Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-5-(2-Nitroprop-1-enyl)-2,3-dihydro-1-benzofuran

Hong Xu,^a* Hongshun Sun^b and Ning Xu^a

^aDepartment of Chemical Engineering, Nanjing College of Chemical Technology, Geguan Road No. 265 Nanjing, Nanjing 210048, People's Republic of China, and ^bDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Geguan Road No. 265 Nanjing, Nanjing 210048, People's Republic of China Correspondence e-mail: njutshs@126.com

Received 6 May 2009; accepted 17 June 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.008 Å; R factor = 0.055; wR factor = 0.163; data-to-parameter ratio = 8.6.

The asymmetric unit of the title compound, $C_{11}H_{11}NO_3$, contains two crystallographically independent molecules. The aromatic rings are oriented at a dihedral angle of $56.17 (5)^{\circ}$. The furan rings adopt envelope conformations. Intramolecular C-H···N interactions results in the formation of two sixmembered rings with twisted conformations. In the crystal structure, three weak $C-H\cdots\pi$ interactions are found.

Related literature

For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

- C₁₁H₁₁NO₃ $M_r = 205.21$ Monoclinic, P21 a = 6.1280 (12) Åb = 15.369 (3) Å c = 11.193 (2) Å $\beta = 101.38 \ (3)^{\circ}$
- V = 1033.5 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 294 K $0.20 \times 0.10 \times 0.10 \ \mathrm{mm}$

2335 independent reflections

3 standard reflections frequency: 120 min intensity decay: 1%

 $R_{\rm int} = 0.031$

1289 reflections with $I > 2\sigma(I)$

Data collection

Enraf-Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.981, T_{\max} = 0.990$
2548 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	271 parameters
$wR(F^2) = 0.163$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^{-3}$
2335 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7-H7A\cdots N1$	0.93	2.58	3.096 (8)	116
C18−H18A…N2	0.93	2.60	3.094 (7)	114
$C4-H4A\cdots Cg4$	0.97	2.88	3.673 (8)	140
$C8 - H8A \cdots Cg3^{i}$	0.93	2.92	3.578 (8)	129
$C15 - H15B \cdots Cg2$	0.97	2.85	3.636 (7)	139
$C19-H19A\cdots Cg2^{ii}$	0.93	2.75	3.497 (7)	139

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 1; (ii) -x + 2, $y - \frac{1}{2}$, -z + 1. Cg2, Cg3 and Cg4 are the centroids of the C2/C3/C5-C8, O4/C12-C15 and C13/C14/C16-C19 rings, respectively.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2683).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o1691 [doi:10.1107/S1600536809023277]

(E)-5-(2-Nitroprop-1-enyl)-2,3-dihydro-1-benzofuran

Hong Xu, Hongshun Sun and Ning Xu

S1. Comment

Some derivatives of benzol are important chemical materials. We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1), in which the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings B (C2/C3/C5-C8) and D (C13/C14/C16-C19) are, of course, planar and the dihedral angle between them is B/D = 56.17 (5)°. Rings A (O1/C1-C4) and C (O4/C12-C15) adopt envelope conformations with atoms C1 and C12 displaced by -0.189 (4) and -0.124 (5) Å from the planes of the other rings atoms. The moieties E (N1/C9-C11) and F (N2/C20-C22) are planar [the maximum deviations are -0.002 (4) and 0.016 (4) Å for atoms C10 and C21, respectively], and they are oriented with respect to the adjacent rings at dihedral angles of B/E = 32.39 (4) and D/F = 35.26 (5) °. Intramolecular C-H…N interactions (Table 1) results in the formations of two six-membered rings (N1/C6/C7/C9/C10/H7A) and (N2/C17/C18/C20/C21/H18A) having twisted conformations.

In the crystal structure, three weak C—H $\cdots\pi$ interactions are found.

S2. Experimental

For the preparation of the title compound, ammonium acetate (0.92 g, 12 mmol) was added to a solution of 5-formyl-2,3dihydrobenzofuran (3.3 g, 22.3 mmol) in nitroethane (10 ml). The mixture was heated with stirring to 383 K in an oil bath for 3.5 h. The volatiles were then removed by rotary evaporation. The crude product was triturated in cold CH_3OH (10 ml), collected by filtration (yield; 3.06 g, 67%). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

S3. Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

(E)-5-(2-Nitroprop-1-enyl)-2,3-dihydro-1-benzofuran

Crystal data	
$C_{11}H_{11}NO_3$	F(000) = 432
$M_r = 205.21$	$D_{\rm x} = 1.319 {\rm Mg} {\rm m}^{-3}$
Monoclinic, <i>P</i> 2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 25 reflections
a = 6.1280 (12) Å	$\theta = 10 - 13^{\circ}$
b = 15.369 (3) Å	$\mu=0.10~\mathrm{mm^{-1}}$
c = 11.193 (2) Å	T = 294 K
$\beta = 101.38 \ (3)^{\circ}$	Block, colorless
$V = 1033.5 (4) Å^3$	$0.20 \times 0.10 \times 0.10 \text{ mm}$
Z = 4	
Data collection	
Enraf-Nonius CAD-4	2335 independent reflections
diffractometer	1289 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.031$
Graphite monochromator	$\theta_{\rm max} = 27.0^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 7$
Absorption correction: ψ scan	$k = 0 \rightarrow 19$
(North <i>et al.</i> , 1968)	$l = -14 \rightarrow 14$
$T_{\min} = 0.981, \ T_{\max} = 0.990$	3 standard reflections every 120 min
2548 measured reflections	intensity decay: 1%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.163$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
2335 reflections	$w = 1/[\sigma^2 (F_o^2) + (0.08P)^2]$
271 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^{-3}$
	$\Delta ho_{\min} = -0.14 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.7614 (7)	0.4628 (3)	0.6830 (3)	0.0846 (13)
O2	0.2010 (8)	0.4770 (4)	0.0356 (4)	0.1031 (16)
03	0.2751 (6)	0.3723 (3)	0.1606 (4)	0.0921 (14)
O4	0.2376 (7)	0.6709 (3)	0.6129 (4)	0.0784 (14)
05	-0.3141 (7)	0.6604 (4)	-0.0306 (5)	0.1172 (19)
O6	-0.2291 (7)	0.7649 (3)	0.0949 (4)	0.0878 (13)
N1	0.3306 (7)	0.4276 (3)	0.0942 (5)	0.0659 (13)
N2	-0.1822 (7)	0.7083 (3)	0.0289 (4)	0.0636 (12)
C1	0.9850 (13)	0.4324 (5)	0.7308 (6)	0.098 (2)
H1A	0.9828	0.3902	0.7950	0.118*
H1B	1.0783	0.4808	0.7651	0.118*
C2	0.9084 (8)	0.4194 (3)	0.5194 (5)	0.0548 (13)
C3	0.7336 (8)	0.4598 (4)	0.5594 (5)	0.0563 (15)
C4	1.0773 (10)	0.3913 (5)	0.6293 (5)	0.0720 (16)
H4A	1.0837	0.3285	0.6369	0.086*
H4B	1.2244	0.4135	0.6265	0.086*
C5	0.9035 (8)	0.4120 (3)	0.3964 (5)	0.0540 (14)
H5A	1.0207	0.3856	0.3687	0.065*
C6	0.7209 (7)	0.4443 (3)	0.3137 (5)	0.0490 (12)
C7	0.5452 (8)	0.4844 (4)	0.3565 (5)	0.0550 (14)
H7A	0.4236	0.5060	0.3014	0.066*
C8	0.5529 (9)	0.4917 (4)	0.4809 (5)	0.0621 (14)
H8A	0.4370	0.5179	0.5101	0.074*
C9	0.7270 (8)	0.4392 (4)	0.1835 (5)	0.0627 (16)
H9A	0.8699	0.4389	0.1670	0.075*

C10	0.5669 (9)	0.4350 (4)	0.0849 (5)	0.0624 (15)
C11	0.5970 (10)	0.4375 (5)	-0.0440 (6)	0.084 (2)
H11A	0.7525	0.4424	-0.0456	0.126*
H11B	0.5188	0.4866	-0.0846	0.126*
H11C	0.5390	0.3849	-0.0847	0.126*
C12	0.4566 (12)	0.7054 (5)	0.6645 (5)	0.086 (2)
H12A	0.5519	0.6592	0.7046	0.103*
H12B	0.4449	0.7498	0.7244	0.103*
C13	0.3874 (8)	0.7151 (4)	0.4498 (5)	0.0555 (15)
C14	0.2113 (8)	0.6758 (4)	0.4893 (5)	0.0546 (13)
C15	0.5551 (9)	0.7439 (4)	0.5618 (5)	0.0687 (16)
H15A	0.7020	0.7205	0.5614	0.082*
H15B	0.5640	0.8069	0.5674	0.082*
C16	0.3809 (8)	0.7200 (4)	0.3276 (5)	0.0590 (14)
H16A	0.4996	0.7453	0.3001	0.071*
C17	0.2018 (8)	0.6882 (4)	0.2430 (5)	0.0512 (13)
C18	0.0343 (9)	0.6479 (3)	0.2890 (5)	0.0588 (14)
H18A	-0.0843	0.6241	0.2339	0.071*
C19	0.0323 (9)	0.6409 (4)	0.4116 (5)	0.0617 (16)
H19A	-0.0839	0.6141	0.4397	0.074*
C20	0.2089 (8)	0.6926 (4)	0.1136 (5)	0.0617 (14)
H20A	0.3522	0.6917	0.0978	0.074*
C21	0.0500 (8)	0.6977 (4)	0.0139 (5)	0.0609 (15)
C22	0.0741 (11)	0.6899 (6)	-0.1155 (5)	0.096 (2)
H22A	0.2286	0.6834	-0.1187	0.144*
H22B	0.0163	0.7413	-0.1593	0.144*
H22C	-0.0072	0.6400	-0.1518	0.144*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.106 (3)	0.093 (3)	0.061 (3)	0.016 (3)	0.032 (2)	0.002 (2)
O2	0.077 (3)	0.119 (4)	0.110 (4)	0.027 (3)	0.012 (3)	0.014 (3)
O3	0.070 (3)	0.107 (4)	0.104 (3)	-0.020 (3)	0.028 (2)	0.014 (3)
O4	0.090 (3)	0.088 (4)	0.057 (2)	-0.010 (3)	0.015 (2)	0.004 (2)
05	0.064 (2)	0.164 (5)	0.117 (4)	-0.025 (3)	0.002 (3)	-0.039 (4)
O6	0.081 (3)	0.091 (3)	0.096 (3)	0.032 (3)	0.026 (2)	-0.004 (3)
N1	0.052 (3)	0.070 (3)	0.076 (3)	0.001 (3)	0.015 (2)	-0.002 (3)
N2	0.057 (3)	0.074 (3)	0.057 (3)	0.002 (3)	0.004 (2)	0.004 (3)
C1	0.109 (5)	0.110 (6)	0.073 (5)	0.025 (5)	0.010 (4)	0.006 (4)
C2	0.060 (3)	0.048 (3)	0.058 (3)	0.005 (3)	0.014 (3)	0.007 (3)
C3	0.062 (4)	0.051 (4)	0.062 (4)	-0.004 (3)	0.026 (3)	0.010 (3)
C4	0.065 (3)	0.074 (4)	0.074 (4)	0.011 (3)	0.008 (3)	0.015 (3)
C5	0.047 (3)	0.049 (3)	0.066 (4)	0.009 (3)	0.012 (3)	-0.002 (3)
C6	0.038 (2)	0.051 (3)	0.058 (3)	0.000 (2)	0.009 (2)	-0.002 (2)
C7	0.040 (3)	0.048 (3)	0.081 (4)	0.009 (2)	0.023 (3)	0.009 (3)
C8	0.064 (3)	0.056 (4)	0.073 (4)	0.013 (3)	0.031 (3)	0.002 (3)
C9	0.046 (3)	0.073 (4)	0.070 (4)	0.002 (3)	0.013 (3)	0.007 (3)

C10	0.059 (3)	0.069 (4)	0.063 (3)	0.002 (3)	0.023 (3)	0.004 (3)
C11	0.079 (4)	0.108 (6)	0.066 (4)	-0.019 (4)	0.016 (3)	0.001 (4)
C12	0.121 (6)	0.080 (5)	0.053 (4)	-0.014 (4)	0.006 (4)	-0.006 (4)
C13	0.048 (3)	0.048 (4)	0.071 (4)	0.005 (3)	0.013 (3)	-0.005 (3)
C14	0.056 (3)	0.052 (3)	0.056 (3)	0.000 (3)	0.013 (3)	0.004 (3)
C15	0.057 (3)	0.081 (4)	0.063 (4)	0.004 (3)	0.000 (3)	-0.007 (3)
C16	0.056 (3)	0.061 (4)	0.066 (3)	-0.002 (3)	0.028 (3)	0.004 (3)
C17	0.044 (3)	0.053 (3)	0.057 (3)	0.002 (3)	0.011 (2)	0.000 (3)
C18	0.064 (3)	0.051 (3)	0.061 (3)	-0.003 (3)	0.012 (3)	0.006 (3)
C19	0.058 (3)	0.057 (4)	0.070 (4)	-0.007 (3)	0.012 (3)	0.009 (3)
C20	0.043 (2)	0.079 (4)	0.065 (3)	-0.004 (3)	0.016 (2)	0.000 (3)
C21	0.052 (3)	0.066 (4)	0.068 (3)	0.004 (3)	0.021 (2)	0.002 (3)
C22	0.095 (4)	0.138 (7)	0.060 (4)	0.028 (5)	0.028 (3)	0.005 (4)

Geometric parameters (Å, °)

N1—02	1.197 (6)	C11—H11A	0.9600	
N1-03	1.221 (6)	C11—H11B	0.9600	
N1-C10	1.476 (7)	C11—H11C	0.9600	
N205	1.194 (6)	C12—O4	1.452 (8)	
N206	1.211 (6)	C12—H12A	0.9700	
N2-C21	1.475 (7)	C12—H12B	0.9700	
C101	1.446 (8)	C13—C16	1.363 (7)	
C1—H1A	0.9700	C13—C14	1.383 (7)	
C1—H1B	0.9700	C14—O4	1.363 (6)	
C2—C5	1.375 (7)	C14—C19	1.368 (7)	
C2—C3	1.386 (7)	C15—C12	1.521 (8)	
C3—O1	1.362 (6)	C15—C13	1.521 (7)	
C3—C8	1.362 (7)	C15—H15A	0.9700	
C4—C1	1.505 (9)	C15—H15B	0.9700	
C4—C2	1.506 (7)	C16—C17	1.389 (7)	
C4—H4A	0.9700	C16—H16A	0.9300	
C4—H4B	0.9700	C17—C18	1.383 (7)	
C5—C6	1.395 (7)	C17—C20	1.458 (7)	
C5—H5A	0.9300	C18—C19	1.379 (7)	
С6—С7	1.404 (6)	C18—H18A	0.9300	
С6—С9	1.468 (7)	C19—H19A	0.9300	
С7—С8	1.389 (7)	C20—C21	1.331 (7)	
C7—H7A	0.9300	C20—H20A	0.9300	
C8—H8A	0.9300	C21—C22	1.489 (8)	
C9—C10	1.325 (7)	C22—H22A	0.9600	
С9—Н9А	0.9300	C22—H22B	0.9600	
C10—C11	1.490 (7)	С22—Н22С	0.9600	
$C_{3} = 0_{1} = C_{1}$	106 5 (4)	H11A—C11—H11B	109 5	
$C_{14} - 04 - C_{12}$	107.4(4)	C10-C11-H11C	109.5	
02-N1-03	122 7 (5)	H11A—C11—H11C	109.5	
02 - N1 - C10	122.7(5) 1179(5)	H11B-C11-H11C	109.5	
02 101-010	11/.7 (3)		107.5	

O3—N1—C10	119.4 (5)	O4—C12—C15	108.3 (5)
O5—N2—O6	124.5 (5)	O4—C12—H12A	110.0
O5—N2—C21	115.5 (5)	C15—C12—H12A	110.0
O6—N2—C21	120.0 (5)	O4—C12—H12B	110.0
O1—C1—C4	109.0 (5)	C15—C12—H12B	110.0
01—C1—H1A	109.9	H12A—C12—H12B	108.4
C4—C1—H1A	109.9	C16—C13—C14	118.3 (5)
O1—C1—H1B	109.9	C16—C13—C15	133.8 (5)
C4—C1—H1B	109.9	C14—C13—C15	107.9 (5)
H1A—C1—H1B	108.3	04	122.9 (5)
C5-C2-C3	119.6 (5)	04-C14-C13	113.9 (5)
$C_{5}-C_{2}-C_{4}$	132.0(5)	C19-C14-C13	1231(5)
C_{3} C_{2} C_{4}	108.4(5)	C_{12} C_{15} C_{13}	123.1(5) 101.8(5)
01 - C3 - C8	1244(5)	C12 - C15 - H15A	111 4
$01 - C_3 - C_2$	113.2(5)	C13 - C15 - H15A	111.1
C_{8} C_{3} C_{2}	113.2(5) 122.4(5)	C12_C15_H15B	111.4
$C_{0} = C_{0} = C_{2}$	122.4(5)	$C_{12} = C_{13} = H_{15B}$	111.4
$C_1 = C_4 = C_2$	101.5 (5)	H15A C15 H15B	100.3
$C_1 = C_4 = H_4 A$	111.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.3
$C_2 - C_4 - H_4 A$	111.5	$C_{13} = C_{10} = C_{17}$	121.9 (3)
$C_1 - C_4 - H_4 B$	111.5	C17 C16 H16A	119.1
	111.3	C17 - C10 - H10A	119.1
H4A - C4 - H4B	109.3	C18 - C17 - C18	110.0 (5)
$C_2 = C_5 = C_6$	119.4 (5)	C18 - C1 / - C20	124.1 (5)
C2—C5—H5A	120.3	C16-C17-C20	119.1 (4)
С6—С5—Н5А	120.3	C19—C18—C17	124.0 (5)
C5—C6—C7	119.9 (5)	С19—С18—Н18А	118.0
C5—C6—C9	117.8 (4)	C17—C18—H18A	118.0
C7—C6—C9	122.2 (5)	C14—C19—C18	116.0 (5)
C8—C7—C6	120.1 (5)	C14—C19—H19A	122.0
С8—С7—Н7А	120.0	C18—C19—H19A	122.0
С6—С7—Н7А	120.0	C21—C20—C17	132.5 (5)
C3—C8—C7	118.7 (5)	C21—C20—H20A	113.8
С3—С8—Н8А	120.7	C17—C20—H20A	113.8
С7—С8—Н8А	120.7	C20—C21—N2	118.3 (5)
C10—C9—C6	132.0 (5)	C20—C21—C22	127.9 (5)
С10—С9—Н9А	114.0	N2—C21—C22	113.7 (5)
С6—С9—Н9А	114.0	C21—C22—H22A	109.5
C9—C10—N1	121.4 (5)	C21—C22—H22B	109.5
C9—C10—C11	126.3 (6)	H22A—C22—H22B	109.5
N1-C10-C11	112.4 (5)	C21—C22—H22C	109.5
C10-C11-H11A	109.5	H22A—C22—H22C	109.5
C10-C11-H11B	109.5	H22B—C22—H22C	109.5
C2—C3—O1—C1	7.9 (7)	C7—C6—C9—C10	-30.1 (10)
C4—C1—O1—C3	-12.6 (7)	C6—C7—C8—C3	0.3 (8)
C8—C3—O1—C1	-172.9 (6)	C6C9C10N1	-5.0 (11)
O2—N1—C10—C9	129.9 (6)	C6-C9-C10-C11	174.6 (6)
O3—N1—C10—C9	-49.9 (8)	C15—C12—O4—C14	7.6 (7)

O2-N1-C10-C11	-49.8 (7)	C15—C13—C14—O4	-2.1 (6)
O3—N1—C10—C11	130.4 (6)	C15-C13-C14-C19	-178.9 (5)
O5—N2—C21—C20	-131.9 (6)	C16—C13—C14—O4	177.5 (5)
O5—N2—C21—C22	45.6 (8)	C16—C13—C14—C19	0.7 (8)
O6—N2—C21—C20	50.6 (8)	C14—C13—C16—C17	1.2 (8)
O6—N2—C21—C22	-132.0 (6)	C15-C13-C16-C17	-179.4 (6)
C5-C2-C3-O1	-179.7 (5)	C19—C14—O4—C12	173.4 (6)
C4—C2—C3—O1	-0.1 (7)	C13—C14—O4—C12	-3.5 (6)
C5—C2—C3—C8	1.0 (8)	O4—C14—C19—C18	-177.4 (5)
C4—C2—C3—C8	-179.3 (6)	C13-C14-C19-C18	-0.8 (8)
C3—C2—C5—C6	-0.8 (8)	C13—C15—C12—O4	-8.3 (7)
C4—C2—C5—C6	179.7 (6)	C12-C15-C13-C14	6.3 (6)
O1—C3—C8—C7	-180.0 (5)	C12-C15-C13-C16	-173.2 (6)
C2—C3—C8—C7	-0.8 (8)	C13—C16—C17—C18	-2.7 (8)
C2-C4-C1-O1	12.0 (7)	C13—C16—C17—C20	-177.7 (5)
C1—C4—C2—C5	172.3 (6)	C16—C17—C18—C19	2.6 (8)
C1—C4—C2—C3	-7.3 (7)	C20-C17-C18-C19	177.4 (5)
C2—C5—C6—C7	0.4 (8)	C18—C17—C20—C21	32.8 (10)
C2—C5—C6—C9	176.9 (5)	C16—C17—C20—C21	-152.5 (7)
C5—C6—C7—C8	-0.1 (8)	C17—C18—C19—C14	-0.9 (8)
C9—C6—C7—C8	-176.5 (5)	C17—C20—C21—N2	6.0 (10)
C5—C6—C9—C10	153.4 (7)	C17—C20—C21—C22	-171.0 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A	
C7—H7A…N1	0.93	2.58	3.096 (8)	116	
C18—H18A····N2	0.93	2.60	3.094 (7)	114	
C4—H4 <i>A</i> ···Cg4	0.97	2.88	3.673 (8)	140	
C8—H8 <i>A</i> ··· <i>Cg</i> 3 ⁱ	0.93	2.92	3.578 (8)	129	
C15—H15 <i>B</i> ··· <i>Cg</i> 2	0.97	2.85	3.636 (7)	139	
C19—H19A…Cg2 ⁱⁱ	0.93	2.75	3.497 (7)	139	

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1; (ii) -*x*+2, *y*-1/2, -*z*+1.