Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-(1H-Pyrazol-3-yl)pyridinium chloride monohydrate

Tatiana R. Amarante, Isabel S. Gonçalves and Filipe A. Almeida Paz*
Department of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal Correspondence e-mail: filipe.paz@ua.pt

Received 15 July 2009; accepted 17 July 2009
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.048 ; w R$ factor $=0.162$; data-to-parameter ratio $=35.7$.

The title organic salt, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, exhibits a rich hydrogen-bonding network involving all constituent species. The water molecules are engaged in strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ interactions with the chloride anions, two neighboring protonated 2 -(1 H -pyrazol-3-yl)pyridinium species interact via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ bonds with two pyrazole rings. Further, a short and highly directional $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction is observed connecting the pyridinium ring to the water molecule of crystallization. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions contribute to the stabilization of the crystal structure.

Related literature

For related structures with 2-(3-pyrazolyl)pyridine or its derivatives, see: Coelho et al. (2006, 2007); Fleming et al. (1998); Jones et al. (1997); Lam et al. (1997); Leita et al. (2004); Li (2007); Liu et al. (2006); Mokuolu et al. (2007); Hu, Li et al. (2006); Hu, Wang et al. (2006); Hu et al. (2008); Huo et al. (2006); Ward, Fleming et al. (1998); Ward, Mann et al. (1998). For detailed background to the role of hydrogen bonds in the supramolecular organization of organic crystals, see: Nangia \& Desiraju (1998). For general background studies on crystal engineering approaches from our research group, see: Paz \& Klinowski (2003); Paz et al. (2002). For a description of the graph-set notation for hydrogen-bonded aggregates, see: Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$\gamma=91.097(2)^{\circ}$
$M_{r}=199.64$
$V=462.75(3) \AA^{3}$
Triclinic, $P \overline{1}$
$a=6.8487$ (2) A
$b=8.3523$ (3) \AA
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.38 \mathrm{~mm}^{-1}$
$c=9.0843$ (3) \AA
$T=150 \mathrm{~K}$
$\alpha=114.693(1)^{\circ}$
$\beta=99.867(2)^{\circ}$
$0.18 \times 0.15 \times 0.09 \mathrm{~mm}$

Data collection
Bruker X8 Kappa CCD APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.930, T_{\text {max }}=0.951$

26245 measured reflections 4422 independent reflections 3687 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.162$
$S=1.07$
4422 reflections
124 parameters
3 restraints

Table 1
Hydrogen-bond geometry ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.88	2.25	$2.9502(16)$	137
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.940(19)$	$2.176(10)$	$3.1113(13)$	$173(2)$
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{Cl} 1$	$0.95(2)$	$2.279(11)$	$3.2106(12)$	$170(2)$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 1 W^{\text {iii }}$	0.95	0	$2.7203(16)$	156
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{Cl} 1^{\text {iv }}$	0.95	0	$3.5862(18)$	137
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 1^{v}$	0.88	2.94	$3.7915(15)$	162
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cl}^{\mathrm{v}}$	0.95	0	$3.5604(13)$	159
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{Cl}^{\text {vi }}$	0.95	0	$3.5329(14)$	127
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cl1}^{\text {vi }}$	0.95	0	$3.5649(14)$	123

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+1,-y+1,-z$; (iii) $x, y-1, z$; (iv)
$x+1, y, z ;(\mathrm{v})-x+2,-y+1,-z+1$; (vi) $-x+2,-y,-z$.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINTPlus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL.

We are grateful to Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support (Project PTDC/QUI/71198/2006) and also for specific funding toward the purchase of the single-crystal diffractometer.

[^0]
References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Coelho, A. C., Gonçalves, I. S. \& Paz, F. A. A. (2007). Acta Cryst. E63, o1380o1382.
Coelho, A. C., Paz, F. A. A., Klinowski, J., Pillinger, M. \& Gonçalves, I. S. (2006). Molecules, 11, 940-952.

Fleming, J. S., Psillakis, E., Jeffery, J. C., Mann, K. L. V., McCleverty, J. A. \& Ward, M. D. (1998). Polyhedron, 17, 1705-1714.
Hu, T. L., Li, J. R., Liu, C. S., Shi, X. S., Zhou, J. N., Bu, X. H. \& Ribas, J. (2006). Inorg. Chem. 45, 162-173.
Hu, T. L., Wang, J. J., Li, J. R. \& Bu, X. H. (2006). J. Mol. Struct. 796, 18-22. Hu, T. L., Zou, R. Q., Li, J. R. \& Bu, X. H. (2008). Dalton Trans. pp. 1302-1311.
Huo, L. H., Cheng, X. L., Zhao, H. \& Ng, S. W. (2006). Acta Cryst. E61, m460m462.
Jones, P. L., Jeffery, J. C., McCleverty, J. A. \& Ward, M. D. (1997). Polyhedron, 16, 1567-1571.
Lam, M. H. W., Cheung, S. T. C., Fung, K. M. \& Wong, W. T. (1997). Inorg. Chem. 36, 4618-4619.
Leita, B. A., Moubaraki, B., Murray, K. S., Smith, J. P. \& Cashion, J. D. (2004). Chem. Commun. pp. 156-157.

Li, R. (2007). Acta Cryst. E63, m1640.
Liu, C. S., Shi, X. S., Li, J. R., Wang, J. J. \& Bu, X. H. (2006). Cryst. Growth Des. 6, 656-663.
Mokuolu, Q. F., Foguet-Albiol, D., Jones, L. F., Wolowska, J., Kowalczyk, R. M., Kilner, C. A., Christou, G., McGowan, P. C. \& Halcrow, M. A. (2007). Dalton Trans. pp. 1392-1399.
Nangia, A. \& Desiraju, G. R. (1998). Topics in Current Chemistry, Vol. 198, edited by E. Weber, pp. 57-96. Berlin Heidelberg: Springer Verlag.
Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. \& Klinowski, J. (2002). New J. Chem. 26, 381-383.
Paz, F. A. A. \& Klinowski, J. (2003). CrystEngComm, 5, 238-244.
Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Ward, M. D., Fleming, J. S., Psillakis, E., Jeffery, J. C. \& McCleverty, J. A. (1998). Acta Cryst. C54, 609-612.

Ward, M. D., Mann, K. L. V., Jeffery, J. C. \& McCleverty, J. A. (1998). Acta Cryst. C54, 601-603.

supporting information

Acta Cryst. (2009). E65, o1962-o1963 [doi:10.1107/S1600536809028402]

2-(1 H-Pyrazol-3-yl)pyridinium chloride monohydrate

Tatiana R. Amarante, Isabel S. Gonçalves and Filipe A. Almeida Paz

S1. Comment

In recent years, molecules derived from 2-(3-pyrazolyl)pyridine have been very much explored in coordination chemistry as N, N-chelating moieties, N, N-bridging (the two N -atoms from the pyrazolyl aromatic ring), or even a combination of these two coordination modes, in conjunction with other ligands to produce functional complexes which, ultimately, may find applications in catalysis or as photoluminescent devices. Indeed, a search in the literature and in the Cambridge Structural Database (CSD, Version of November 2008 with three updates; Allen, 2002) reveals a plethora of transition metal complexes: $\mathrm{Ag}^{+}(\mathrm{Li}, 2007), \mathrm{Cd}^{2+}$ (Hu et al., 2008; Liu et al., 2006; Hu, Wang et al., 2006; Huo et al., 2006), Cu^{2+} (Hu, Li et al., 2006; Fleming et al., 1998; Mokuolu et al., 2007), Cu^{+}(Lam et al., 1997), Fe^{2+} (Leita et al., 2004), Fe^{3+} (Jones et al., 1997), In^{3+} (Ward, Mann et al., 1998), Pd^{2+} (Ward, Fleming et al., 1998), Ru^{2+} (Lam et al., 1997), Zn^{2+} (Hu et al., 2008).
Our research group has been particularly interested in the use of this molecule and its derivatives. For example, we have reported the crystal structures of both the molybdenum complex cis-[Mo(CO) $\left.{ }_{4} L\right]$ (Coelho et al., 2006) and the organic ligand L \{ethyl[3-(2-pyridyl)-1-pyrazolyl]acetate\} (Coelho et al., 2007). We have recently isolated single crystals of (I) as a secondary (minor) phase (see Experimental). Following our on-going interest in the structural details of organic crystals (Paz \& Klinowski, 2003; Paz et al., 2002), here we report the supramolecular structure at 150 K of the monohydrate form of the title salt: $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3}{ }^{+} \mathrm{Cl}^{-} \mathrm{H}_{2} \mathrm{O}$, (I).
The asymmetric unit of the title compound, (I), is composed of a cationic $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3}{ }^{+}$moiety (protonated at the pyridine ring), one chloride anion and one water molecule of crystallization (Fig. 1). The two aromatic rings of 2-(3pyrazolyl)pyridinium can be considered as coplanar (the average planes containing the rings are tilted by only $c a 1^{\circ}$).

The existence of several chemical groups capable of hydrogen bonding either as donors or acceptors leads to the formation of a complex supramolecular network. Water molecules and chloride anions are involved in strong ($d_{\mathrm{D} \cdots \mathrm{A}}$ ranging between ca 3.11 and $3.21 \AA$) and highly directional $\left[<(\mathrm{DHA})\right.$ angles above 170° - see Table 1$] \mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding interactions forming a $R_{2}{ }^{2}(8)$ graph set motif as depicted in Fig. 2a (Bernstein et al., 1995). It is important to emphasize that the water molecule itself acts as the acceptor in an unusual $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}_{\text {water }}$ interaction. Indeed, even though this interaction is not considered as classic (Nangia \& Desiraju, 1998), in the structure of (I) the $d_{\mathrm{D} \cdots \mathrm{A}}$ distance is considered short [2.7203(16) \AA] and the $<\left(\right.$ DHA) angle is 156°. Thus, these geometric parameters allow us to infer that this interaction seems to play an important role in the supramolecular organization of (I). In addition, the close proximity of the pyrazolyl rings belonging to two adjacent 2-(3-pyrazolyl)pyridinium moieties promote the formation of two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions describing a $R_{2}{ }^{2}(\sigma)$ motif (Fig. 2a). The alternation between the two aforementioned graph set motifs and the single $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}_{\text {water }}$ interaction leads to the formation of a supramolecular tape (solely based on strong interactions) running parallel to the [011] vector of the unit cell (Fig. 3).

The crystal packing of (I) is further promoted by the existence of a number of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and one $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding interactions as shown in Fig. 2b (Table 1), which establish connections between adjacent supramolecular tapes (not shown).

S2. Experimental

Crystals of (I) were isolated as a secondary product while reacting in dichloromethane $\mathrm{MoO}_{2} \mathrm{Cl}_{2}$ with 2-(3pyrazolyl)pyridine.

S3. Refinement

Hydrogen atoms bound to carbon and nitrogen were located at their idealized positions and were included in the final structural model in riding model approximation with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $\mathrm{N}-\mathrm{H}=0.88 \AA$, and with $U(\mathrm{H})$ set to $1.2 U_{\text {eq }}(\mathrm{C}$, N).

H atoms associated with the water molecule of crystallization were directly located from difference Fourier maps and included in the structure with the $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distances restrained to $0.95(1)$ and $1.55(1) \AA$, respectively, with $U(\mathrm{H})$ set to $1.5 U_{\text {eq }}(\mathrm{O})$.
The final difference Fourier map synthesis showed the highest peak ($1.26 \mathrm{e}^{-3}$) located at $0.25 \AA$ from the C 5 atom.

Figure 1

Asymmetric unit of (I) with all non-hydrogen atoms represented as thermal displacement ellipsoids drawn at the 80% probability level and hydrogen atoms as small spheres with arbitrary radii. The labeling scheme is provided for all nonhydrogen atoms.

Figure 2
Hydrogen bonds interconnecting the chemical moieties present in (I). (a) Strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}, \mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and short $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions (violet dashed lines), leading to the formation of a 1-D supramolecular tape composed by the alternation of $R_{4}^{2}(8), R_{2}^{2}(6)$ and S graph set motifs. (b) Weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions (orange dashed lines). For clarity all symmetry transformations used to generate equivalent atoms have been omitted. See Table 1 for geometric details of the highlighted hydrogen bonding interactions.

Figure 3
Crystal packing viewed along the [100] direction of the unit cell. Strong hydrogen bonds $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N}, \mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and short $\mathrm{C}-\mathrm{H} \cdots \mathrm{O})$ are represented as violet dashed lines.

Figure 4
Asymmetric unit of the title compound will all non-hydrogen atoms represented as thermal ellipsoids drawn at the 50% probability level.

Figure 5
Crystal packing of the title compound.

2-(1 H-Pyrazol-3-yl)pyridinium chloride monohydrate

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=199.64$
Triclinic, $P 1$
Hall symbol: -P 1
$a=6.8487$ (2) A
$b=8.3523$ (3) \AA
$c=9.0843$ (3) \AA
$\alpha=114.693(1)^{\circ}$
$\beta=99.867(2)^{\circ}$

$$
\begin{aligned}
& \gamma=91.097(2)^{\circ} \\
& V=462.75(3) \AA^{3} \\
& Z=2 \\
& F(000)=208 \\
& D_{\mathrm{x}}=1.433 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 9894 \text { reflections } \\
& \theta=2.5-39.6^{\circ} \\
& \mu=0.38 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=150 \mathrm{~K}$

Prism, colourless

Data collection

Bruker X8 Kappa CCD APEXII

 diffractometerRadiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.930, T_{\text {max }}=0.951$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.162$
$S=1.07$
4422 reflections
124 parameters
3 restraints
Primary atom site location: structure-invariant
direct methods
$0.18 \times 0.15 \times 0.09 \mathrm{~mm}$

26245 measured reflections
4422 independent reflections
3687 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=36.3^{\circ}, \theta_{\text {min }}=3.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-13 \rightarrow 13$
$l=-15 \rightarrow 15$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0872 P)^{2}+0.3244 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.26$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.99 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N1	$0.61184(17)$	$0.19217(15)$	$0.62050(15)$	$0.0183(2)$
H1	0.5010	0.1500	0.6343	0.022^{*}
N2	$0.70080(17)$	$0.10464(15)$	$0.49209(14)$	$0.0173(2)$
N3	$1.1678(2)$	$0.28024(18)$	$0.43052(18)$	$0.0245(2)$
H3	1.1939	0.3832	0.5176	0.029^{*}
C1	$0.7105(2)$	$0.35120(18)$	$0.72575(18)$	$0.0209(2)$
H1C	0.6738	0.4335	0.8239	0.025^{*}
C2	$0.8746(2)$	$0.37168(17)$	$0.66403(18)$	$0.0195(2)$
H2	0.9742	0.4694	0.7095	0.023^{*}
C3	$0.86126(18)$	$0.21518(16)$	$0.51834(16)$	$0.0153(2)$
C4	$0.99968(18)$	$0.16869(16)$	$0.40505(16)$	$0.0155(2)$
C5	$0.96578(17)$	$0.01058(15)$	$0.27103(14)$	$0.01290(18)$
H5	0.8509	-0.0658	0.2533	0.015^{*}

C6	$1.0876(2)$	$-0.04322(19)$	$0.16188(17)$	$0.0206(2)$
H6	1.0589	-0.1564	0.0705	0.025^{*}
C7	$1.2539(2)$	$0.0651(2)$	$0.18193(19)$	$0.0231(3)$
H7	1.3393	0.0285	0.1042	0.028^{*}
C8	$1.2942(2)$	$0.2287(2)$	$0.31810(19)$	$0.0220(2)$
H8	1.4081	0.3052	0.3343	0.026^{*}
C11	$0.67400(5)$	$0.34331(4)$	$0.14179(4)$	$0.02184(10)$
O1W	$0.68083(18)$	$0.73153(15)$	$0.15022(15)$	$0.0261(2)$
H1A	$0.575(3)$	$0.719(3)$	$0.064(2)$	0.039^{*}
H1B	$0.692(4)$	$0.623(2)$	$0.159(3)$	0.039^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0160(4)$	$0.0180(5)$	$0.0194(5)$	$-0.0016(4)$	$0.0048(4)$	$0.0061(4)$
N2	$0.0165(4)$	$0.0166(4)$	$0.0173(4)$	$-0.0016(3)$	$0.0037(4)$	$0.0059(4)$
N3	$0.0234(5)$	$0.0216(5)$	$0.0292(6)$	$-0.0003(4)$	$0.0076(5)$	$0.0107(5)$
C1	$0.0206(6)$	$0.0170(5)$	$0.0217(6)$	$0.0001(4)$	$0.0062(5)$	$0.0042(4)$
C2	$0.0182(5)$	$0.0147(5)$	$0.0228(6)$	$-0.0012(4)$	$0.0049(4)$	$0.0051(4)$
C3	$0.0144(5)$	$0.0142(4)$	$0.0172(5)$	$-0.0002(4)$	$0.0023(4)$	$0.0068(4)$
C4	$0.0150(5)$	$0.0147(5)$	$0.0174(5)$	$0.0004(4)$	$0.0025(4)$	$0.0076(4)$
C5	$0.0123(4)$	$0.0127(4)$	$0.0128(4)$	$-0.0003(3)$	$0.0011(3)$	$0.0052(3)$
C6	$0.0219(6)$	$0.0208(5)$	$0.0184(5)$	$0.0033(4)$	$0.0051(4)$	$0.0073(4)$
C7	$0.0219(6)$	$0.0259(6)$	$0.0249(6)$	$0.0042(5)$	$0.0096(5)$	$0.0123(5)$
C8	$0.0190(5)$	$0.0227(6)$	$0.0276(6)$	$0.0003(4)$	$0.0077(5)$	$0.0129(5)$
C11	$0.01974(15)$	$0.02010(15)$	$0.02130(16)$	$-0.00223(11)$	$0.00433(11)$	$0.00468(11)$
O1W	$0.0240(5)$	$0.0202(5)$	$0.0275(5)$	$-0.0047(4)$	$-0.0012(4)$	$0.0065(4)$

Geometric parameters $\left(\hat{A},{ }^{\circ}\right)$

N1—N2	1.3471 (16)	C3-C4	1.4572 (18)
N1-C1	1.3485 (18)	C4-C5	1.3521 (17)
N1-H1	0.8800	C5-C6	1.3439 (18)
N2-C3	1.3433 (16)	C5-H5	0.9500
N3-C8	1.389 (2)	C6-C7	1.379 (2)
N3-C4	1.3908 (18)	C6-H6	0.9500
N3-H3	0.8800	C7-C8	1.389 (2)
C1-C2	1.3765 (19)	C7-H7	0.9500
C1-H1C	0.9500	C8-H8	0.9500
C2-C3	1.4061 (18)	O1W-H1A	0.940 (19)
C2—H2	0.9500	O1W-H1B	0.95 (2)
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1$	112.87 (11)	C5-C4-N3	118.43 (12)
N2-N1-H1	123.6	C5-C4-C3	119.14 (11)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	123.6	N3-C4-C3	122.42 (12)
C3-N2-N1	104.03 (10)	C6-C5-C4	122.82 (12)
C8-N3-C4	119.79 (13)	C6-C5-H5	118.6
C8-N3-H3	120.1	C4-C5-H5	118.6

supporting information

$\mathrm{C} 4-\mathrm{N} 3-\mathrm{H} 3$	120.1
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$	$107.03(12)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	126.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	126.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$104.32(11)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	127.8
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	127.8
$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{C} 2$	$111.76(11)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.41(11)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$126.84(11)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3$	$-0.48(15)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$0.23(17)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.12(16)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$0.55(15)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$179.90(11)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$-0.43(16)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.74(13)$
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.9(2)$
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 3$	$-179.96(13)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.20(19)$

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$120.30(13)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.8
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	119.8
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$118.69(13)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	120.7
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	120.7
$\mathrm{~N} 3-\mathrm{C} 8-\mathrm{C} 7$	$119.94(13)$
$\mathrm{N} 3-\mathrm{C} 8-\mathrm{H} 8$	120.0
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	120.0
$\mathrm{H} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{~B}$	$110.2(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	
$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 3$	$179.05(13)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 3$	$-179.37(12)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.1(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.11(19)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-179.10(12)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-1.1(2)$
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 7$	$1.0(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 3$	$-0.9(2)$

Hydrogen-bond geometry $\left(\stackrel{A}{A},{ }^{\circ}\right)$

$\underline{D-H \cdots A}$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D^{\cdots} A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.88	2.25	2.9502 (16)	137
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{Cl} 1^{\text {ii }}$	0.94 (2)	2.18 (1)	3.1113 (13)	173 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{Cl} 1$	0.95 (2)	2.28 (1)	3.2106 (12)	170 (2)
C5-H5 ${ }^{\text {c }}$ O1 $W^{\text {iii }}$	0.95		2.7203 (16)	156
C8-H8 $\cdots{ }^{\text {Cl }} 1^{\text {iv }}$	0.95		3.5862 (18)	137
N3-H3 ${ }^{\text {c }} \mathrm{Cl1}^{\text {v }}$	0.88	2.94	3.7915 (15)	162
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cl1}{ }^{\text {v}}$	0.95		3.5604 (13)	159
C6-H6 ${ }^{\text {Cl }} 1^{\text {vi }}$	0.95		3.5329 (14)	127
C7-H7 ${ }^{\text {Cl }}{ }^{\text {di }}$	0.95		3.5649 (14)	123

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+1,-y+1,-z$; (iii) $x, y-1, z$; (iv) $x+1, y, z$; (v) $-x+2,-y+1,-z+1$; (vi) $-x+2,-y,-z$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2502).

