Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[di- μ_{2}-chlorido(μ_{2}-1,3-di-4-pyridyl-propane- $\left.\kappa^{2} N: N^{\prime}\right)$ lead(II)]

Zhiyong Fu,* Dongpo Su and Desheng Song

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People's Republic of China
Correspondence e-mail: zyfu@scut.edu.cn
Received 21 August 2009; accepted 7 September 2009

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$; R factor $=0.033 ; w R$ factor $=0.077$; data-to-parameter ratio $=14.6$.

The title $\mathrm{Pb}^{\text {II }}$ coordination polymer, $\left[\mathrm{PbCl}_{2}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\right]$, was prepared by the hydrothermal reaction of PbCl_{2} with $4,4,-$ trimethylenedipyridine in a $1: 1$ ratio. It exhibits a twodimensional layered structural motif consisting of PbCl_{2} chains and the flexible bridged $4,4^{\prime}$-trimethylenedipyridine ligand. The connections result in a cavity of about $4 \times 15 \AA$.

Related literature

For crystal engineering based upon transition metal coordination polymers, see: Abrahams et al. (1999). For applications of these metal-organic frameworks, see: Moulton \& Zaworotko (2001); Natarajan \& Mahata (2009). For networks with main group metals as connected nodes, see: Shi et al. (2002). For the related structure, $\left[\mathrm{PbCl}_{2}\left(4,4^{\prime}\right.\right.$-bipy) $]$ (bipy is bipyridine), see: Nordell et al. (2004).

Experimental

Crystal data

$\left[\mathrm{PbCl}_{2}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\right]$
$M_{r}=476.35$
Monoclinic, $P 2_{1} / m$
$V=734.5(3) \AA^{3}$
$Z=2$
$a=4.385$ (2) A
$b=15.455$ (3) A
$c=10.935$ (2) \AA
Mo $K \alpha$ radiation
$\mu=11.84 \mathrm{~mm}^{-1}$
$\beta=97.65(2)^{\circ}$

Data collection

Bruker SMART CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.139, T_{\text {max }}=0.277$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033 \quad 88$ parameters
$w R\left(F^{2}\right)=0.077$
$S=1.01$
1283 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.88$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.16 \mathrm{e}^{\AA^{-3}}$

Data collection: SMART (Bruker, 1996); cell refinement: SMART and SAINT (Bruker, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the NNSFC (grant No. 20701014) and the SRP program of the SCUT for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2006).

References

Abrahams, B. F., Egan, S. J. \& Robson, R. (1999). J. Am. Chem. Soc. 121, 35353536.

Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Moulton, B. \& Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
Natarajan, S. \& Mahata, P. (2009). Chem. Soc. Rev. 38, 2304-2318.
Nordell, K. J., Schultz, K. N., Higgins, K. A. \& Smith, M. D. (2004). Polyhedron, 23, 2161-2167.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shi, Y. J., Li, L. H., Li, Y. Z., Xu, Y., Chen, X. T., Xue, Z. \& You, X. Z. (2002). Inorg. Chem. Commun. 5, 1090-1094.

supporting information

Poly[di- μ_{2}-chlorido($\mu_{2}-1,3$-di-4-pyridylpropane- $\left.\kappa^{2} N: N^{\prime}\right)$ lead(II)]

Zhiyong Fu, Dongpo Su and Desheng Song

S1. Comment

Crystal engineering based upon transition metal coordination polymers has made rapid progress (Abrahams et al., 1999). These metal organic frameworks attracted much attention in the field of host guest chemistry (Natarajan et al., 2009), which may find applications in catalysis, nonlinear optics, magnetism, molecular recognition and separation (Moulton et al., 2001). By comparison, the networks with main group metals as connected nodes have not been well documented (Shi et al., 2002). Recently, many lead halides based coordination polymers with nitrogen-containing ligand as bridge exhibit interesting physical properties and structural motifs (Nordell et al., 2004). Different linkers, such as 4,4,-bipy, pyrazine and bipyridyl-based butadiene are introduced to the construction of lead halide organic-inorganic hybrid compounds. Here we report the hydrothermal synthesis and structural characterization of a new coordination complex based on PbCl_{2} inorganic unit and 4,4,-trimethylenedipyridine. Hydrothermal reaction of PbCl_{2} and 4,4,-trimethylenedipyridine with equimolar amounts afford block-like crystals. They were characterized by single-crystal X-ray structural analysis. Details of crystallographic data for the title compounds 1 is listed in Table 1. The structure of $\mathrm{PbCl} 2(4,4,-$ trimethylenedipyridine $)$ framework is a two-dimensional-layered motif constructed by the $\left[\mathrm{PbCl}_{2}\right]_{\mathrm{n}}$ chains and the flexible bridge 4,4 ,-trimethylenedipyridine ligand (Fig. 1). The crystal is monoclinic, space group $\mathrm{P} 21 / \mathrm{m}$, with the $\mathrm{Pb}, \mathrm{Cl} 1$ and Cl 2 atoms lying on a crystallographic mirror plane. Each lead metal center is six-coordinate geometry with four chloride ion on the square plane and two nitrogen donors at the axial direction. The bond distances of $\mathrm{Pb}-\mathrm{Cl}$ range from 2.862 (6) \AA to 2.982 (6) \AA. And the bond distance of $\mathrm{Pb}-\mathrm{N}$ is 2.667 (7) \AA. These parameters are close to previous report (Nordell et al., 2004). The bond angles of $\mathrm{Cl}-\mathrm{Pb}-\mathrm{Cl}$ at the square plane vary from 81.15 (17) to $97.21(17)^{\circ}$. And the trans $\mathrm{N} 1 — \mathrm{~Pb} 1 — \mathrm{~N} 1$ bond angle is $166.1(3)^{\circ}$. These value indicate that the lead center is situated in a distorted octahedral environment and the lone pair in $\mathrm{Pb}(\mathrm{II})$ is stereochemically active. As showed in figure 2, The $\left[\mathrm{PbCl}_{2}\right]_{\mathrm{n}}$ chains are linked into flat sheets by the 4,4 ,-trimethylenedipyridine bridges. The dimensions of the distorted square cavity are approximately $4 * 15 \AA$. The flexible of the spacers make the layer into an undulating structural motif. And the sheets stack along a axis at a distance of 4.69 Å.

S2. Experimental

An aqueous mixture (10 ml) containing 4,4,-trimethylenedipyridine ($0.1 \mathrm{~g}, 0.5 \mathrm{mmol}$), $\mathrm{PbCl}_{2}(0.139 \mathrm{~g}, 0.5 \mathrm{mmol})$ was placed in a Parr Teflonlined stainless steel vessel (25 ml), and the vessel was sealed and heated to 403.15 K for 24 h .0 .08 g block-like crystals were obtained.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ 1.2 (1.5 for methyl groups) times $U_{\text {eq }}(\mathrm{C})$. The non-hydrogen atoms were refined anisotropically. 41 low-theta reflections were omitted from the data set.

Figure 1
The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Figure 2
The packing of (I), viewed down the c axis.

Poly[di- μ_{2}-chlorido $\left(\mu_{2}\right.$-1,3-di-4-pyridylpropane- $\left.\kappa^{2} N: N^{\prime}\right)$ lead(II)]

Crystal data

$\left[\mathrm{PbCl}_{2}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\right]$
$M_{r}=476.35$
Monoclinic, $P 2_{1} / m$
Hall symbol: -P2yb
$a=4.385(2) \AA$
$b=15.455$ (3) \AA
$c=10.935$ (2) \AA
$\beta=97.65$ (2) ${ }^{\circ}$
$V=734.5(3) \AA^{3}$
$Z=2$

Data collection

Bruker SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator ω scans
$F(000)=444$
$D_{\mathrm{x}}=2.155 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 533.15 K K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1283 reflections
$\theta=2.6-25.0^{\circ}$
$\mu=11.84 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, yellow
$0.19 \times 0.15 \times 0.11 \mathrm{~mm}$

Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.139, T_{\text {max }}=0.277$
2401 measured reflections
1283 independent reflections
1109 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.033 \\
& \theta_{\max }=25.0^{\circ}, \theta_{\min }=2.6^{\circ} \\
& h=-5 \rightarrow 5
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.077$
$S=1.01$
1283 reflections
88 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& k=-15 \rightarrow 18 \\
& l=-7 \rightarrow 12
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0359 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.88$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.16 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Pb 1	$0.32077(9)$	0.7500	$0.28349(4)$	$0.03780(17)$
C 2	$0.7798(10)$	0.7500	$0.1052(3)$	$0.0748(10)$
C 11	$-0.1094(10)$	0.7500	$0.4619(3)$	$0.0719(10)$
C 5	$0.6217(18)$	$0.4150(5)$	$0.2292(8)$	$0.0431(19)$
N 1	$0.3822(16)$	$0.5787(4)$	$0.2702(7)$	$0.0482(17)$
C 2	$0.412(2)$	$0.4554(5)$	$0.1409(8)$	$0.049(2)$
H 2 A	0.3481	0.4278	0.0662	0.059^{*}
C 3	$0.574(2)$	$0.5401(5)$	$0.3555(8)$	$0.057(2)$
H 3 A	0.6288	0.5684	0.4303	0.068^{*}
C 1	$0.297(2)$	$0.5358(5)$	$0.1631(8)$	$0.049(2)$
H 1 A	0.1573	0.5616	0.1026	0.059^{*}
C 6	$0.770(2)$	$0.3312(5)$	$0.2033(9)$	$0.055(2)$
H 6 A	0.9711	0.3283	0.2527	0.066^{*}
H 6 B	0.8024	0.3302	0.1171	0.066^{*}
C31	$0.698(2)$	$0.4595(5)$	$0.3397(9)$	$0.055(2)$
H 3 B	0.8335	0.4349	0.4030	0.066^{*}
C7	$0.584(2)$	0.2500	$0.2302(11)$	$0.040(3)$
H7A	0.3863	0.2500	0.1783	0.048^{*}
H7C	0.5474	0.2500	0.3159	0.048^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb 1	$0.0342(2)$	$0.0274(2)$	$0.0527(3)$	0.000	$0.00873(17)$	0.000
C 2	$0.095(3)$	$0.082(2)$	$0.047(2)$	0.000	$0.0061(17)$	0.000
C 11	$0.102(3)$	$0.065(2)$	$0.048(2)$	0.000	$0.0045(18)$	0.000
C 5	$0.043(5)$	$0.026(4)$	$0.066(6)$	$-0.005(3)$	$0.027(4)$	$0.002(4)$
N 1	$0.057(4)$	$0.027(3)$	$0.062(5)$	$0.006(3)$	$0.016(4)$	$0.006(3)$
C 2	$0.062(5)$	$0.032(4)$	$0.052(5)$	$-0.003(4)$	$0.008(4)$	$-0.003(4)$
C 3	$0.081(7)$	$0.032(4)$	$0.056(6)$	$0.002(4)$	$0.003(5)$	$-0.001(4)$
C 1	$0.053(5)$	$0.032(4)$	$0.059(6)$	$-0.002(4)$	$-0.002(4)$	$0.009(4)$
C 6	$0.056(5)$	$0.032(4)$	$0.083(7)$	$-0.002(4)$	$0.029(5)$	$0.004(4)$
C 31	$0.060(6)$	$0.040(4)$	$0.066(6)$	$-0.007(4)$	$0.005(5)$	$0.006(4)$
C 7	$0.035(6)$	$0.023(5)$	$0.064(7)$	0.000	$0.012(5)$	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Pb} 1-\mathrm{N} 1^{\text {i }}$	2.667 (7)	$\mathrm{C} 2-\mathrm{C} 1$	1.374 (10)
$\mathrm{Pb} 1-\mathrm{N} 1$	2.667 (7)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
$\mathrm{Pb} 1-\mathrm{Cl}^{\text {ii }}$	2.862 (6)	C3-C31	1.379 (11)
$\mathrm{Pb} 1-\mathrm{Cl} 1$	2.887 (5)	C3-H3A	0.9300
$\mathrm{Pb} 1-\mathrm{Cl}^{\text {iii }}$	2.957 (6)	C1-H1A	0.9300
$\mathrm{Pb} 1-\mathrm{Cl} 2$	2.982 (6)	C6-C7	1.548 (10)
$\mathrm{Cl} 2-\mathrm{Pb} 1^{\text {iii }}$	2.862 (6)	C6-H6A	0.9700
$\mathrm{Cl} 1-\mathrm{Pbl}{ }^{\text {ii }}$	2.957 (6)	C6-H6B	0.9700
C5-C31	1.392 (12)	C31-H3B	0.9300
C5-C2	1.390 (12)	C7-C6 ${ }^{\text {iv }}$	1.548 (10)
C5-C6	1.494 (11)	C7-H7A	0.9700
N1-C3	1.313 (11)	C7-H7C	0.9700
N1-C1	1.354 (11)		
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{N} 1$	166.1 (3)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.8
$\mathrm{N} 1-\ldots \mathrm{Pb} 1-\mathrm{Cl}^{\text {iii }}$	92.49 (16)	C5-C2-H2A	119.8
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{Cl}^{2 i}$	92.49 (16)	N1-C3-C31	123.2 (8)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{Cl} 1$	96.69 (14)	N1-C3-H3A	118.4
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{Cl1}$	96.69 (14)	C31-C3-H3A	118.4
$\mathrm{Cl2}{ }^{\text {iii }}$ - $\mathrm{Pb} 1-\mathrm{Cl} 1$	84.43 (17)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	122.1 (7)
$\mathrm{N1}{ }^{\text {i }}$ - $\mathrm{Pb} 1-\mathrm{Cl}^{1{ }^{\text {iii }}}$	87.32 (16)	N1-C1-H1A	119.0
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{Cl}^{\text {iii }}$	87.32 (16)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	119.0
$\mathrm{Cl}^{\text {iii }}$ - $\mathrm{Pb} 1-\mathrm{Cl}^{\text {iii }}$	178.36 (9)	C5-C6-C7	114.3 (7)
$\mathrm{Cl} 1-\mathrm{Pb} 1-\mathrm{Cl}^{\text {iii }}$	97.21 (17)	C5-C6-H6A	108.7
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{Cl} 2$	83.26 (14)	C7-C6-H6A	108.7
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{Cl} 2$	83.26 (14)	C5-C6-H6B	108.7
$\mathrm{Cl} 2 \mathrm{ii}-\mathrm{Pb} 1-\mathrm{Cl} 2$	97.21 (17)	C7-C6-H6B	108.7
$\mathrm{Cl} 1-\mathrm{Pb} 1-\mathrm{Cl2}$	178.36 (11)	H6A-C6-H6B	107.6
$\mathrm{Cl}^{\text {iii }}$ - $\mathrm{Pb} 1-\mathrm{Cl} 2$	81.15 (17)	C3-C31-C5	120.1 (8)
$\mathrm{Pb} 1{ }^{\text {iiii }}-\mathrm{Cl} 2-\mathrm{Pb} 1$	97.21 (17)	$\mathrm{C} 3-\mathrm{C} 31-\mathrm{H} 3 \mathrm{~B}$	120.0
$\mathrm{Pb} 1-\mathrm{Cl1}-\mathrm{Pb} 1^{\text {ii }}$	97.21 (17)	C5-C31-H3B	120.0

$\mathrm{C} 31-\mathrm{C} 5-\mathrm{C} 2$	$116.2(7)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 6^{\mathrm{iv}}$	$108.3(9)$
$\mathrm{C} 31-\mathrm{C} 5-\mathrm{C} 6$	$122.2(8)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	110.0
$\mathrm{C} 2-\mathrm{C} 5-\mathrm{C} 6$	$121.5(8)$	$\mathrm{C} 6^{\mathrm{iv}}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	110.0
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	$117.9(7)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	110.0
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{Pb} 1$	$118.2(6)$	$\mathrm{C} 6{ }^{\text {iv }}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	110.0
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Pb} 1$	$121.0(5)$	$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	108.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5$	$120.5(8)$		

Symmetry codes: (i) x, $-y+3 / 2, z$; (ii) $x-1, y, z$; (iii) $x+1, y, z$; (iv) $x,-y+1 / 2, z$.

