

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 2-[(4-chlorophenyl)hydrazono]-3oxobutanoate

Hoong-Kun Fun,^a* + Suchada Chantrapromma,^b§ Mahesh Padaki,^c Radhika^c and Arun M. Isloor^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia, ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^cDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India Correspondence e-mail: hkfun@usm.my

Received 3 April 2009; accepted 6 April 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.037; wR factor = 0.108; data-to-parameter ratio = 28.6.

The molecule of the title oxobutanoate derivative. $C_{12}H_{13}CIN_2O_3$, is nearly planar; the interplanar angle between the benzene ring and the mean plane through the hydrazono-3-oxobutanoate unit is 2.69 (3)°. An intramolecular N-H···O hydrogen bond generates an S(6) ring motif. In the crystal packing, $C-H \cdots O(3-oxo)$ interactions link molecules into dimers. The dimers thus formed are linked through C- $H \cdots O(\text{carboxylate } C = O)$ interactions, leading to the formation of ribbons along the $[01\overline{1}]$ direction, which are stabilized via Cl···Cl [3.2916 (3) Å] contacts. The ribbons are stacked via C···O contacts [3.2367 (12)-3.3948 (12) Å].

Related literature

For hydrogen-bond motifs, see Bernstein et al. (1995). For background to the bioactivity and applications of oxobutanoate derivatives, see: Alpaslan et al. (2005); Billington et al. (1979); Stancho et al. (2008). For the synthesis, see Amir & Agarwal (1997). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

38796 measured reflections

 $R_{\rm int} = 0.039$

4723 independent reflections 3972 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{12}H_{13}CIN_2O_3$	V = 1263.38 (6) Å ³
$M_r = 268.69$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 4.0259 (1) Å	$\mu = 0.30 \text{ mm}^{-1}$
b = 17.0892 (4) Å	$T = 100 { m K}$
c = 18.4934 (5) Å	$0.77 \times 0.13 \times 0.06 \text{ mm}$
$\beta = 96.802 \ (1)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min} = 0.799, \ T_{\max} = 0.982$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	165 parameters
$vR(F^2) = 0.108$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
723 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O1	0.91	1.87	2.5721 (12)	132
$\begin{array}{c} \text{C2-H2}A\cdots\text{O2}^{i}\\ \text{C5-H5}A\cdots\text{O1}^{ii} \end{array}$	0.93 0.93	2.45 2.53	3.3536 (13) 3.4293 (12)	164 163

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 3, -y + 1, -z + 2.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities. The authors thank the Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2415).

References

- Alpaslan, G., Özdamar, O., Odabaşoğlu, M., Ersanlı, C. C., Erdönmez, A. & Ocak Ískeleli, N. (2005). Acta Cryst. E61, 03442-03444.
- Amir, M. & Agarwal, R. (1997). J. Indian Chem. Soc. 74, 154-155.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Billington, D. C., Golding, B. T. & Primrose, S. B. (1979). Biochem. J. 182, 827-836
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin USA
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters Researcher ID: A-3561-2009.

[§] Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters Researcher ID: A-5085-2009.

Stancho, S., Georgi, M., Frank, J. & Ilia, M. (2008). Eur. J. Med. Chem. 43, 694-706

supporting information

Acta Cryst. (2009). E65, o1029 [doi:10.1107/S1600536809012951]

Ethyl 2-[(4-chlorophenyl)hydrazono]-3-oxobutanoate

Hoong-Kun Fun, Suchada Chantrapromma, Mahesh Padaki, Radhika and Arun M. Isloor

S1. Comment

Derivatives of oxobutanoates are biologically important. 4-Methylthio-2-oxobutanoate was identified in the culture fluids of a range of bacteria, e.g. the yeast *Saccharomyces cerevisiae* and the fungus *Penicillium digitatum* (Billington *et al.*, 1979). Some oxobutanoates exhibit cytotoxic properties (Stancho *et al.*, 2008). The crystal structure of ethyl 4-chloro-2-[2-(2-methoxyphenyl)hydrazono]-3-oxobutanoate has been reported (Alpaslan *et al.*, 2005).

The molecule of the title oxobutanoate derivative, (I), is nearly planar which can be readily indicated by the interplanar angle between the benzene ring and the mean plane through the hydrazono-3-oxobutanoate unit (N1–N2/O1–O3/C7–C10) is 2.69 (3)°, and the C10–C7–C8–C9 torsion angle of 2.81 (15)°. The ethyl group is slightly deviated from the mean plane of the molecule with the torsion angle C10–O3–C11–C12 being 170.6 (9)°. Within the molecule, an intramolecular N1–H1…O1 hydrogen bond generates a S(6) ring motif (Bernstein *et al.*, 1995) (Table 1).

In the crystal packing, the C5—H5A···O1 interactions link two molecules into a dimer (Table 1 and Fig. 2). The dimers are linked together through C2—H2A···O2 interactions to form molecular ribbons along the [011] direction; these ribbons are further stabilized by C1···C1 [3.2916 (3)Å] contacts. These ribbons are stacked, being connected by C···O [3.2367 (12), 3.3716 (14) and 3.3948 (12)Å] contacts.

S2. Experimental

Compound (I) was prepared as reported in literature (Amir & Agarwal, 1997). 4-Chloroaniline (1.27 g, 10 mmol) was dissolved in dilute hydrochloric acid (11.0 ml) and cooled to 273 K in an ice bath. To this cold solution, sodium nitrite (1.6 g in 5.0 ml water) was added. The temperature of the reaction mixture was not allowed to raise above 323 K. The resulting diazonium salt solution was then filtered into a cooled solution of ethylacetoacetate (1.7 ml) and sodium acetate (3.5 g) in ethanol (50 ml). The resulting yellow solid was filtered, washed with ice-cold water, dried and recrystallized from methanol. The yield was 1.95 g (81%); *M*.p. 365 K.

S3. Refinement

All H atoms were placed in calculated positions with d(N-H) = 0.91 Å, d(C-H) = 0.93 Å for aromatic, 0.97 Å for CH₂ and 0.96 Å for CH₃ atoms. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl-H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl substituents.

Figure 1

The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The N—H…O hydrogen bond was drawn as a dashed line.

Figure 2

The packing diagram of (I), viewed along in projection the *a* axis, showing the arrangement of the dimers into molecular ribbons. C—H…O contacts are shown as dashed lines.

Ethyl 2-[(4-chlorophenyl)hydrazono]-3-oxobutanoate

F(000) = 560
$D_{\rm x} = 1.413 {\rm Mg} {\rm m}^{-3}$
Melting point: 365 K
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 4723 reflections
$\theta = 1.6 - 32.9^{\circ}$
$\mu = 0.30 \text{ mm}^{-1}$
T = 100 K
Needle, brown
$0.77 \times 0.13 \times 0.06 \text{ mm}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)
$T_{\rm min} = 0.799, \ T_{\rm max} = 0.982$
38796 measured reflections
4723 independent reflections

3972 reflections with $I > 2\sigma(I)$	$h = -6 \rightarrow 6$
$R_{\rm int}=0.039$	$k = -26 \rightarrow 25$
$\theta_{\rm max} = 32.9^\circ, \theta_{\rm min} = 1.6^\circ$	$l = -28 \longrightarrow 28$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.108$	neighbouring sites
S = 1.06	H-atom parameters constrained
4723 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0602P)^2 + 0.255P]$
165 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	1.33403 (7)	0.917736 (14)	0.966487 (14)	0.02331 (8)	
01	1.1283 (2)	0.43897 (5)	0.92388 (4)	0.02458 (17)	
O2	0.4082 (2)	0.41534 (4)	0.74203 (5)	0.02490 (17)	
O3	0.40449 (18)	0.54627 (4)	0.73206 (4)	0.01834 (15)	
N1	1.0478 (2)	0.58595 (5)	0.89744 (5)	0.01680 (16)	
H1	1.1461	0.5484	0.9277	0.020*	
N2	0.8324 (2)	0.56553 (5)	0.84259 (4)	0.01607 (15)	
C1	0.9700 (2)	0.72408 (6)	0.86488 (5)	0.01779 (18)	
H1A	0.8269	0.7109	0.8235	0.021*	
C2	1.0384 (3)	0.80222 (6)	0.88190 (5)	0.01815 (18)	
H2A	0.9413	0.8418	0.8521	0.022*	
C3	1.2535 (2)	0.82023 (5)	0.94400 (5)	0.01668 (17)	
C4	1.4070 (2)	0.76234 (6)	0.98899 (5)	0.01816 (18)	
H4A	1.5530	0.7756	1.0299	0.022*	
C5	1.3393 (2)	0.68425 (6)	0.97197 (5)	0.01727 (17)	
H5A	1.4408	0.6447	1.0013	0.021*	
C6	1.1185 (2)	0.66568 (5)	0.91065 (5)	0.01550 (17)	
C7	0.7628 (2)	0.49093 (5)	0.82808 (5)	0.01602 (17)	
C8	0.9246 (2)	0.42509 (6)	0.86964 (5)	0.01779 (18)	
С9	0.8553 (3)	0.34161 (6)	0.84741 (6)	0.02176 (19)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H9A	0.9875	0.3074	0.8804	0.033*	
H9B	0.9116	0.3337	0.7989	0.033*	
H9C	0.6223	0.3304	0.8486	0.033*	
C10	0.5100 (2)	0.47889 (6)	0.76369 (5)	0.01646 (17)	
C11	0.1696 (2)	0.53891 (6)	0.66655 (5)	0.01926 (18)	
H11A	-0.0131	0.5044	0.6752	0.023*	
H11B	0.2804	0.5174	0.6272	0.023*	
C12	0.0397 (3)	0.61975 (7)	0.64728 (6)	0.0245 (2)	
H12A	-0.1123	0.6175	0.6032	0.037*	
H12B	0.2235	0.6536	0.6403	0.037*	
H12C	-0.0749	0.6397	0.6861	0.037*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.03064 (14)	0.01473 (12)	0.02328 (13)	-0.00497 (9)	-0.00211 (9)	-0.00104 (8)
01	0.0277 (4)	0.0185 (3)	0.0251 (4)	0.0003 (3)	-0.0070 (3)	0.0031 (3)
O2	0.0306 (4)	0.0165 (3)	0.0254 (4)	-0.0037 (3)	-0.0057 (3)	-0.0015 (3)
03	0.0185 (3)	0.0163 (3)	0.0190 (3)	-0.0001 (2)	-0.0030 (2)	0.0012 (2)
N1	0.0185 (4)	0.0146 (3)	0.0163 (4)	-0.0003 (3)	-0.0018 (3)	0.0001 (3)
N2	0.0163 (3)	0.0162 (3)	0.0156 (3)	-0.0012 (3)	0.0012 (3)	-0.0015 (3)
C1	0.0200 (4)	0.0162 (4)	0.0162 (4)	-0.0009 (3)	-0.0022 (3)	0.0005 (3)
C2	0.0203 (4)	0.0157 (4)	0.0176 (4)	-0.0005 (3)	-0.0011 (3)	0.0010 (3)
C3	0.0191 (4)	0.0137 (4)	0.0170 (4)	-0.0018 (3)	0.0014 (3)	-0.0006 (3)
C4	0.0187 (4)	0.0179 (4)	0.0169 (4)	-0.0016 (3)	-0.0023 (3)	0.0007 (3)
C5	0.0178 (4)	0.0163 (4)	0.0169 (4)	0.0000 (3)	-0.0014 (3)	0.0011 (3)
C6	0.0163 (4)	0.0135 (4)	0.0165 (4)	-0.0005 (3)	0.0012 (3)	-0.0003 (3)
C7	0.0168 (4)	0.0147 (4)	0.0162 (4)	-0.0008 (3)	0.0002 (3)	0.0008 (3)
C8	0.0189 (4)	0.0155 (4)	0.0189 (4)	-0.0003 (3)	0.0019 (3)	0.0015 (3)
C9	0.0250 (5)	0.0149 (4)	0.0248 (5)	0.0003 (4)	0.0001 (4)	0.0017 (3)
C10	0.0170 (4)	0.0162 (4)	0.0160 (4)	-0.0005 (3)	0.0015 (3)	0.0001 (3)
C11	0.0186 (4)	0.0216 (4)	0.0169 (4)	0.0008 (3)	-0.0012 (3)	0.0006 (3)
C12	0.0238 (5)	0.0235 (5)	0.0253 (5)	0.0032 (4)	-0.0016 (4)	0.0039 (4)

Geometric parameters (Å, °)

Cl1—C3	1.7386 (9)	C4—H4A	0.9300
O1—C8	1.2412 (12)	C5—C6	1.3924 (13)
O2—C10	1.2121 (12)	C5—H5A	0.9300
O3—C10	1.3378 (12)	C7—C8	1.4703 (13)
O3—C11	1.4514 (11)	C7—C10	1.4864 (13)
N1—N2	1.3018 (11)	C8—C9	1.5017 (14)
N1—C6	1.4072 (12)	С9—Н9А	0.9600
N1—H1	0.9104	С9—Н9В	0.9600
N2—C7	1.3258 (12)	С9—Н9С	0.9600
C1—C2	1.3918 (14)	C11—C12	1.5049 (15)
C1—C6	1.3964 (13)	C11—H11A	0.9700
C1—H1A	0.9300	C11—H11B	0.9700

C2—C3	1.3885 (13)	C12—H12A	0.9600
C2—H2A	0.9300	C12—H12B	0.9600
C3—C4	1.3895 (13)	C12—H12C	0.9600
C4—C5	1.3906 (14)		
C10—O3—C11	115.60 (8)	C8—C7—C10	122.13 (8)
N2—N1—C6	119.81 (8)	O1—C8—C7	119.05 (9)
N2—N1—H1	119.4	O1—C8—C9	119.11 (9)
C6—N1—H1	120.7	С7—С8—С9	121.82 (9)
N1—N2—C7	121.37 (8)	С8—С9—Н9А	109.5
C2—C1—C6	119.32 (9)	С8—С9—Н9В	109.5
C2—C1—H1A	120.3	H9A—C9—H9B	109.5
C6—C1—H1A	120.3	С8—С9—Н9С	109.5
C3—C2—C1	119.14 (9)	H9A—C9—H9C	109.5
C3—C2—H2A	120.4	H9B—C9—H9C	109.5
C1—C2—H2A	120.4	O2—C10—O3	123.32 (9)
C2—C3—C4	121.80 (9)	O2—C10—C7	124.16 (9)
C2—C3—C11	119.38 (7)	O3—C10—C7	112.52 (8)
C4—C3—Cl1	118.82 (7)	O3—C11—C12	106.97 (8)
C3—C4—C5	119.11 (9)	O3—C11—H11A	110.3
C3—C4—H4A	120.4	C12—C11—H11A	110.3
C5—C4—H4A	120.4	O3—C11—H11B	110.3
C4—C5—C6	119.48 (9)	C12—C11—H11B	110.3
С4—С5—Н5А	120.3	H11A—C11—H11B	108.6
С6—С5—Н5А	120.3	C11—C12—H12A	109.5
C5—C6—C1	121.12 (9)	C11—C12—H12B	109.5
C5—C6—N1	117.30 (8)	H12A—C12—H12B	109.5
C1—C6—N1	121.57 (8)	C11—C12—H12C	109.5
N2—C7—C8	124.07 (8)	H12A—C12—H12C	109.5
N2—C7—C10	113.78 (8)	H12B—C12—H12C	109.5
C6—N1—N2—C7	179.20 (9)	N1—N2—C7—C8	-2.05 (15)
C6—C1—C2—C3	0.13 (15)	N1—N2—C7—C10	179.71 (9)
C1—C2—C3—C4	1.12 (16)	N2-C7-C8-O1	3.50 (16)
C1—C2—C3—Cl1	-178.83 (8)	C10—C7—C8—O1	-178.40 (10)
C2—C3—C4—C5	-1.00 (15)	N2-C7-C8-C9	-175.28 (10)
Cl1—C3—C4—C5	178.94 (8)	C10—C7—C8—C9	2.81 (15)
C3—C4—C5—C6	-0.36 (15)	C11—O3—C10—O2	-3.29 (14)
C4—C5—C6—C1	1.61 (15)	C11—O3—C10—C7	177.01 (8)
C4—C5—C6—N1	-177.46 (9)	N2-C7-C10-O2	-178.82 (10)
C2—C1—C6—C5	-1.49 (15)	C8—C7—C10—O2	2.90 (16)
C2-C1-C6-N1	177.54 (9)	N2-C7-C10-O3	0.88 (12)
N2—N1—C6—C5	177.14 (9)	C8—C7—C10—O3	-177.40 (9)
N2—N1—C6—C1	-1.93 (15)	C10-O3-C11-C12	170.62 (9)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
N1—H1…O1	0.91	1.87	2.5721 (12)	132
C2— $H2A$ ···O2 ⁱ	0.93	2.45	3.3536 (13)	164
C5—H5A····O1 ⁱⁱ	0.93	2.53	3.4293 (12)	163

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+3/2; (ii) -*x*+3, -*y*+1, -*z*+2.