

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,6-Dimethyl-1-phenyl-4-(2-thienyl)-8-(2-thienvlmethylene)-5.6.7.8-tetrahydro-1H-pyrazolo[3,4-b][1,6]naphthyridine

Juhua Peng,^a Zhengguo Han,^b Ning Ma^b and Shujiang Tu^b*

^aLianyungang Teachers' College, Lianyungang 222006, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China Correspondence e-mail: laotu2001@263.net

Received 18 April 2009; accepted 21 April 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.057; wR factor = 0.176; data-to-parameter ratio = 13.5.

In the molecule of the title compound, $C_{26}H_{22}N_4S_2$, the pyrazole ring is oriented at a dihedral angle of $0.85 (3)^{\circ}$ with respect to the adjacent naphthyridine ring, while the other ring of naphthyridine adopts an envelope conformation. The dihedral angle between phenyl and pyrazole rings is $87.65 (3)^{\circ}$. In the crystal structure, weak intermolecular C-H···N interactions link the molecules into chains. The π - π contacts between the naphthyridine rings and the naphthyridine and thiophene rings [centroid-centroid distances = 3.766 (3) and 3.878 (3) Å] may further stabilize the structure. A weak $C-H \cdots \pi$ interaction is also present.

Related literature

For the biological activity of naphthyridines, see: Abou et al. (2001); Aleem et al. (2002); Blagg et al. (2003); Ohta et al. (2004). For the biological properties of pyrazolopyridine derivatives, see: Lynck et al. (1988); Fucini et al. (2008); Warshakoon et al. (2006). They are also active against gram positive and gram negative bacteria, see: El-Dean et al. (1991) and inhibit cholesterol formation, see: Fujikawa et al. (1989, 1990). For bond-length data, see: Allen et al. (1987).

 $\gamma = 104.201 \ (1)^{\circ}$

Z = 2

V = 1131.0 (3) Å³

Mo $K\alpha$ radiation

 $0.18 \times 0.17 \times 0.16 \text{ mm}$

with $I > 2\sigma(I)$

 $\mu = 0.26 \text{ mm}^{-1}$ T = 298 K

Experimental

Crystal data

C26H22N4S2 $M_r = 454.60$ Triclinic, $P\overline{1}$ a = 10.7187 (16) Åb = 10.9704 (19) Å c = 11.153 (2) Å $\alpha = 109.785 \ (2)^{\circ}$ $\beta = 102.364 (1)^{\circ}$

Data collection

Bruker SMART CCD area-detector	5846 measured reflections
diffractometer	3918 independent reflections
Absorption correction: multi-scan	2322 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.025$
$T_{\min} = 0.955, T_{\max} = 0.960$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ 291 parameters $wR(F^2) = 0.176$ H-atom parameters constrained S = 1.00 $\Delta \rho_{\rm max} = 0.31 \text{ e A}^ \Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$ 3918 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D - \mathbf{H} \cdot \cdot \cdot A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} C26-H26\cdots N2^{i}\\ C20-H20\cdots Cg6^{ii} \end{array}$	0.93	2.57	3.445 (3)	157
	0.93	2.93	3.680 (3)	139

Symmetry codes: (i) x + 1, y + 1, z; (ii) x + 1, y + 1, z + 1. Cg6 is the centroid of the S1/ C23-C26 ring

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20672090), the Natural Science Foundation of Jiangsu Province (grant No. BK2006033) and the Six Kinds of Professional Elite Foundation of Jiangsu Province (grant No. 06-A-039) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2672).

References

- Abou, G. H., Mohie, A. S. & Naglaa, A. A. (2001). Indian J. Chem. Sect. B, 40, 213–221.
- Aleem, G., Yibin, Z., John, J. M. & Roy, L. K. (2002). J. Med. Chem. 45, 5173– 5181.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Blagg, J., Fray, M. J., Lewis, M. L., Mathias, J. P., Stefaniak, M. H. & Stobie, A. (2003). PCT Int. Appl. WO 2003076427 A1 20030918.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-Dean, A. M., Aralla, A. A., Mohamed, T. A. & Geies, A. A. (1991). Z. Naturforsch. Teil B, 46, 541–546.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Fucini, R. V., Hanan, E. J., Romanowski, M. J., Elling, R. A., Lew, W., Barr, K. J., Zhu, J., Yoburn, J. C., Liu, Y., Fahr, B. T., Fan, J. & Lu, Y. (2008). *Bioorg. Med. Chem. Lett.* 18, 5648–5652.
- Fujikawa, Y., Suzuki, M., Iwasaki, H., Sakashita, M. & Kitahara, M. (1989). Eur. Pat. Appl. EP 339 358.
- Fujikawa, Y., Suzuki, M., Iwasaki, H., Sakashita, M. & Kitahara, M. (1990). Chem Abstr. 113, 23903.
- Lynck, B., Khan, M., Teo, H. & Pedrotti, F. (1988). Can. J. Chem. 66, 420-428.
- Ohta, T., Komoriya, S., Yoshino, T., Uoto, K., Nakamoto, Y., Naito, H., Mochizuki, A., Nagata, T., Kanno, H., Haginoya, N., Yoshikawa, K., Nagamochi, M., Kobayashi, S. & Ono, M. (2004). PCT Int. Appl. WO 2004058715 A1 20040715.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Warshakoon, N. C., Wu, S., Boyer, A., Kawamoto, R., Renock, S. & Xu, K. (2006). *Bioorg. Med. Chem. Lett.* 16, 5687–5690.

supporting information

Acta Cryst. (2009). E65, o1109-o1110 [doi:10.1107/S1600536809014810]

3,6-Dimethyl-1-phenyl-4-(2-thienyl)-8-(2-thienylmethylene)-5,6,7,8-tetrahydro-1*H*-pyrazolo[3,4-*b*][1,6]naphthyridine

Juhua Peng, Zhengguo Han, Ning Ma and Shujiang Tu

S1. Comment

Naphthyridines have received considerable attention over the past years because of their wide range of biological activities including antitumor (Abou *et al.*, 2001; Aleem *et al.*, 2002), anti-inflammatory (Blagg *et al.*, 2003) and antifungal (Ohta *et al.*, 2004) activities. Pyrazolopyridine derivatives are important heterocyclic compounds, which exhibit a diverse range of biological properties such as new inhibitors of xanthine oxidases (Lynck *et al.*, 1988), as Polo-like kinase 1 inhibitors (Fucini *et al.*, 2008) and HIF-1alpha prolyl hydroxylase inhibitors (Warshakoon *et al.*, 2006). They also have proven to be active against gram positive and gram negative bacterias (El-Dean *et al.*, 1991) and also as compounds for the inhibition of cholesterol formation (Fujikawa *et al.*, 1989, 1990). We report herein the crystal structure of the title compound, containing the skeletons of naphthyridine and pyrazolopyridine.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (N1/N2/C1-C3), B (N3/C2-C4/C6/C7), D (C10-C15), E (S2/C17-C20) and F (S1/C23-C26) are, of course, planar, and they are oriented at dihedral angles of A/B = 0.85 (3), A/D = 87.65 (3) and B/E = 18.10 (4) °. Ring C (N4/C5-C9) adopts envelope conformation, with atom N4 displaced by 0.660 (3) Å from the plane of the other ring atoms.

In the crystal structure, weak intermolecular C-H···N interactions (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure. The π - π contacts between the naphthyridine rings and the naphthyridine and thiophene rings, Cg2—Cg2ⁱ and Cg2—Cg6ⁱⁱ [symmetry codes: (i) 1 - x, 1 - y, 1 - z, (ii) -x, 1 - y, 1 - z, where Cg2 and Cg6 are centroids of the rings B (N3/C2-C4/C6/C7) and F (S1/C23-C26), respectively] may further stabilize the structure, with centroid-centroid distances of 3.766 (3) and 3.878 (3) Å, respectively. There also exists a weak C-H··· π interaction (Table 1).

S2. Experimental

The title compound was prepared by the reaction of of 1-methyl-3,5-bis(thiophen -2-ylmethylene)piperidin-4-one (1 mmol) and 3-methyl-1-phenyl-1*H*-pyrazol -5- amine (1 mmol) in glycol (2 ml).

S3. Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

3,6-Dimethyl-1-phenyl-4-(2-thienyl)-8-(2-thienylmethylene)-5,6,7,8-tetrahydro- 1*H*-pyrazolo[3,4-*b*] [1,6]naphthyridine

Crystal data

 $C_{26}H_{22}N_4S_2$ $M_r = 454.60$ Triclinic, *P*1 Hall symbol: -P 1 a = 10.7187 (16) Å b = 10.9704 (19) Å c = 11.153 (2) Å a = 109.785 (2)° $\beta = 102.364$ (1)° $\gamma = 104.201$ (1)° V = 1131.0 (3) Å³

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Z = 2 F(000) = 476 $D_x = 1.335 \text{ Mg m}^{-3}$ Melting point = 452–453 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1616 reflections $\theta = 2.3-24.8^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 298 KBlock, yellow $0.18 \times 0.17 \times 0.16 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.955$, $T_{max} = 0.960$ 5846 measured reflections 3918 independent reflections 2322 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.025$	$k = -12 \rightarrow 13$
$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 2.1^{\circ}$	$l = -13 \rightarrow 13$
$h = -12 \rightarrow 11$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: inferred from
$wR(F^2) = 0.176$	neighbouring sites
S = 1.00	H-atom parameters constrained
3918 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0957P)^2]$
291 parameters	where $P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.43 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S 1	1.09086 (12)	0.85725 (11)	1.54317 (11)	0.0768 (4)
S2	0.32900 (12)	0.10633 (12)	1.04051 (11)	0.0826 (4)
N1	0.5616 (3)	0.2524 (3)	1.5917 (3)	0.0481 (7)
N2	0.4340 (3)	0.1519 (3)	1.5362 (3)	0.0529 (8)
N3	0.6907 (3)	0.4256 (3)	1.5345 (3)	0.0442 (7)
N4	0.7120 (3)	0.5378 (3)	1.2194 (3)	0.0507 (7)
C1	0.3741 (3)	0.1548 (3)	1.4219 (3)	0.0477 (9)
C2	0.4614 (3)	0.2600 (3)	1.3994 (3)	0.0432 (8)
C3	0.5805 (3)	0.3207 (3)	1.5104 (3)	0.0417 (8)
C4	0.4568 (3)	0.3106 (3)	1.2988 (3)	0.0416 (8)
C5	0.5739 (3)	0.4802 (4)	1.2173 (3)	0.0518 (9)
H5A	0.5198	0.4087	1.1282	0.062*
H5B	0.5338	0.5520	1.2358	0.062*
C6	0.5706 (3)	0.4201 (3)	1.3199 (3)	0.0432 (8)
C7	0.6845 (3)	0.4735 (3)	1.4386 (3)	0.0417 (8)
C8	0.8071 (3)	0.5867 (3)	1.4584 (3)	0.0435 (8)
C9	0.7958 (4)	0.6439 (4)	1.3528 (4)	0.0565 (10)
H9A	0.7567	0.7160	1.3767	0.068*
H9B	0.8861	0.6849	1.3509	0.068*
C10	0.6506 (3)	0.2705 (3)	1.7162 (3)	0.0458 (8)
C11	0.5969 (4)	0.2282 (4)	1.8042 (4)	0.0588 (10)
H11	0.5032	0.1886	1.7824	0.071*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C12	0.6838 (4)	0.2456 (4)	1.9247 (4)	0.0659 (11)	
H12	0.6477	0.2174	1.9836	0.079*	
C13	0.8214 (4)	0.3032 (4)	1.9589 (4)	0.0690 (11)	
H13	0.8788	0.3151	2.0405	0.083*	
C14	0.8741 (4)	0.3437 (4)	1.8704 (4)	0.0643 (11)	
H14	0.9679	0.3820	1.8923	0.077*	
C15	0.7896 (4)	0.3281 (4)	1.7496 (4)	0.0555 (10)	
H15	0.8265	0.3564	1.6911	0.067*	
C16	0.2334 (4)	0.0573 (4)	1.3364 (4)	0.0625 (11)	
H16A	0.2020	-0.0031	1.3773	0.094*	
H16B	0.2341	0.0036	1.2485	0.094*	
H16C	0.1737	0.1087	1.3284	0.094*	
C17	0.3367 (3)	0.2461 (3)	1.1741 (3)	0.0459 (8)	
C18	0.2173 (3)	0.2811 (4)	1.1483 (3)	0.0498 (9)	
H18	0.2016	0.3556	1.2057	0.060*	
C19	0.1251 (4)	0.1809 (5)	1.0180 (4)	0.0675 (11)	
H19	0.0395	0.1832	0.9821	0.081*	
C20	0.1702 (4)	0.0850 (4)	0.9523 (4)	0.0657 (11)	
H20	0.1202	0.0143	0.8675	0.079*	
C21	0.7112 (4)	0.5941 (4)	1.1182 (4)	0.0688 (11)	
H21A	0.6811	0.6719	1.1425	0.103*	
H21B	0.6506	0.5245	1.0320	0.103*	
H21C	0.8015	0.6230	1.1136	0.103*	
C22	0.9196 (3)	0.6288 (3)	1.5629 (3)	0.0482 (9)	
H22	0.9119	0.5826	1.6186	0.058*	
C23	1.0514 (4)	0.7338 (3)	1.6046 (3)	0.0480 (9)	
C24	1.1687 (3)	0.7475 (3)	1.7027 (3)	0.0425 (8)	
H24	1.1705	0.6932	1.7511	0.051*	
C25	1.2830 (4)	0.8555 (4)	1.7167 (4)	0.0665 (11)	
H25	1.3696	0.8787	1.7750	0.080*	
C26	1.2548 (4)	0.9214 (4)	1.6380 (4)	0.0740 (13)	
H26	1.3193	0.9945	1.6364	0.089*	

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0715 (8)	0.0687 (7)	0.0740 (8)	-0.0057 (6)	0.0132 (6)	0.0382 (6)
0.0723 (8)	0.0782 (8)	0.0661 (7)	0.0296 (6)	0.0035 (6)	0.0026 (6)
0.0430 (17)	0.0511 (17)	0.0446 (16)	0.0028 (14)	0.0117 (14)	0.0245 (14)
0.0424 (17)	0.0533 (18)	0.0526 (18)	-0.0015 (14)	0.0116 (14)	0.0248 (15)
0.0400 (16)	0.0432 (15)	0.0403 (15)	0.0046 (13)	0.0104 (13)	0.0154 (13)
0.0521 (18)	0.0571 (17)	0.0439 (16)	0.0121 (15)	0.0142 (14)	0.0278 (15)
0.042 (2)	0.047 (2)	0.048 (2)	0.0066 (16)	0.0138 (16)	0.0192 (17)
0.0382 (19)	0.0431 (18)	0.0415 (18)	0.0080 (15)	0.0127 (15)	0.0140 (15)
0.0405 (19)	0.0447 (18)	0.0362 (18)	0.0095 (16)	0.0102 (15)	0.0177 (15)
0.0378 (19)	0.0428 (18)	0.0402 (18)	0.0126 (15)	0.0104 (15)	0.0147 (15)
0.049 (2)	0.057 (2)	0.051 (2)	0.0140 (18)	0.0126 (17)	0.0300 (18)
0.042 (2)	0.0457 (19)	0.0436 (19)	0.0134 (16)	0.0157 (16)	0.0204 (16)
	U^{11} 0.0715 (8) 0.0723 (8) 0.0430 (17) 0.0424 (17) 0.0400 (16) 0.0521 (18) 0.042 (2) 0.0382 (19) 0.0405 (19) 0.0478 (19) 0.049 (2) 0.042 (2)	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.0715 (8) & 0.0687 (7) \\ \hline 0.0723 (8) & 0.0782 (8) \\ \hline 0.0430 (17) & 0.0511 (17) \\ \hline 0.0424 (17) & 0.0533 (18) \\ \hline 0.0400 (16) & 0.0432 (15) \\ \hline 0.0521 (18) & 0.0571 (17) \\ \hline 0.042 (2) & 0.047 (2) \\ \hline 0.0382 (19) & 0.0431 (18) \\ \hline 0.0405 (19) & 0.0428 (18) \\ \hline 0.049 (2) & 0.057 (2) \\ \hline 0.042 (2) & 0.0457 (19) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U^{11} U^{22} U^{33} U^{12} 0.0715 (8)0.0687 (7)0.0740 (8) -0.0057 (6)0.0723 (8)0.0782 (8)0.0661 (7)0.0296 (6)0.0430 (17)0.0511 (17)0.0446 (16)0.0028 (14)0.0424 (17)0.0533 (18)0.0526 (18) -0.0015 (14)0.0400 (16)0.0432 (15)0.0403 (15)0.0046 (13)0.0521 (18)0.0571 (17)0.0439 (16)0.0121 (15)0.042 (2)0.047 (2)0.048 (2)0.0066 (16)0.0382 (19)0.0431 (18)0.0415 (18)0.0095 (16)0.0378 (19)0.0428 (18)0.0402 (18)0.0126 (15)0.049 (2)0.057 (2)0.051 (2)0.0140 (18)0.042 (2)0.0457 (19)0.0436 (19)0.0134 (16)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

C7	0.0414 (19)	0.0432 (18)	0.0415 (19)	0.0128 (16)	0.0150 (16)	0.0192 (16)
C8	0.046 (2)	0.0409 (18)	0.0402 (18)	0.0103 (16)	0.0160 (16)	0.0157 (15)
C9	0.056 (2)	0.056 (2)	0.057 (2)	0.0079 (19)	0.0181 (19)	0.0306 (19)
C10	0.047 (2)	0.0435 (19)	0.045 (2)	0.0110 (16)	0.0141 (17)	0.0204 (16)
C11	0.055 (2)	0.065 (2)	0.054 (2)	0.0109 (19)	0.0169 (19)	0.029 (2)
C12	0.075 (3)	0.080 (3)	0.054 (2)	0.025 (2)	0.026 (2)	0.040 (2)
C13	0.070 (3)	0.086 (3)	0.052 (2)	0.029 (2)	0.012 (2)	0.033 (2)
C14	0.050(2)	0.072 (3)	0.063 (3)	0.017 (2)	0.008 (2)	0.027 (2)
C15	0.055 (2)	0.062 (2)	0.053 (2)	0.0169 (19)	0.0186 (19)	0.0284 (19)
C16	0.048 (2)	0.061 (2)	0.063 (2)	-0.0026 (19)	0.0112 (19)	0.027 (2)
C17	0.044 (2)	0.0469 (19)	0.0428 (19)	0.0086 (16)	0.0146 (16)	0.0186 (16)
C18	0.041 (2)	0.058 (2)	0.0372 (18)	0.0101 (17)	0.0098 (16)	0.0105 (17)
C19	0.047 (2)	0.089 (3)	0.072 (3)	0.026 (2)	0.014 (2)	0.043 (3)
C20	0.055 (2)	0.061 (2)	0.049 (2)	0.001 (2)	-0.0019 (19)	0.0084 (19)
C21	0.072 (3)	0.083 (3)	0.059 (2)	0.018 (2)	0.021 (2)	0.045 (2)
C22	0.051 (2)	0.0463 (19)	0.047 (2)	0.0076 (17)	0.0196 (18)	0.0229 (17)
C23	0.051 (2)	0.0436 (19)	0.0426 (19)	0.0065 (17)	0.0194 (17)	0.0146 (16)
C24	0.0415 (19)	0.0375 (17)	0.0444 (19)	0.0098 (15)	0.0167 (16)	0.0132 (15)
C25	0.047 (2)	0.072 (3)	0.061 (2)	0.011 (2)	0.017 (2)	0.011 (2)
C26	0.064 (3)	0.060 (2)	0.068 (3)	-0.014 (2)	0.025 (2)	0.016 (2)

Geometric parameters (Å, °)

S1—C26	1.672 (5)	C11—C12	1.384 (5)
S1—C23	1.718 (4)	C11—H11	0.9300
S2—C20	1.689 (4)	C12—C13	1.363 (5)
S2—C17	1.708 (3)	C12—H12	0.9300
N1—C3	1.375 (4)	C13—C14	1.379 (6)
N1—N2	1.381 (3)	C13—H13	0.9300
N1-C10	1.424 (4)	C14—C15	1.381 (5)
N2-C1	1.314 (4)	C14—H14	0.9300
N3—C3	1.334 (4)	C15—H15	0.9300
N3—C7	1.338 (4)	C16—H16A	0.9600
N4—C5	1.451 (4)	C16—H16B	0.9600
N4—C9	1.455 (4)	C16—H16C	0.9600
N4—C21	1.458 (4)	C17—C18	1.423 (5)
C1—C2	1.428 (4)	C18—C19	1.438 (5)
C1-C16	1.493 (5)	C18—H18	0.9300
C2—C3	1.398 (4)	C19—C20	1.325 (5)
C2—C4	1.407 (4)	C19—H19	0.9300
C4—C6	1.398 (4)	C20—H20	0.9300
C4—C17	1.487 (4)	C21—H21A	0.9600
C5—C6	1.504 (5)	C21—H21B	0.9600
С5—Н5А	0.9700	C21—H21C	0.9600
С5—Н5В	0.9700	C22—C23	1.448 (4)
С6—С7	1.420 (4)	C22—H22	0.9300
С7—С8	1.486 (4)	C23—C24	1.417 (5)
C8—C22	1.336 (5)	C24—C25	1.417 (5)

C8—C9	1.508 (5)	C24—H24	0.9300
С9—Н9А	0.9700	C25—C26	1.344 (6)
С9—Н9В	0.9700	С25—Н25	0.9300
C10—C15	1.379 (5)	C26—H26	0.9300
C10—C11	1.389 (5)		
C26—S1—C23	93.1 (2)	C13—C12—H12	119.3
C20—S2—C17	92.60 (19)	C11—C12—H12	119.3
C3—N1—N2	110.2 (3)	C12—C13—C14	118.9 (4)
C3—N1—C10	130.4 (3)	C12—C13—H13	120.5
N2—N1—C10	119.4 (3)	C14—C13—H13	120.5
C1—N2—N1	107.4 (3)	C13—C14—C15	121.0 (4)
C3—N3—C7	114.8 (3)	C13—C14—H14	119.5
C5—N4—C9	110.4 (3)	C15—C14—H14	119.5
C5—N4—C21	110.0 (3)	C10-C15-C14	119.8 (4)
C9—N4—C21	110.6 (3)	C10—C15—H15	120.1
N2—C1—C2	110.4 (3)	C14—C15—H15	120.1
N2—C1—C16	120.6 (3)	C1—C16—H16A	109.5
C2—C1—C16	129.0 (3)	C1—C16—H16B	109.5
C3—C2—C4	117.5 (3)	H16A—C16—H16B	109.5
C3—C2—C1	105.4 (3)	C1—C16—H16C	109.5
C4—C2—C1	137.1 (3)	H16A—C16—H16C	109.5
N3—C3—N1	126.3 (3)	H16B—C16—H16C	109.5
N3—C3—C2	127.1 (3)	C18—C17—C4	128.8 (3)
N1—C3—C2	106.6 (3)	C18—C17—S2	111.7 (2)
C6—C4—C2	117.1 (3)	C4—C17—S2	119.5 (3)
C6—C4—C17	122.2 (3)	C17—C18—C19	108.0 (3)
C2—C4—C17	120.6 (3)	C17—C18—H18	126.0
N4—C5—C6	111.5 (3)	C19—C18—H18	126.0
N4—C5—H5A	109.3	C20-C19-C18	115.7 (4)
С6—С5—Н5А	109.3	С20—С19—Н19	122.2
N4—C5—H5B	109.3	C18—C19—H19	122.2
С6—С5—Н5В	109.3	C19—C20—S2	112.1 (3)
H5A—C5—H5B	108.0	С19—С20—Н20	124.0
C4—C6—C7	119.5 (3)	S2—C20—H20	124.0
C4—C6—C5	120.5 (3)	N4—C21—H21A	109.5
C7—C6—C5	120.0 (3)	N4—C21—H21B	109.5
N3—C7—C6	124.0 (3)	H21A—C21—H21B	109.5
N3—C7—C8	116.7 (3)	N4—C21—H21C	109.5
C6—C7—C8	119.3 (3)	H21A—C21—H21C	109.5
C22—C8—C7	119.9 (3)	H21B—C21—H21C	109.5
C22—C8—C9	124.1 (3)	C8—C22—C23	131.3 (3)
C7—C8—C9	115.9 (3)	C8—C22—H22	114.4
N4—C9—C8	112.0 (3)	C23—C22—H22	114.4
N4—C9—H9A	109.2	C24—C23—C22	123.9 (3)
С8—С9—Н9А	109.2	C24—C23—S1	109.9 (2)
N4—C9—H9B	109.2	C22—C23—S1	126.2 (3)
С8—С9—Н9В	109.2	C23—C24—C25	110.4 (3)

Н9А—С9—Н9В	107.9	C23—C24—H24	124.8
C15—C10—C11	119.6 (3)	C25—C24—H24	124.8
C15-C10-N1	120.7 (3)	C26—C25—C24	114.0 (4)
C11—C10—N1	119.7 (3)	C26—C25—H25	123.0
C12—C11—C10	119.4 (4)	C24—C25—H25	123.0
C12—C11—H11	120.3	C25—C26—S1	112.5 (3)
C10—C11—H11	120.3	С25—С26—Н26	123.7
C13—C12—C11	121.3 (4)	S1—C26—H26	123.7
C3—N1—N2—C1	0.9 (4)	C6—C7—C8—C9	4.5 (5)
C10—N1—N2—C1	-178.9(3)	C5—N4—C9—C8	62.2 (4)
N1—N2—C1—C2	-0.7 (4)	C21—N4—C9—C8	-175.8(3)
N1—N2—C1—C16	179.8 (3)	C22—C8—C9—N4	143.5 (3)
N2-C1-C2-C3	0.3 (4)	C7—C8—C9—N4	-34.4(4)
$C_{16} - C_{1} - C_{2} - C_{3}$	179 7 (3)	$C_{3}N_{1}C_{10}C_{15}$	-243(6)
N_{2} C_{1} C_{2} C_{4}	178 8 (4)	$N_{2} N_{1} C_{10} C_{15}$	1554(3)
$C_{16} - C_{1} - C_{2} - C_{4}$	-1.8(7)	$C_3 = N_1 = C_{10} = C_{11}$	156.4(3)
$C_{10} = C_{1} = C_{2} = C_{1}$	1.0(7) 1793(3)	$N_2 - N_1 - C_{10} - C_{11}$	-239(5)
C7 N3 C3 C2	-16(5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.9(5)
$N_2 = N_1 = C_2 = C_2$	1.0(3) 178 5 (3)	N1 C10 C11 C12	170.8(3)
$\frac{1}{12} - \frac{1}{12} $	-18(6)	$N_1 - C_{10} - C_{11} - C_{12} - C_{12}$	-0.1(6)
$N_2 N_1 C_2 C_2$	1.0(0)	C_{10} C_{11} C_{12} C_{13} C_{14}	-0.5(6)
$N_2 - N_1 - C_3 - C_2$	-0.7(4)	C12 - C12 - C13 - C14	-0.3(0)
C10 - N1 - C3 - C2	1/9.0(3)	C12-C13-C14-C15	0.8 (6)
C4 - C2 - C3 - N3	2.2 (5)	CII - CI0 - CI5 - CI4	-0.2(6)
C1 - C2 - C3 - N3	-178.9(3)	NI-CI0-CI5-CI4	-179.5 (3)
C4—C2—C3—N1	-178.6 (3)	C13—C14—C15—C10	-0.4 (6)
C1—C2—C3—N1	0.3 (4)	C6—C4—C17—C18	-90.7 (4)
C3—C2—C4—C6	-1.7 (5)	C2—C4—C17—C18	91.2 (4)
C1—C2—C4—C6	180.0 (4)	C6—C4—C17—S2	92.1 (4)
C3—C2—C4—C17	176.6 (3)	C2—C4—C17—S2	-86.1 (4)
C1—C2—C4—C17	-1.8 (6)	C20—S2—C17—C18	-2.6 (3)
C9—N4—C5—C6	-58.1 (4)	C20—S2—C17—C4	175.1 (3)
C21—N4—C5—C6	179.6 (3)	C4—C17—C18—C19	-174.7 (3)
C2—C4—C6—C7	0.8 (5)	S2-C17-C18-C19	2.8 (4)
C17—C4—C6—C7	-177.4 (3)	C17—C18—C19—C20	-1.6 (5)
C2—C4—C6—C5	-180.0 (3)	C18—C19—C20—S2	-0.4 (5)
C17—C4—C6—C5	1.8 (5)	C17—S2—C20—C19	1.7 (3)
N4-C5-C6-C4	-151.4 (3)	C7—C8—C22—C23	179.2 (3)
N4—C5—C6—C7	27.8 (4)	C9—C8—C22—C23	1.3 (6)
C3—N3—C7—C6	0.6 (5)	C8—C22—C23—C24	-166.9 (4)
C3—N3—C7—C8	-177.7 (3)	C8—C22—C23—S1	12.1 (6)
C4—C6—C7—N3	-0.3 (5)	C26—S1—C23—C24	1.5 (3)
C5—C6—C7—N3	-179.5 (3)	C26—S1—C23—C22	-177.6 (3)
C4—C6—C7—C8	177.9 (3)	C22—C23—C24—C25	177.2 (3)
C5—C6—C7—C8	-1.3 (5)	S1—C23—C24—C25	-1.9 (3)
N3—C7—C8—C22	4.8 (5)	C23—C24—C25—C26	1.4 (4)
C6—C7—C8—C22	-173.6 (3)	C24—C25—C26—S1	-0.2(5)
N3-C7-C8-C9	-177.2(3)	C_{23} S_{1} C_{26} C_{25}	-0.8(3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C26—H26…N2 ⁱ	0.93	2.57	3.445 (3)	157
C20—H20··· <i>Cg</i> 6 ⁱⁱ	0.93	2.93	3.680 (3)	139

Symmetry codes: (i) *x*+1, *y*+1, *z*; (ii) *x*+1, *y*+1, *z*+1.