (11)	0.0356 (8)	-0.0176 (8)	-0.0068 (7)	0.0018 (7)
C18	0.0335 (8)	0.0423 (9)	0.0588 (10)	-0.0073 (7)	0.0092 (7)	-0.0004 (7)
C19	0.0267 (6)	0.0305 (7)	0.0282 (6)	-0.0042 (5)	0.0052 (5)	-0.0006 (5)
C20	0.0418 (8)	0.0318 (7)	0.0351 (7)	0.0000 (6)	0.0143 (6)	0.0012 (6)
C21	0.0420 (8)	0.0396 (8)	0.0366 (8)	0.0024 (6)	0.0127 (6)	-0.0036 (6)
C22	0.0374 (8)	0.0509 (9)	0.0294 (7)	-0.0050 (7)	0.0117 (6)	-0.0048 (6)
C23	0.0497 (9)	0.0445 (9)	0.0312 (7)	-0.0092 (7)	0.0129 (6)	0.0032 (6)
C24	0.0402 (8)	0.0327 (7)	0.0327 (7)	-0.0038 (6)	0.0086 (6)	0.0026 (5)
N1	0.0245 (5)	0.0288 (6)	0.0253 (5)	-0.0024 (4)	0.0042 (4)	-0.0001 (4)
N2	0.0288 (6)	0.0246 (6)	0.0311 (6)	-0.0022 (4)	0.0035 (5)	-0.0017 (4)
P1	0.02403 (16)	0.02397 (16)	0.02854 (16)	-0.00070 (12)	0.00670 (12)	-0.00037 (12)
P2	0.02616 (16)	0.02422 (16)	0.02674 (16)	-0.00164 (12)	0.00604 (12)	-0.00036 (12)
S1	0.02795 (17)	0.02701 (17)	0.0461 (2)	0.00268 (13)	0.00941 (14)	0.00022 (14)
S2	0.03846 (19)	0.02535 (17)	0.04002 (19)	0.00214 (14)	0.00865 (15)	0.00032 (13)

Geometric parameters (Å, °)

C1—C6	1.3900 (18)	C15—H15A	0.9800
C1—C2	1.3922 (19)	C15—H15B	0.9800
C1—P1	1.8113 (13)	C15—H15C	0.9800
C2—C3	1.385 (2)	C16—N2	1.4714 (17)
C2—H2A	0.9500	C16—C17	1.510 (2)
C3—C4	1.385 (2)	C16—C18	1.516 (2)
С3—НЗА	0.9500	C16—H16A	1.0000
C4—C5	1.380 (2)	C17—H17A	0.9800
C4—H4A	0.9500	C17—H17B	0.9800
C5—C6	1.386 (2)	C17—H17C	0.9800
С5—Н5А	0.9500	C18—H18A	0.9800
С6—Н6А	0.9500	C18—H18B	0.9800
C7—C12	1.385 (2)	C18—H18C	0.9800
С7—С8	1.391 (2)	C19—C24	1.3911 (19)
C7—P1	1.8173 (14)	C19—C20	1.393 (2)
С8—С9	1.382 (2)	C19—P2	1.8178 (14)
C8—H8A	0.9500	C20—C21	1.385 (2)
C9—C10	1.372 (2)	C20—H20A	0.9500
С9—Н9А	0.9500	C21—C22	1.384 (2)
C10-C11	1.374 (2)	C21—H21A	0.9500
C10—H10A	0.9500	C22—C23	1.371 (2)
C11—C12	1.385 (2)	C22—H22A	0.9500
C11—H11A	0.9500	C23—C24	1.389 (2)

C12—H12A	0.9500	C23—H23A	0.9500
C13—C14	1.515 (2)	C24—H24A	0.9500
C13—N1	1.5177 (16)	N1—P1	1.6938 (11)
C13—C15	1.522 (2)	N1—P2	1.7021 (11)
C13—H13A	1.0000	N2—P2	1.6386 (12)
C14—H14A	0.9800	N2—H2	0.860 (19)
C14—H14B	0.9800	P1—S1	1.9602 (5)
C14—H14C	0.9800	P2—S2	1.9395 (5)
C6—C1—C2	119.42 (12)	N2-C16-C17	108.44 (12)
C6—C1—P1	119.16 (10)	N2-C16-C18	112.18 (12)
C2—C1—P1	121.25 (10)	C17—C16—C18	112.00 (13)
C3—C2—C1	120.10 (13)	N2—C16—H16A	108.0
С3—С2—Н2А	120.0	C17—C16—H16A	108.0
C1—C2—H2A	120.0	C18—C16—H16A	108.0
C4—C3—C2	120.14 (14)	C16—C17—H17A	109.5
С4—С3—НЗА	119.9	C16—C17—H17B	109.5
С2—С3—НЗА	119.9	H17A—C17—H17B	109.5
C5—C4—C3	119.97 (14)	C16—C17—H17C	109.5
C5—C4—H4A	120.0	H17A—C17—H17C	109.5
C3—C4—H4A	120.0	H17B—C17—H17C	109.5
C4—C5—C6	120.22 (14)	C16—C18—H18A	109.5
С4—С5—Н5А	119.9	C16—C18—H18B	109.5
С6—С5—Н5А	119.9	H18A—C18—H18B	109.5
C5—C6—C1	120.14 (13)	C16—C18—H18C	109.5
С5—С6—Н6А	119.9	H18A—C18—H18C	109.5
С1—С6—Н6А	119.9	H18B—C18—H18C	109.5
С12—С7—С8	118.70 (13)	C24—C19—C20	119.20 (13)
C12—C7—P1	119.36 (11)	C24—C19—P2	121.44 (11)
C8—C7—P1	121.67 (11)	C20—C19—P2	119.01 (10)
C9—C8—C7	120.14 (14)	C21—C20—C19	120.49 (13)
С9—С8—Н8А	119.9	C21—C20—H20A	119.8
С7—С8—Н8А	119.9	C19—C20—H20A	119.8
С10—С9—С8	120.65 (15)	C22—C21—C20	119.73 (15)
С10—С9—Н9А	119.7	C22—C21—H21A	120.1
С8—С9—Н9А	119.7	C20—C21—H21A	120.1
C9—C10—C11	119.69 (14)	C23—C22—C21	120.16 (14)
С9—С10—Н10А	120.2	C23—C22—H22A	119.9
C11—C10—H10A	120.2	C21—C22—H22A	119.9
C10-C11-C12	120.20 (15)	C22—C23—C24	120.66 (14)
C10-C11-H11A	119.9	С22—С23—Н23А	119.7
C12—C11—H11A	119.9	С24—С23—Н23А	119.7
C11—C12—C7	120.53 (14)	C23—C24—C19	119.74 (14)
C11—C12—H12A	119.7	C23—C24—H24A	120.1
C7—C12—H12A	119.7	C19—C24—H24A	120.1
C14—C13—N1	112.68 (12)	C13—N1—P1	127.50 (9)
C14—C13—C15	113.63 (14)	C13—N1—P2	110.27 (8)
N1—C13—C15	114.19 (13)	P1—N1—P2	122.20 (6)

C14—C13—H13A	105.1	C16—N2—P2	124.56 (10)
N1—C13—H13A	105.1	C16—N2—H2	117.2 (12)
C15—C13—H13A	105.1	P2—N2—H2	114.3 (12)
C13—C14—H14A	109.5	N1—P1—C1	106.51 (6)
C13—C14—H14B	109.5	N1—P1—C7	108.78 (6)
H14A—C14—H14B	109.5	C1-P1-C7	104 21 (6)
C13—C14—H14C	109.5	N1—P1—S1	115.10 (4)
H14A—C14—H14C	109.5	C1 - P1 - S1	112.68 (5)
H14B— $C14$ — $H14C$	109.5	C7-P1-S1	108 95 (5)
C13 - C15 - H15A	109.5	N2—P2—N1	103.20 (6)
C13—C15—H15B	109.5	$N_2 P_2 C_{19}$	107 78 (6)
H15A—C15—H15B	109.5	N1 - P2 - C19	104 35 (6)
C13 - C15 - H15C	109.5	N2 P2 S2	101.33(0) 11321(5)
H15A - C15 - H15C	109.5	N1P2\$2	113.21(3) 114.92(4)
H15B-C15-H15C	109.5	C19 P2 S2	117.52(7)
	109.5	01)-12-52	112.34 (3)
C6—C1—C2—C3	-0.8(2)	C13—N1—P1—C7	-8.37 (13)
P1—C1—C2—C3	174.52 (12)	P2—N1—P1—C7	173.69 (7)
C1—C2—C3—C4	0.9 (2)	$C_{13} = N_1 = P_1 = S_1$	114.18 (11)
$C_{2}-C_{3}-C_{4}-C_{5}$	-0.3(3)	P2-N1-P1-S1	-63.76(8)
C_{3} C_{4} C_{5} C_{6}	-0.5(2)	C6-C1-P1-N1	-152.53(10)
C4-C5-C6-C1	0.7 (2)	C2-C1-P1-N1	32.18 (13)
$C^2 - C^1 - C^6 - C^5$	0.0(2)	C6-C1-P1-C7	92.55 (11)
$P_1 - C_1 - C_6 - C_5$	-17541(11)	$C_2 - C_1 - P_1 - C_7$	-82.74(12)
C12 - C7 - C8 - C9	-2.7(2)	C6-C1-P1-S1	-2541(12)
P1	-17674(12)	C_{2} C_{1} P_{1} S_{1}	15929(10)
C7-C8-C9-C10	0.0(3)	C12 - C7 - P1 - N1	92.52 (12)
C8-C9-C10-C11	19(3)	C8-C7-P1-N1	-9343(13)
C9-C10-C11-C12	-13(3)	C12-C7-P1-C1	$-154\ 16\ (12)$
C10-C11-C12-C7	-1.4(2)	C8 - C7 - P1 - C1	19 89 (13)
C_{8} C_{7} C_{12} C_{11}	33(2)	C12 - C7 - P1 - S1	-33.67(13)
$P_1 = C_7 = C_{12} = C_{11}$	$177\ 57\ (12)$	C8 - C7 - P1 - S1	140.39(11)
C_{24} C_{19} C_{20} C_{21}	19(2)	$C_{16} = N_{2} = P_{2} = N_{1}$	$-152\ 15\ (11)$
$P_{2} = C_{19} = C_{20} = C_{21}$	-171.38(11)	$C_{16} N_{2} P_{2} C_{19}$	97.82 (12)
$C_{19} = C_{20} = C_{21} = C_{22}$	-0.8(2)	$C_{16} = N_{2} = P_{2} = S_{2}$	-27.31(12)
C_{20} C_{21} C_{22} C_{21} C_{22} C_{23}	-0.8(2)	C13 N1 P2 N2	-175.97(9)
$C_{20} = C_{21} = C_{22} = C_{23}$	12(2)	$P1_N1_P2_N2$	2 28 (9)
$C_{21} = C_{22} = C_{23} = C_{24} = C_{19}$	-0.1(2)	$C_{13} = N_1 = P_2 = C_{10}$	-63.41(10)
$C_{22} = C_{23} = C_{24} = C_{13}$	-1.5(2)	$P_1 = N_1 = P_2 = C_{19}$	114.84(8)
$P_2 = C_{19} = C_{24} = C_{23}$	1.5(2) 171 67 (11)	11 - 11 - 12 - 019 C13 N1 P2 S2	60.30(10)
12 - 019 - 024 - 025	73 52 (16)	$P_1 = P_1 = P_2 = P_2$	-121.44(6)
C14 - C15 - N1 - F1	-58.00(17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-121.44(0) -120.52(12)
C13 - C13 - N1 - P1	-38.09(17)	C_{24} C_{19} P_{2} N_{2}	-120.32(12)
$C_{14} = C_{13} = N_1 = P_2$	-100.34(12) 120.05(12)	C_{20} C_{19} P_{2} N_{2} N_{2}	32.01(13)
C13 - C13 - N1 - P2	120.03(12)	C_{24} C_{19} P_{2} N_{1}	130.24 (11)
$C_1 / - C_1 O - N_2 - P_2$	101.08(12)	C_{20} C_{19} P_{2} N_{1} C_{24} C_{10} P_{2} C_{2}	-30.02(12)
C_{10} $-C_{10}$ $-N_2$ $-P_2$ C_{12} N_1 $-D_1$ C_1	-/4.09(13)	$C_{24} = C_{19} = P_2 = S_2$	5.00(13)
$V_{13} - N_{1} - V_{1} - V_{1}$	-120.16(12)	C20—C19—P2—S2	1/8.14 (10)
P2-NI-PI-CI	01.90 (9)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2…S1	0.860 (19)	2.578 (19)	3.2963 (12)	141.7 (16)