

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# {2,2-Bis[(4S)-4-tert-butyl-4,5-dihydro-1,3-oxazol-2-yl]propane}bis(N,N-dimethylformamide)copper(II) bis(hexafluoridoantimonate)

### Julia Rehbein, Markus Schürmann, Hans Preut\* and Martin Hiersemann

Fakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany Correspondence e-mail: hans.preut@udo.edu

Received 13 May 2009; accepted 28 May 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.009 Å; R factor = 0.038; wR factor = 0.048; data-to-parameter ratio = 15.3.

In the title compound,  $[Cu(C_{17}H_{30}N_2O_2)(C_3H_7NO)_2][SbF_6]_2$ , which is a potential catalyst in the asymmetric Gosteli-Claisen rearrangement, the Cu atom adopts a distorted cis-CuN<sub>2</sub>O<sub>2</sub> square-planar geometry arising from N,N'-bidentate coordination by the chiral ligand and two O-bonded dimethylformamide molecules. Two short C-H···O contacts occur within the ligand and two weak intermolecular C-H···F bonds may help to establish the packing.

### **Related literature**

For further synthetic details, see: Evans et al. (1981, 1999); Meyers & McKennon (1993). For information on the catalytic properties of the title compound, see: Abraham et al. (2001, 2004); Abraham & Hiersemann (2001); Hiersemann & Abraham (2002).



### **Experimental**

Crystal data [Cu(C<sub>17</sub>H<sub>30</sub>N<sub>2</sub>O<sub>2</sub>)(C<sub>3</sub>H<sub>7</sub>NO)<sub>2</sub>]- $[SbF_6]_2$  $M_r = 975.66$ Monoclinic, P21 a = 9.1550 (5) Åb = 13.6852 (8) Å c = 14.5359 (8) Å

 $\beta = 92.570 \ (5)^{\circ}$ V = 1819.34 (18) Å<sup>3</sup> Z = 2Mo  $K\alpha$  radiation  $\mu = 2.15 \text{ mm}^-$ T = 173 K $0.18 \times 0.12 \times 0.04 \text{ mm}$  (expected range = 0.741 - 0.918)

#### Data collection

| Oxford Diffraction Xcalibur-S CCD | $T_{\min} = 0.808, \ T_{\max} = 1.000$ |
|-----------------------------------|----------------------------------------|
| diffractometer                    | (expected range = $0.741 - 0.9$        |
| Absorption correction: multi-scan | 10322 measured reflections             |
| (CrysAlis RED; Oxford             | 6226 independent reflections           |
| Diffraction, 2008)                | 4042 reflections with $I > 2\sigma(I)$ |
|                                   | $R_{\rm int} = 0.037$                  |
|                                   |                                        |

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.038$ | H-atom parameters constrained                              |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.048$               | $\Delta \rho_{\rm max} = 0.96 \ {\rm e} \ {\rm \AA}^{-3}$  |
| S = 0.85                        | $\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$ |
| 6226 reflections                | Absolute structure: Flack (1983),                          |
| 407 parameters                  | 2689 Friedel pairs                                         |
| 1 restraint                     | Flack parameter: 0.015 (15)                                |

### Table 1

Selected geometric parameters (Å,  $^{\circ}$ ).

| Cu-N1     | 1.929 (5)   | Cu-O11     | 1.926 (4)   |
|-----------|-------------|------------|-------------|
| Cu-N2     | 1.919 (5)   | Cu-O12     | 1.951 (4)   |
| N2 Cu 011 | 152.82 (10) | N2 Cu O 12 | 95.00 (19)  |
| N2-Cu-N1  | 92.92 (17)  | O11-Cu-O12 | 91.51 (17)  |
| O11-Cu-N1 | 91.37 (19)  | N1-Cu-O12  | 155.84 (18) |

#### Table 2 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$            | $D-{\rm H}$ | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|-------------|--------------|--------------|---------------------------|
| C12−H12A···O11              | 0.98        | 2.58         | 3.204 (8)    | 122                       |
| C17−H17C···O12              | 0.98        | 2.58         | 3.189 (7)    | 120                       |
| C25—H25C···F13 <sup>i</sup> | 0.98        | 2.55         | 3.418 (8)    | 148                       |
| $C26-H26B\cdots F11^{i}$    | 0.98        | 2.53         | 3.427 (8)    | 152                       |
|                             |             |              |              |                           |

Symmetry code: (i) -x + 2,  $y + \frac{1}{2}$ , -z + 1.

Data collection: CrvsAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2975).

### References

- Abraham, L., Czerwonka, R. & Hiersemann, M. (2001). Angew. Chem. Int. Ed. 40, 4700-4703.
- Abraham, L. & Hiersemann, M. (2001). Org. Lett. 3, 48-52.
- Abraham, L., Körner, M. & Hiersemann, M. (2004). Adv. Synth. Catal. 346, 1281-1294.
- Evans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127-2129.
- Evans, D. A., Miller, S. J., Lectka, T. & von Matt, P. (1999). J. Am. Chem. Soc. 121. 7559-7573
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hiersemann, M. & Abraham, L. (2002). Eur. J. Org. Chem. pp. 1461-1471.
- Meyers, A. I. & McKennon, M. J. (1993). J. Org. Chem. 58, 3568-3571.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# supporting information

Acta Cryst. (2009). E65, m737 [doi:10.1107/S1600536809020364]

# {2,2-Bis[(4*S*)-4-*tert*-butyl-4,5-dihydro-1,3-oxazol-2-yl]propane}bis(*N*,*N*-dimethylformamide)copper(II) bis(hexafluoridoantimonate)

# Julia Rehbein, Markus Schürmann, Hans Preut and Martin Hiersemann

# S1. Comment

The title compound, (I), was tested as a catalyst in the catalytic asymmetric Gosteli-Claisen rearrangement (Abraham *et al.*, 2001; Abraham & Hiersemann, 2001; Hiersemann & Abraham, 2002; Abraham *et al.*, 2004). The synthesis of the title compound, (I), was accomplished according to a modified procedure of Evans *et al.* (1999). A sequence of Meyer's amino acid reduction of (*S*)-*tert*-Leucine (Meyers & McKennon, 1993), subsequent condensation with dimethyl malonic acid dichloride and *p*-TsCl catalyzed cyclization provided the (*S*,*S*)-*t*-Bu-box ligand. Treatment of the box ligand with CuCl<sub>2</sub> (Evans *et al.*, 1981) and subsequent anion metathesis with AgSbF<sub>6</sub> provided [Cu(*S*,*S*)-*t*-Bu-box](SbF<sub>6</sub>)<sub>2</sub>. Addition of 2 eq of DMF to a solution of [Cu(*S*,*S*)-*t*-Bu-box](SbF<sub>6</sub>)<sub>2</sub> in 1,2-dichloroethane afforded the bis(*N*,*N*-dimethylformamide) complex. Crystallization was achieved by vapor diffusion recrystalization at 243 K.

# S2. Experimental

To a solution of  $[Cu(S,S)-t-Bu-box](SbF_6)_2(15.4 \text{ mg}, 17.3 \text{ mmol}, 1 \text{ eq})$  in dry 1,2-dichloroethane (1 ml) under argon atmosphere, DMF (27  $\mu L$ , 34.6 mmol, 2eq) was added by a microliter syringe and the resulting deep blue solution was stirred for 30 min at room temperature. Subsequent cooling to 243 K for 24 h provided (I) as deep blue crystals. IR (from a 0.05 *M* 1,2-dichloroethane solution, cm<sup>-1</sup>): 1750 (w), 1680 (*s*); UV/vis (from a 0.05 *M* in 1,2-dichloroethane solution, nm): 255, 733.



## Figure 1

The molecular structure of (I) with displacement ellipsoids shown at the 30% probability level.

# $\label{eq:2.2-Bis} [(4S)-4-tert-butyl-4,5-dihydro-1,3-oxazol-2-yl] propane \\ bis (N,N-dimethylformamide) copper (II) \\ \end{tabular}$

## bis(hexafluoridoantimonate)

| Crystal data                                    |                                                       |
|-------------------------------------------------|-------------------------------------------------------|
| $[Cu(C_{17}H_{30}N_2O_2)(C_3H_7NO)_2][SbF_6]_2$ | F(000) = 962                                          |
| $M_r = 975.66$                                  | $D_{\rm x} = 1.781 { m Mg m}^{-3}$                    |
| Monoclinic, $P2_1$                              | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: P 2yb                              | Cell parameters from 3964 reflections                 |
| a = 9.1550 (5)  Å                               | $\theta = 2.1 - 29.0^{\circ}$                         |
| b = 13.6852 (8) Å                               | $\mu = 2.15 \text{ mm}^{-1}$                          |
| c = 14.5359 (8) Å                               | T = 173  K                                            |
| $\beta = 92.570 \ (5)^{\circ}$                  | Plate, blue                                           |
| $V = 1819.34 (18) Å^3$                          | $0.18 \times 0.12 \times 0.04 \text{ mm}$             |
| Z = 2                                           |                                                       |

Data collection

| Oxford Diffraction Xcalibur-S CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>Detector resolution: 16.0560 pixels mm <sup>-1</sup><br>$\omega$ scans<br>Absorption correction: multi-scan<br>( <i>CrysAlis RED</i> ; Oxford Diffraction, 2008)<br>$T_{\min} = 0.808, T_{\max} = 1.000$ | 10322 measured reflections<br>6226 independent reflections<br>4042 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.037$<br>$\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.0^{\circ}$<br>$h = -11 \rightarrow 10$<br>$k = -16 \rightarrow 16$<br>$l = -17 \rightarrow 17$                                                                                                                                       |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Refinement                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.038$<br>$wR(F^2) = 0.048$<br>S = 0.85<br>6226 reflections<br>407 parameters<br>1 restraint<br>Primary atom site location: structure-invariant<br>direct methods<br>Secondary atom site location: difference Fourier                                   | Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0061P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.001$<br>$\Delta\rho_{max} = 0.96$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.67$ e Å <sup>-3</sup><br>Absolute structure: Flack (1983), 2689 Friedel<br>pairs<br>Absolute structure parameter: 0.015 (15) |  |  |
| map                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |

### Special details

**Experimental**. Absorption correction: CrysAlis RED (Oxford Diffraction 2008) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | у            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|-------------|--------------|-------------|-----------------------------|--|
| Sb1 | 0.24602 (5) | -0.00096 (4) | 0.84532 (3) | 0.02849 (13)                |  |
| Sb2 | 0.82483 (6) | -0.04083 (3) | 0.35372 (3) | 0.04390 (17)                |  |
| Cu  | 0.73163 (7) | 0.00310(7)   | 0.75133 (4) | 0.01763 (19)                |  |
| F1  | 0.2031 (5)  | 0.1198 (3)   | 0.7920 (4)  | 0.0916 (18)                 |  |
| F2  | 0.2546 (4)  | -0.0541 (4)  | 0.7284 (3)  | 0.0698 (15)                 |  |
| F3  | 0.2369 (5)  | 0.0546 (4)   | 0.9607 (3)  | 0.101 (2)                   |  |
| F4  | 0.2858 (6)  | -0.1211 (3)  | 0.8965 (3)  | 0.0863 (18)                 |  |
| F5  | 0.0475 (3)  | -0.0245 (3)  | 0.8405 (2)  | 0.0477 (12)                 |  |
| F6  | 0.4443 (4)  | 0.0246 (3)   | 0.8467 (2)  | 0.0509 (14)                 |  |
| F11 | 0.7475 (5)  | -0.1293 (3)  | 0.4335 (3)  | 0.0786 (18)                 |  |
| F12 | 0.9927 (4)  | -0.0336 (4)  | 0.4310 (3)  | 0.0952 (17)                 |  |
| F13 | 0.9126 (5)  | -0.1425 (4)  | 0.2906 (3)  | 0.0789 (17)                 |  |
|     |             |              |             |                             |  |

| F14  | 0.7367 (5) | 0.0599 (3)  | 0.4194 (3) | 0.0686 (16)  |
|------|------------|-------------|------------|--------------|
| F15  | 0.9021 (6) | 0.0505 (4)  | 0.2763 (3) | 0.099 (2)    |
| F16  | 0.6569 (4) | -0.0534 (4) | 0.2775 (3) | 0.0743 (14)  |
| 01   | 0.6721 (5) | -0.1668 (3) | 0.9773 (3) | 0.0260 (12)  |
| 02   | 0.8559 (4) | 0.1567 (3)  | 0.9822 (3) | 0.0268 (12)  |
| 011  | 0.6003 (4) | -0.0630(3)  | 0.6648 (3) | 0.0260 (12)  |
| 012  | 0.8222 (5) | 0.0741 (3)  | 0.6524 (3) | 0.0201 (11)  |
| N1   | 0.7133 (5) | -0.1001 (3) | 0.8405 (3) | 0.0103 (13)* |
| N2   | 0.7798 (5) | 0.0988 (3)  | 0.8442 (3) | 0.0119 (13)* |
| N11  | 0.4549 (6) | -0.0757 (5) | 0.5361 (4) | 0.0431 (19)  |
| N12  | 1.0155 (6) | 0.1349 (4)  | 0.5795 (4) | 0.0252 (14)  |
| C1   | 0.6719(7)  | -0.2052(4)  | 0.8185 (4) | 0.0171 (16)  |
| H1A  | 0.5896     | -0.2058     | 0.7709     | 0.020*       |
| C2   | 0.6141 (7) | -0.2378(5)  | 0.9112 (4) | 0.0237 (19)  |
| H2A  | 0.5059     | -0.2375     | 0.9091     | 0.028*       |
| H2B  | 0.6490     | -0.3044     | 0.9274     | 0.028*       |
| C3   | 0.7127(7)  | -0.0906(5)  | 0.9287(4)  | 0.0148 (16)* |
| C4   | 0.7635 (6) | -0.0028(5)  | 0.9871(3)  | 0.0161 (13)  |
| C5   | 0.7986 (7) | 0.0843(5)   | 0.9312 (4) | 0.0178 (16)* |
| C6   | 0.9016 (7) | 0.2313 (4)  | 0.9176 (4) | 0.0249 (18)  |
| H6A  | 1.0080     | 0.2276      | 0.9086     | 0.030*       |
| H6B  | 0.8772     | 0.2976      | 0.9394     | 0.030*       |
| C7   | 0.8128 (7) | 0.2058 (4)  | 0.8278 (4) | 0.0157 (16)  |
| H7A  | 0.8781     | 0.2113      | 0.7747     | 0.019*       |
| C8   | 0.6355 (7) | 0.0246 (4)  | 1.0491 (4) | 0.030(2)     |
| H8A  | 0.5539     | 0.0509      | 1.0108     | 0.045*       |
| H8B  | 0.6689     | 0.0740      | 1.0942     | 0.045*       |
| H8C  | 0.6032     | -0.0338     | 1.0815     | 0.045*       |
| C9   | 0.8971 (6) | -0.0356(5)  | 1.0481 (3) | 0.0277 (17)  |
| H9A  | 0.9769     | -0.0540     | 1.0090     | 0.042*       |
| H9B  | 0.8700     | -0.0918     | 1.0855     | 0.042*       |
| H9C  | 0.9289     | 0.0183      | 1.0886     | 0.042*       |
| C11  | 0.7994 (8) | -0.2652(5)  | 0.7835 (4) | 0.0230 (18)  |
| C12  | 0.8609 (7) | -0.2170 (5) | 0.6982 (4) | 0.0296 (19)  |
| H12A | 0.7815     | -0.2061     | 0.6519     | 0.044*       |
| H12B | 0.9346     | -0.2599     | 0.6726     | 0.044*       |
| H12C | 0.9059     | -0.1543     | 0.7156     | 0.044*       |
| C13  | 0.7361 (8) | -0.3652(5)  | 0.7570 (5) | 0.045 (2)    |
| H13A | 0.6503     | -0.3566     | 0.7151     | 0.067*       |
| H13B | 0.7074     | -0.3995     | 0.8126     | 0.067*       |
| H13C | 0.8101     | -0.4036     | 0.7264     | 0.067*       |
| C14  | 0.9207 (7) | -0.2766(5)  | 0.8565 (4) | 0.0298 (19)  |
| H14A | 0.9925     | -0.3239     | 0.8357     | 0.045*       |
| H14B | 0.8798     | -0.3000     | 0.9137     | 0.045*       |
| H14C | 0.9685     | -0.2134     | 0.8676     | 0.045*       |
| C15  | 0.6730(7)  | 0.2668 (5)  | 0.8068 (4) | 0.0193 (17)  |
| C16  | 0.5724 (7) | 0.2661 (5)  | 0.8884 (4) | 0.0265 (19)  |
| H16A | 0.4857     | 0.3060      | 0.8734     | 0.040*       |
|      |            |             |            |              |

| H16B | 0.6250     | 0.2930      | 0.9429     | 0.040*      |
|------|------------|-------------|------------|-------------|
| H16C | 0.5424     | 0.1988      | 0.9009     | 0.040*      |
| C17  | 0.5873 (6) | 0.2255 (4)  | 0.7230 (4) | 0.0217 (17) |
| H17A | 0.5039     | 0.2681      | 0.7072     | 0.033*      |
| H17B | 0.5518     | 0.1599      | 0.7372     | 0.033*      |
| H17C | 0.6511     | 0.2219      | 0.6707     | 0.033*      |
| C18  | 0.7186 (7) | 0.3708 (4)  | 0.7858 (4) | 0.026 (2)   |
| H18A | 0.6314     | 0.4105      | 0.7719     | 0.040*      |
| H18B | 0.7807     | 0.3708      | 0.7326     | 0.040*      |
| H18C | 0.7732     | 0.3981      | 0.8393     | 0.040*      |
| C21  | 0.5522 (7) | -0.0297 (6) | 0.5894 (4) | 0.0280 (18) |
| H21A | 0.5876     | 0.0317      | 0.5697     | 0.034*      |
| C22  | 0.3949 (9) | -0.1684 (6) | 0.5652 (6) | 0.084 (3)   |
| H22A | 0.4454     | -0.1893     | 0.6228     | 0.126*      |
| H22B | 0.4086     | -0.2177     | 0.5175     | 0.126*      |
| H22C | 0.2903     | -0.1607     | 0.5751     | 0.126*      |
| C23  | 0.4080 (7) | -0.0386 (7) | 0.4445 (4) | 0.057 (3)   |
| H23A | 0.4425     | 0.0287      | 0.4377     | 0.086*      |
| H23B | 0.3010     | -0.0400     | 0.4378     | 0.086*      |
| H23C | 0.4492     | -0.0798     | 0.3970     | 0.086*      |
| C24  | 0.9571 (8) | 0.0712 (5)  | 0.6335 (4) | 0.0281 (19) |
| H24A | 1.0169     | 0.0208      | 0.6597     | 0.034*      |
| C25  | 0.9337 (7) | 0.2131 (5)  | 0.5394 (5) | 0.042 (2)   |
| H25A | 0.8292     | 0.2014      | 0.5464     | 0.063*      |
| H25B | 0.9532     | 0.2177      | 0.4738     | 0.063*      |
| H25C | 0.9621     | 0.2744      | 0.5702     | 0.063*      |
| C26  | 1.1697 (7) | 0.1266 (5)  | 0.5580 (4) | 0.042 (2)   |
| H26A | 1.2144     | 0.0720      | 0.5925     | 0.063*      |
| H26B | 1.2207     | 0.1874      | 0.5751     | 0.063*      |
| H26C | 1.1772     | 0.1151      | 0.4918     | 0.063*      |
|      |            |             |            |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$     | $U^{23}$    |
|-----|------------|------------|------------|-------------|--------------|-------------|
| Sb1 | 0.0168 (3) | 0.0299 (3) | 0.0386 (3) | 0.0007 (3)  | -0.0009 (2)  | 0.0003 (3)  |
| Sb2 | 0.0473 (4) | 0.0535 (4) | 0.0314 (3) | -0.0137 (3) | 0.0082 (3)   | -0.0042 (3) |
| Cu  | 0.0247 (5) | 0.0150 (4) | 0.0131 (4) | -0.0012 (5) | -0.0004 (3)  | -0.0003 (5) |
| F1  | 0.081 (4)  | 0.043 (3)  | 0.149 (5)  | 0.000 (3)   | -0.017 (4)   | 0.023 (3)   |
| F2  | 0.051 (3)  | 0.109 (4)  | 0.050 (3)  | 0.010 (3)   | 0.003 (2)    | -0.012 (3)  |
| F3  | 0.060 (4)  | 0.174 (6)  | 0.071 (3)  | -0.008 (4)  | 0.016 (3)    | -0.074 (4)  |
| F4  | 0.100 (5)  | 0.047 (3)  | 0.110 (5)  | 0.007 (3)   | -0.021 (4)   | 0.038 (3)   |
| F5  | 0.029 (2)  | 0.058 (4)  | 0.055 (2)  | 0.003 (2)   | -0.0032 (17) | -0.001 (3)  |
| F6  | 0.043 (3)  | 0.057 (4)  | 0.051 (3)  | 0.007 (2)   | -0.003 (2)   | -0.005 (2)  |
| F11 | 0.092 (5)  | 0.070 (4)  | 0.078 (4)  | 0.020 (3)   | 0.047 (3)    | 0.034 (3)   |
| F12 | 0.064 (3)  | 0.129 (5)  | 0.089 (4)  | 0.004 (4)   | -0.034 (3)   | -0.037 (4)  |
| F13 | 0.063 (4)  | 0.092 (4)  | 0.084 (4)  | -0.004 (3)  | 0.017 (3)    | -0.036 (3)  |
| F14 | 0.088 (4)  | 0.058 (3)  | 0.061 (3)  | 0.008 (3)   | 0.008 (3)    | -0.011 (3)  |
| F15 | 0.106 (5)  | 0.115 (5)  | 0.079 (4)  | -0.056 (4)  | 0.039 (3)    | 0.012 (3)   |

# supporting information

| F16 | 0.065 (3) | 0.082 (4) | 0.074 (3) | -0.013 (3) | -0.015 (3) | -0.008 (3) |
|-----|-----------|-----------|-----------|------------|------------|------------|
| O1  | 0.043 (3) | 0.013 (3) | 0.023 (3) | -0.011 (2) | 0.008 (2)  | 0.004 (2)  |
| O2  | 0.040 (3) | 0.016 (3) | 0.023 (3) | -0.009 (2) | -0.011 (2) | 0.004 (2)  |
| O11 | 0.038 (3) | 0.024 (3) | 0.015 (3) | -0.006(2)  | -0.019 (2) | 0.004 (2)  |
| O12 | 0.020 (3) | 0.023 (3) | 0.018 (3) | 0.001 (2)  | 0.007 (2)  | 0.006 (2)  |
| N11 | 0.038 (4) | 0.065 (6) | 0.026 (4) | 0.007 (4)  | -0.012 (3) | -0.021 (4) |
| N12 | 0.015 (3) | 0.027 (4) | 0.034 (4) | 0.004 (3)  | 0.005 (3)  | 0.004 (3)  |
| C1  | 0.019 (4) | 0.015 (4) | 0.017 (4) | -0.004 (3) | 0.003 (3)  | 0.001 (3)  |
| C2  | 0.025 (5) | 0.019 (4) | 0.027 (5) | -0.006(4)  | 0.002 (4)  | 0.006 (4)  |
| C4  | 0.020 (3) | 0.014 (3) | 0.014 (3) | 0.000 (4)  | -0.002 (3) | 0.006 (4)  |
| C6  | 0.041 (5) | 0.006 (4) | 0.027 (4) | -0.007 (3) | -0.012 (4) | 0.005 (3)  |
| C7  | 0.019 (4) | 0.017 (4) | 0.010 (4) | -0.004 (3) | -0.002 (3) | 0.001 (3)  |
| C8  | 0.045 (5) | 0.027 (6) | 0.020 (4) | -0.002(4)  | 0.010 (3)  | -0.012 (3) |
| C9  | 0.038 (4) | 0.019 (4) | 0.026 (4) | -0.002(4)  | -0.007 (3) | -0.005 (4) |
| C11 | 0.031 (5) | 0.015 (4) | 0.023 (5) | 0.009 (4)  | 0.001 (4)  | -0.003 (4) |
| C12 | 0.030 (5) | 0.036 (5) | 0.023 (4) | 0.005 (4)  | 0.008 (4)  | -0.004 (4) |
| C13 | 0.053 (6) | 0.030 (5) | 0.051 (6) | 0.001 (5)  | -0.002 (5) | -0.005 (5) |
| C14 | 0.028 (5) | 0.032 (5) | 0.028 (5) | -0.004 (4) | -0.014 (4) | 0.003 (4)  |
| C15 | 0.024 (5) | 0.021 (4) | 0.013 (4) | 0.003 (4)  | -0.002 (3) | -0.001 (3) |
| C16 | 0.031 (5) | 0.031 (5) | 0.017 (4) | 0.012 (4)  | -0.004 (4) | -0.005 (4) |
| C17 | 0.020 (4) | 0.026 (4) | 0.019 (4) | 0.007 (3)  | 0.000 (3)  | 0.003 (3)  |
| C18 | 0.044 (5) | 0.015 (4) | 0.020 (4) | -0.002 (4) | -0.006 (4) | -0.004 (4) |
| C21 | 0.020 (4) | 0.029 (5) | 0.035 (4) | -0.005 (4) | 0.010 (3)  | -0.010 (4) |
| C22 | 0.082 (8) | 0.087 (8) | 0.080 (8) | -0.037 (7) | -0.030 (6) | -0.005 (7) |
| C23 | 0.052 (5) | 0.092 (7) | 0.026 (4) | 0.016 (6)  | -0.017 (4) | -0.008 (6) |
| C24 | 0.031 (5) | 0.026 (5) | 0.028 (4) | -0.006 (4) | 0.006 (4)  | 0.005 (4)  |
| C25 | 0.030 (5) | 0.040 (5) | 0.056 (6) | -0.001 (4) | 0.006 (4)  | 0.018 (4)  |
| C26 | 0.022 (5) | 0.053 (5) | 0.052 (5) | -0.004 (4) | 0.005 (4)  | 0.005 (5)  |
|     |           |           |           |            |            |            |

Geometric parameters (Å, °)

| Sb1—F4  | 1.834 (4) | C7—H7A   | 1.0000    |
|---------|-----------|----------|-----------|
| Sb1—F5  | 1.844 (3) | C8—H8A   | 0.9800    |
| Sb1—F3  | 1.847 (4) | C8—H8B   | 0.9800    |
| Sb1—F6  | 1.848 (4) | C8—H8C   | 0.9800    |
| Sb1—F2  | 1.853 (4) | С9—Н9А   | 0.9800    |
| Sb1—F1  | 1.859 (4) | C9—H9B   | 0.9800    |
| Sb2—F11 | 1.840 (4) | С9—Н9С   | 0.9800    |
| Sb2—F15 | 1.844 (4) | C11—C14  | 1.509 (8) |
| Sb2—F16 | 1.862 (4) | C11—C13  | 1.528 (9) |
| Sb2—F12 | 1.865 (4) | C11—C12  | 1.534 (8) |
| Sb2—F13 | 1.868 (5) | C12—H12A | 0.9800    |
| Sb2—F14 | 1.879 (4) | C12—H12B | 0.9800    |
| Cu—N1   | 1.929 (5) | C12—H12C | 0.9800    |
| Cu—N2   | 1.919 (5) | C13—H13A | 0.9800    |
| Cu—011  | 1.926 (4) | C13—H13B | 0.9800    |
| Cu—O12  | 1.951 (4) | C13—H13C | 0.9800    |
| O1—C3   | 1.322 (6) | C14—H14A | 0.9800    |
|         |           |          |           |

| O1—C2       | 1.450 (7)   | C14—H14B     | 0.9800    |
|-------------|-------------|--------------|-----------|
| O2—C5       | 1.331 (7)   | C14—H14C     | 0.9800    |
| O2—C6       | 1.461 (6)   | C15—C18      | 1.518 (8) |
| O11—C21     | 1.249 (7)   | C15—C17      | 1.528 (8) |
| O12—C24     | 1.277 (7)   | C15—C16      | 1.534 (8) |
| N1—C3       | 1.288 (7)   | C16—H16A     | 0.9800    |
| N1—C1       | 1.518 (7)   | C16—H16B     | 0.9800    |
| N2—C5       | 1.283 (7)   | C16—H16C     | 0.9800    |
| N2—C7       | 1.516 (7)   | С17—Н17А     | 0.9800    |
| N11—C21     | 1.314 (7)   | С17—Н17В     | 0.9800    |
| N11—C22     | 1.453 (9)   | С17—Н17С     | 0.9800    |
| N11—C23     | 1.471 (7)   | C18—H18A     | 0.9800    |
| N12—C24     | 1.303 (7)   | C18—H18B     | 0.9800    |
| N12—C25     | 1.418 (7)   | C18—H18C     | 0.9800    |
| N12—C26     | 1.464 (7)   | C21—H21A     | 0.9500    |
| C1-C11      | 1.532 (8)   | C22—H22A     | 0.9800    |
| C1—C2       | 1.536 (8)   | C22—H22B     | 0.9800    |
| C1—H1A      | 1.0000      | C22—H22C     | 0.9800    |
| C2—H2A      | 0.9900      | C23—H23A     | 0.9800    |
| C2—H2B      | 0.9900      | C23—H23B     | 0.9800    |
| C3—C4       | 1.532 (8)   | C23—H23C     | 0.9800    |
| C4—C5       | 1.486 (8)   | C24—H24A     | 0.9500    |
| C4—C9       | 1.545 (7)   | С25—Н25А     | 0.9800    |
| C4—C8       | 1.556 (7)   | C25—H25B     | 0.9800    |
| C6—C7       | 1.546 (8)   | С25—Н25С     | 0.9800    |
| С6—Н6А      | 0.9900      | C26—H26A     | 0.9800    |
| С6—Н6В      | 0.9900      | C26—H26B     | 0.9800    |
| C7—C15      | 1.547 (8)   | С26—Н26С     | 0.9800    |
|             |             |              |           |
| F4—Sb1—F5   | 92.1 (2)    | C4—C8—H8B    | 109.5     |
| F4—Sb1—F3   | 91.0 (3)    | H8A—C8—H8B   | 109.5     |
| F5—Sb1—F3   | 91.25 (17)  | C4—C8—H8C    | 109.5     |
| F4—Sb1—F6   | 89.3 (2)    | H8A—C8—H8C   | 109.5     |
| F5—Sb1—F6   | 178.25 (17) | H8B—C8—H8C   | 109.5     |
| F3—Sb1—F6   | 89.81 (18)  | С4—С9—Н9А    | 109.5     |
| F4—Sb1—F2   | 90.3 (2)    | С4—С9—Н9В    | 109.5     |
| F5—Sb1—F2   | 88.80 (16)  | H9A—C9—H9B   | 109.5     |
| F3—Sb1—F2   | 178.8 (3)   | С4—С9—Н9С    | 109.5     |
| F6—Sb1—F2   | 90.10 (17)  | H9A—C9—H9C   | 109.5     |
| F4—Sb1—F1   | 179.0 (2)   | H9B—C9—H9C   | 109.5     |
| F5—Sb1—F1   | 87.15 (19)  | C14—C11—C13  | 110.1 (6) |
| F3—Sb1—F1   | 89.7 (3)    | C14—C11—C1   | 111.7 (5) |
| F6—Sb1—F1   | 91.5 (2)    | C13—C11—C1   | 106.1 (6) |
| F2—Sb1—F1   | 89.1 (2)    | C14—C11—C12  | 109.1 (6) |
| F11—Sb2—F15 | 178.4 (2)   | C13—C11—C12  | 109.3 (5) |
| F11—Sb2—F16 | 89.0 (2)    | C1—C11—C12   | 110.5 (5) |
| F15—Sb2—F16 | 91.6 (2)    | C11—C12—H12A | 109.5     |
| F11—Sb2—F12 | 89.2 (2)    | C11—C12—H12B | 109.5     |
|             |             |              |           |

| F15—Sb2—F12 | 90.2 (2)    | H12A—C12—H12B | 109.5     |
|-------------|-------------|---------------|-----------|
| F16—Sb2—F12 | 177.7 (2)   | C11—C12—H12C  | 109.5     |
| F11—Sb2—F13 | 90.3 (2)    | H12A—C12—H12C | 109.5     |
| F15—Sb2—F13 | 91.1 (2)    | H12B—C12—H12C | 109.5     |
| F16—Sb2—F13 | 90.0 (2)    | C11—C13—H13A  | 109.5     |
| F12—Sb2—F13 | 88.5 (2)    | C11—C13—H13B  | 109.5     |
| F11—Sb2—F14 | 88.66 (18)  | H13A—C13—H13B | 109.5     |
| F15—Sb2—F14 | 89.9 (2)    | C11—C13—H13C  | 109.5     |
| F16—Sb2—F14 | 90.5 (2)    | H13A—C13—H13C | 109.5     |
| F12—Sb2—F14 | 90.9 (2)    | H13B—C13—H13C | 109.5     |
| F13—Sb2—F14 | 178.9 (2)   | C11—C14—H14A  | 109.5     |
| N2—Cu—O11   | 153.82 (19) | C11—C14—H14B  | 109.5     |
| N2—Cu—N1    | 92.92 (17)  | H14A—C14—H14B | 109.5     |
| O11—Cu—N1   | 91.37 (19)  | C11—C14—H14C  | 109.5     |
| N2—Cu—O12   | 95.00 (19)  | H14A—C14—H14C | 109.5     |
| O11—Cu—O12  | 91.51 (17)  | H14B—C14—H14C | 109.5     |
| N1—Cu—O12   | 155.84 (18) | C18—C15—C17   | 108.8 (5) |
| C3—O1—C2    | 106.1 (5)   | C18—C15—C16   | 109.9 (5) |
| C5—O2—C6    | 106.2 (5)   | C17—C15—C16   | 108.0 (6) |
| C21—O11—Cu  | 125.9 (5)   | C18—C15—C7    | 108.3 (5) |
| C24—O12—Cu  | 126.2 (4)   | C17—C15—C7    | 110.4 (5) |
| C3—N1—C1    | 107.0 (5)   | C16—C15—C7    | 111.3 (5) |
| C3—N1—Cu    | 126.8 (4)   | C15—C16—H16A  | 109.5     |
| C1—N1—Cu    | 125.5 (4)   | C15—C16—H16B  | 109.5     |
| C5—N2—C7    | 106.6 (5)   | H16A—C16—H16B | 109.5     |
| C5—N2—Cu    | 127.2 (4)   | C15—C16—H16C  | 109.5     |
| C7—N2—Cu    | 126.1 (4)   | H16A—C16—H16C | 109.5     |
| C21—N11—C22 | 120.1 (6)   | H16B—C16—H16C | 109.5     |
| C21—N11—C23 | 122.1 (7)   | С15—С17—Н17А  | 109.5     |
| C22—N11—C23 | 117.8 (6)   | C15—C17—H17B  | 109.5     |
| C24—N12—C25 | 122.0 (6)   | H17A—C17—H17B | 109.5     |
| C24—N12—C26 | 120.2 (6)   | C15—C17—H17C  | 109.5     |
| C25—N12—C26 | 117.8 (5)   | H17A—C17—H17C | 109.5     |
| N1—C1—C11   | 113.0 (5)   | H17B—C17—H17C | 109.5     |
| N1—C1—C2    | 100.5 (5)   | C15—C18—H18A  | 109.5     |
| C11—C1—C2   | 115.7 (5)   | C15—C18—H18B  | 109.5     |
| N1—C1—H1A   | 109.1       | H18A—C18—H18B | 109.5     |
| C11—C1—H1A  | 109.1       | C15—C18—H18C  | 109.5     |
| C2—C1—H1A   | 109.1       | H18A—C18—H18C | 109.5     |
| O1—C2—C1    | 104.9 (5)   | H18B-C18-H18C | 109.5     |
| O1—C2—H2A   | 110.8       | O11—C21—N11   | 123.1 (7) |
| C1—C2—H2A   | 110.8       | O11—C21—H21A  | 118.5     |
| O1—C2—H2B   | 110.8       | N11—C21—H21A  | 118.5     |
| C1—C2—H2B   | 110.8       | N11—C22—H22A  | 109.5     |
| H2A—C2—H2B  | 108.8       | N11—C22—H22B  | 109.5     |
| N1—C3—O1    | 117.8 (6)   | H22A—C22—H22B | 109.5     |
| N1—C3—C4    | 128.0 (6)   | N11—C22—H22C  | 109.5     |
| O1—C3—C4    | 114.1 (5)   | H22A—C22—H22C | 109.5     |
|             |             |               |           |

| C5—C4—C3                                             | 113.2 (4)           | H22B—C22—H22C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5      |
|------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| C5—C4—C9                                             | 111.2 (5)           | N11—C23—H23A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5      |
| C3—C4—C9                                             | 107.6 (5)           | N11—C23—H23B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5      |
| C5—C4—C8                                             | 108.1 (5)           | H23A—C23—H23B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5      |
| C3—C4—C8                                             | 107.0 (5)           | N11—C23—H23C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5      |
| C9—C4—C8                                             | 109.5 (4)           | H23A—C23—H23C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5      |
| N2—C5—O2                                             | 117.8 (6)           | H23B—C23—H23C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5      |
| N2C5C4                                               | 129.8 (6)           | O12—C24—N12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122.4 (7)  |
| O2—C5—C4                                             | 112.4 (5)           | O12—C24—H24A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 118.8      |
| O2—C6—C7                                             | 103.3 (5)           | N12—C24—H24A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 118.8      |
| O2—C6—H6A                                            | 111.1               | N12—C25—H25A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5      |
| С7—С6—Н6А                                            | 111.1               | N12—C25—H25B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5      |
| 02—C6—H6B                                            | 111.1               | H25A—C25—H25B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5      |
| C7—C6—H6B                                            | 111.1               | N12—C25—H25C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5      |
| H6A—C6—H6B                                           | 109.1               | $H_{25A} - C_{25} - H_{25C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5      |
| $N_{2}-C_{7}-C_{6}$                                  | 100 7 (4)           | $H_{25B} = C_{25} = H_{25C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5      |
| $N_{2} - C_{7} - C_{15}$                             | 112 5 (5)           | N12-C26-H26A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5      |
| C6-C7-C15                                            | 116 3 (5)           | N12—C26—H26B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5      |
| N2-C7-H7A                                            | 108.9               | $H_{26} = C_{26} = H_{26B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5      |
| C6-C7-H7A                                            | 108.9               | N12C26H26C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5      |
| C15 - C7 - H7A                                       | 108.9               | $H_{2}^{-} = C_{2}^{-} = H_{2}^{-} = H_{2}^{-} = C_{2}^{-} = H_{2}^{-} = H_{2$ | 109.5      |
| C4 - C8 - H8A                                        | 109.5               | $H_{26B} = C_{26} = H_{26C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5      |
| C+ C0 110/                                           | 107.5               | 11200 020 11200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5      |
| N2-Cu-011-C21                                        | 74.3 (6)            | C7—N2—C5—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -7.8(8)    |
| N1—Cu—O11—C21                                        | 173.7 (5)           | Cu—N2—C5—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 168.6 (4)  |
| O12—Cu—O11—C21                                       | -30.3 (5)           | C7—N2—C5—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 171.1 (6)  |
| N2—Cu—O12—C24                                        | 84.8 (5)            | Cu—N2—C5—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -12.5 (10) |
| 011—Cu—012—C24                                       | -120.6(5)           | C6-02-C5-N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -8.0(8)    |
| N1—Cu—O12—C24                                        | -23.9(8)            | C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 172.9 (5)  |
| N2-Cu-N1-C3                                          | 9.6 (6)             | $C_{3}-C_{4}-C_{5}-N_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.2 (10)   |
| 011— $Cu$ — $N1$ — $C3$                              | -144.6(5)           | C9-C4-C5-N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128.5(7)   |
| 012—Cu—N1—C3                                         | 118.7 (6)           | C8-C4-C5-N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -111.2(7)  |
| $N_2$ — $C_1$ — $N_1$ — $C_1$                        | 178 9 (4)           | $C_{3}-C_{4}-C_{5}-O_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -173.9(5)  |
| 011— $Cu$ — $N1$ — $C1$                              | 24 8 (5)            | C9-C4-C5-O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -52.5(7)   |
| 012— $Cu$ — $N1$ — $C1$                              | -72.0(7)            | C8-C4-C5-O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67.8 (6)   |
| $012 - Cu - N^2 - C^5$                               | 103 2 (6)           | $C_{5} - O_{2} - C_{6} - C_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 193(6)     |
| N1 - Cu - N2 - C5                                    | 41(6)               | $C_{5} = N_{2} = C_{7} = C_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.7 (6)   |
| 012 - Cu - N2 - C5                                   | -1531(5)            | $C_{1}$ N2 $C_{7}$ C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1577(4)   |
| 012 Cu N2 C3                                         | -81.1.(6)           | $C_{5}$ N2 $C_{7}$ $C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -105.8(6)  |
| N1 - Cu - N2 - C7                                    | 179 8 (4)           | $C_{1}$ N2 $C_{7}$ C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77.7 (6)   |
| 012 - Cu - N2 - C7                                   | 22.6 (5)            | $\Omega^2 - C6 - C7 - N^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -224(6)    |
| $C_{3}$ N1 $C_{1}$ C1                                | -1104(6)            | 02 - C6 - C7 - C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99.5 (6)   |
| $C_{1}$ $N_{1}$ $C_{1}$ $C_{1}$                      | 78.6.(6)            | $N_1 - C_1 - C_{11} - C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55.5(0)    |
| $C_{1} = 0 = 0 = 0 = 0$                              | 13 5 (6)            | $C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -50.2(8)   |
| $C_{1} = 1 = C_{1} = C_{2}$                          | -1575(0)            | $N_1 = C_1 = C_{11} = C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -175.2(6)  |
| $C_{1} = C_{1} = C_{2}$                              | 137.3 (4)           | $C_{1} = C_{1} = C_{11} = C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 173.2(3)   |
| $C_{3} = 0_{1} = 0_{2} = 0_{1}$                      | -184(6)             | $C_2 - C_1 - C_{11} - C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -560(7)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 10.4(0)<br>102.7(6) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.9(7)    |
| $U_{11} - U_{1} - U_{2} - U_{1}$                     | 103.7 (0)           | U2-U1-U11-U12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1/2.0(5)  |

| C1—N1—C3—O1 | -3.2 (7)   | N2-C7-C15-C18   | -176.6 (5) |  |
|-------------|------------|-----------------|------------|--|
| Cu—N1—C3—O1 | 167.7 (4)  | C6-C7-C15-C18   | 67.9 (7)   |  |
| C1—N1—C3—C4 | 172.4 (6)  | N2-C7-C15-C17   | -57.5 (6)  |  |
| Cu—N1—C3—C4 | -16.7 (9)  | C6—C7—C15—C17   | -173.0 (5) |  |
| C2—O1—C3—N1 | -9.6 (7)   | N2-C7-C15-C16   | 62.4 (7)   |  |
| C2—O1—C3—C4 | 174.2 (5)  | C6-C7-C15-C16   | -53.1 (8)  |  |
| N1—C3—C4—C5 | 8.3 (9)    | Cu-O11-C21-N11  | -175.2 (4) |  |
| O1—C3—C4—C5 | -175.9 (5) | C22—N11—C21—O11 | 1.8 (10)   |  |
| N1—C3—C4—C9 | -115.0(7)  | C23—N11—C21—O11 | -175.3 (5) |  |
| O1—C3—C4—C9 | 60.7 (6)   | Cu-O12-C24-N12  | -165.4 (4) |  |
| N1—C3—C4—C8 | 127.3 (6)  | C25—N12—C24—O12 | 1.2 (10)   |  |
| O1—C3—C4—C8 | -56.9 (7)  | C26—N12—C24—O12 | -178.2 (6) |  |
|             |            |                 |            |  |

Hydrogen-bond geometry (Å, °)

| D—H···A                            | D—H  | H···A | D···· $A$ | D—H···A |
|------------------------------------|------|-------|-----------|---------|
| C12—H12A…O11                       | 0.98 | 2.58  | 3.204 (8) | 122     |
| C17—H17C…O12                       | 0.98 | 2.58  | 3.189 (7) | 120     |
| C25—H25C…F13 <sup>i</sup>          | 0.98 | 2.55  | 3.418 (8) | 148     |
| C26—H26 <i>B</i> …F11 <sup>i</sup> | 0.98 | 2.53  | 3.427 (8) | 152     |

Symmetry code: (i) -x+2, y+1/2, -z+1.