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In the title compound, C21H15F3N2, the benzene ring bonded

to the central C atom forms dihedral angles of 77.5 (7) and

89.0 (5)�, respectively, with the remaining two benzene rings.

Weak intermolecular C—H� � �F hydrogen bonds link the

molecules into chains propagated in [101]. The crystal packing

exhibits weak �–� interactions as evidenced by relatively

short distances between the centroids of the aromatic rings

[3.820 (7) and 3.971 (5) Å]. A MOPAC PM3 optimization of

the molecular geometry in vacuo supports a suggestion that

intermolecular forces have a significnt influence on the

molecular conformation in the crystal.

Related literature

For aromatic aldehyde reactions, see Williams & Bailar (1959).

For kinetics of hydrobenzamides, see Crampton et al. (1997).

For conventional preparation of hydrobenzamides, see Kamal

& Qureshi (1963). For related structures, see: Corey & Kuhnle

(1997); Karupaiyan et al. (1998); Saigo et al. (1986). For bond-

length data, see: Allen et al. (1987). For the synthesis of

nitrogen-containing heterocyclic compounds, see Kupfer &

Brinker (1996). For MOPAC PM3 calculations, see Schmidt &

Polik (2007).

Experimental

Crystal data

C21H15F3N2

Mr = 352.35
Triclinic, P1
a = 8.0215 (5) Å
b = 9.3740 (4) Å
c = 11.9744 (6) Å
� = 99.184 (4)�

� = 93.179 (5)�

� = 108.165 (5)�

V = 839.23 (8) Å3

Z = 2
Mo K� radiation
� = 0.11 mm�1

T = 200 K
0.49 � 0.29 � 0.22 mm

Data collection

Oxford Diffraction Gemini
diffractometer

11550 measured reflections

5484 independent reflections
3292 reflections with I > 2�(I)
Rint = 0.025

Refinement

R[F 2 > 2�(F 2)] = 0.052
wR(F 2) = 0.152
S = 1.00
5484 reflections

235 parameters
H-atom parameters constrained
��max = 0.57 e Å�3

��min = �0.20 e Å�3

Table 1
Hydrogen-bond geometry (Å, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

C5B—H5BA� � �F1Ai 0.95 2.53 3.3871 (16) 151

Symmetry code: (i) xþ 1; y; zþ 1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell

refinement: CrysAlis PRO; data reduction: CrysAlis PRO;

program(s) used to solve structure: SHELXS97 (Sheldrick, 2008);

program(s) used to refine structure: SHELXL97 (Sheldrick, 2008);

molecular graphics: SHELXTL (Sheldrick, 2008); software used to

prepare material for publication: SHELXTL.
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Supplementary data and figures for this paper are available from the
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N,N′-Bis[(E)-2-fluorobenzylidene]-1-(2-fluorophenyl)methanediamine

Jerry P. Jasinski, Ray J. Butcher, Q. N. M. Hakim Al-Arique, H. S. Yathirajan and B. Narayana

S1. Comment 

Reaction of aromatic aldehydes with ammonia leads to the long-known compounds called "hydrobenzamides" (Williams 

& Bailar, 1959). Owing to their unique structural features and reactivity, these compounds have been recognized as 

potential key intermediates for the synthesis of a variety of nitrogen containing heterocyclic compounds (Kupfer & 

Brinker, 1996). Extensive studies on kinetics and mechanism of formation of hydrobenzamides from aromatic aldehydes 

and ammonia have been well documented (Crampton et al. 1997). The only conventional method available for the 

preparation of these compounds involves the reaction of aldehydes with ammonia, a complex reversible reaction which 

takes days to weeks for completion (Kamal & Qureshi, 1963). Moreover, protic solvents used in this reaction such as 

methanol or water enhance the reversible conversion of products into starting aldehydes, thereby reducing the yields even 

after longer reaction times. Due to the importance of these compounds, we report the crystal structure of a newly 

synthesized derivative, C21H15F3N2, (I).

The title compound, C21H15F3N2, (I), consists of a 2-fluorophenyl group and a N,N′-bis[(E)-(2-fluorophenyl)methyl-

idene]methanediamine group bonded to a methane carbon, C1 (Fig. 1). The benzene ring bonded to the central methyl 

carbon atom forms dihedral angles of 77.5 (7)° and 89.0 (5)°, respectively, with the remaining two benzene rings. The 

dihedral angle between the mean planes of the remaining two benzene rings is 15.7 (7)°. Five of the angles around the 

methane carbon, C1, are in the vicinity of the 108°-109° range (N1A—C1—C2; 109.45 (11)°, N1B—C1—C2; 

108.04 (10)°, C2—C1—H1A; 108.(2)°, N1A—C1—H1A; 108.(2)°, N1B—C1—H1A; 108.(2)°) with only the N1A—C1

—N2A angle measuring 114.48 (10)° giving it a slightly distorted sp3 configuration in the direction of the two nitrogen 

atoms. Bond lengths and bond angles are all within expected ranges (Allen et al., 1987).

Crystal packing is influenced by weak C—H···F intermolecular hydrogen bond interactions which link the molecule into 

chains propagating obliquely along the c axis in the direction [101] (Fig. 2). In addition, weak Cg2···Cg2 (3.971 (5) Å; -x, 

1 - y, -z) and Cg3···Cg3 (3.820 (7) Å; 2 - x, 2 - y, 1 - z) π-π intermolecular interactions are observed with slippage 

distances of 1.81 (4) Å and 1.76 (5) Å, respectively. (Cg2, Cg3 = ring centroids for C2A—C7A and C2B—C7B, 

respectively).

In support of these observations, a MOPAC PM3 calculation was performed on the C21H15F3N2, molecule with WebMO 

Pro (Schmidt & Polik, 2007) (PM3, Parameterized Model 3) approximation together with the Hartree-Fock closed-shell 

(restricted) wavefunction was used and minimizations were teminnated at an r.m.s. gradient of less than 0.01 kJ mol-1 

Å-1.). While the bond distances did not appear to change significantly, selected bond and torsion angles were noticeably 

different. The bond angle for N1A—C1A—N1B (114.48 (10)° versus 111.3°) is shorter and for C2A—C3A—F1A 

(117.81 (12)° versus 120.4°) is wider after the calculation. The torsion angles for C1A—N1A—C1—C2 (86.45 (14)° 

versus 78.17°) and C1B—N1B—C1—C2 (124.39 (13)° versus 96.35°) are both much lower after the calculation 

indicating a much greater twist causing the two benzene rings to be further apart. This is supported by the PM3 calculated 

value of 36.79° (versus. 15.7 (7)° before the calculation) for the angle between the mean planes of the two benzene rings. 



supporting information

sup-2Acta Cryst. (2010). E66, o422–o423    

In addition the angles between the mean planes of the two benzene rings with the C1 bonded benzene are 70.22° 

(versus.77.5 (7)°) and 82.32° (versus. 89.0 (5)°), respectively, after the calculation. This suggests that small changes in 

some bond distances and selectively in some bond and torsion angles, especially involving the diamine nitrogen atoms 

have been infuenced by the collective effect of all of the weak intermolecular interactions that have been observed in the 

crystal packing.

S2. Experimental 

10 ml of 25% methanolic ammonia was added to a solution of 2 g of 2-flurobenzaldehyde in 10 ml me thanol and left to 

stand at ambient temperature for 2 days, during which the crystalline products separated out (Fig. 3). The crude crystals 

were filtered off, washed with cold methanol. Good quality x-ray grade crystals were obtained by the slow evaporation of 

the solution in ethyl acetate (m.p.: 425–427 K). Analysis for the title compound C21H15F3N2: Found (calculated): C: 71.75 

(71.82); H: 4.26 (4.29); N: 7.90 (7.95).

S3. Refinement 

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95 Å, 

and with Uiso(H) = 1.18–1.20Ueq(C).

Figure 1

Molecular structure of (I), C21H15F3N2, showing the atom labeling scheme and 50% probability displacement ellipsoids. 
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Figure 2

The molecular packing for (I) viewed down the b axis. Dashed lines indicate weak C—H···F intermolecular hydrogen 

bond interactions which link the molecule into chains propagating obliquely along the c axis. 

Figure 3

Synthetic scheme for C21H15F3N2, (I). 
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N,N′-Bis[(E)-2-fluorobenzylidene]-1-(2- fluorophenyl)methanediamine 

Crystal data 

C21H15F3N2

Mr = 352.35
Triclinic, P1
Hall symbol: -P 1
a = 8.0215 (5) Å
b = 9.3740 (4) Å
c = 11.9744 (6) Å
α = 99.184 (4)°
β = 93.179 (5)°
γ = 108.165 (5)°
V = 839.23 (8) Å3

Z = 2
F(000) = 364
Dx = 1.394 Mg m−3

Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 4026 reflections
θ = 4.6–32.4°
µ = 0.11 mm−1

T = 200 K
Prism, colourless
0.49 × 0.29 × 0.22 mm

Data collection 

Oxford Diffraction Gemini 
diffractometer

Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 10.5081 pixels mm-1

φ and ω scans
11550 measured reflections

5484 independent reflections
3292 reflections with I > 2σ(I)
Rint = 0.025
θmax = 32.5°, θmin = 4.6°
h = −11→12
k = −14→13
l = −16→17

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.052
wR(F2) = 0.152
S = 1.00
5484 reflections
235 parameters
0 restraints
Primary atom site location: structure-invariant 

direct methods

Secondary atom site location: difference Fourier 
map

Hydrogen site location: inferred from 
neighbouring sites

H-atom parameters constrained
w = 1/[σ2(Fo

2) + (0.0841P)2] 
where P = (Fo

2 + 2Fc
2)/3

(Δ/σ)max < 0.001
Δρmax = 0.57 e Å−3

Δρmin = −0.20 e Å−3

Special details 

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full 
covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and 
torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. 
An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, 
conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used 
only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 
are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq

F1 0.62912 (14) 1.01485 (11) 0.09363 (8) 0.0596 (3)
F1A 0.21867 (14) 0.54600 (10) −0.14842 (7) 0.0511 (3)
F1B 0.62463 (12) 0.41513 (8) 0.48075 (7) 0.0434 (2)
N1A 0.43939 (15) 0.62936 (12) 0.17778 (9) 0.0315 (3)
N1B 0.70316 (15) 0.77388 (12) 0.31351 (9) 0.0314 (3)
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C1 0.58583 (18) 0.77356 (14) 0.21571 (11) 0.0297 (3)
H1A 0.6576 0.7941 0.1509 0.036*
C2 0.51189 (17) 0.90345 (13) 0.24663 (10) 0.0282 (3)
C3 0.53477 (19) 1.01805 (15) 0.18400 (11) 0.0344 (3)
C4 0.4682 (2) 1.13682 (16) 0.20930 (13) 0.0424 (4)
H4A 0.4871 1.2137 0.1640 0.051*
C5 0.3733 (2) 1.14203 (16) 0.30200 (13) 0.0427 (4)
H5A 0.3249 1.2222 0.3203 0.051*
C6 0.3491 (2) 1.03019 (16) 0.36807 (12) 0.0404 (3)
H6A 0.2855 1.0345 0.4324 0.049*
C7 0.4174 (2) 0.91224 (15) 0.34048 (11) 0.0348 (3)
H7A 0.3997 0.8359 0.3862 0.042*
C1A 0.38045 (18) 0.59817 (14) 0.07361 (10) 0.0284 (3)
H1AA 0.4326 0.6673 0.0256 0.034*
C2A 0.23439 (17) 0.45892 (13) 0.02440 (10) 0.0269 (3)
C3A 0.15517 (19) 0.43569 (15) −0.08628 (11) 0.0325 (3)
C4A 0.0176 (2) 0.30824 (17) −0.13529 (12) 0.0411 (4)
H4AA −0.0330 0.2975 −0.2111 0.049*
C5A −0.0459 (2) 0.19599 (17) −0.07250 (14) 0.0479 (4)
H5AA −0.1414 0.1067 −0.1050 0.057*
C6A 0.0291 (2) 0.21259 (16) 0.03835 (13) 0.0468 (4)
H6AA −0.0148 0.1346 0.0813 0.056*
C7A 0.1674 (2) 0.34260 (15) 0.08573 (11) 0.0361 (3)
H7AA 0.2180 0.3532 0.1615 0.043*
C1B 0.67867 (17) 0.65547 (14) 0.35664 (10) 0.0281 (3)
H1BA 0.5831 0.5652 0.3263 0.034*
C2B 0.80098 (17) 0.65923 (13) 0.45521 (10) 0.0276 (3)
C3B 0.76856 (18) 0.54090 (14) 0.51567 (11) 0.0305 (3)
C4B 0.8769 (2) 0.54521 (16) 0.61103 (12) 0.0367 (3)
H4BA 0.8495 0.4630 0.6515 0.044*
C5B 1.0254 (2) 0.67148 (17) 0.64619 (12) 0.0409 (4)
H5BA 1.1014 0.6764 0.7115 0.049*
C6B 1.0645 (2) 0.79119 (16) 0.58684 (12) 0.0408 (4)
H6BA 1.1675 0.8775 0.6110 0.049*
C7B 0.95321 (19) 0.78464 (14) 0.49220 (11) 0.0335 (3)
H7BA 0.9809 0.8669 0.4518 0.040*

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

F1 0.0633 (7) 0.0747 (7) 0.0551 (6) 0.0276 (6) 0.0245 (5) 0.0366 (5)
F1A 0.0650 (7) 0.0515 (5) 0.0334 (4) 0.0138 (5) −0.0069 (4) 0.0125 (4)
F1B 0.0381 (5) 0.0310 (4) 0.0537 (5) 0.0007 (4) 0.0004 (4) 0.0093 (4)
N1A 0.0280 (6) 0.0319 (5) 0.0289 (5) 0.0041 (5) −0.0036 (5) 0.0032 (4)
N1B 0.0261 (6) 0.0322 (5) 0.0328 (5) 0.0068 (5) −0.0042 (5) 0.0047 (4)
C1 0.0253 (7) 0.0308 (6) 0.0286 (6) 0.0035 (5) −0.0018 (5) 0.0056 (5)
C2 0.0223 (6) 0.0282 (6) 0.0279 (6) 0.0011 (5) −0.0053 (5) 0.0043 (5)
C3 0.0288 (7) 0.0393 (7) 0.0314 (6) 0.0039 (6) 0.0012 (6) 0.0117 (6)
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C4 0.0439 (9) 0.0345 (7) 0.0473 (8) 0.0078 (7) −0.0039 (7) 0.0168 (6)
C5 0.0429 (9) 0.0327 (7) 0.0489 (8) 0.0125 (6) −0.0068 (7) 0.0008 (6)
C6 0.0397 (9) 0.0411 (7) 0.0363 (7) 0.0101 (7) 0.0041 (6) 0.0016 (6)
C7 0.0379 (8) 0.0317 (6) 0.0317 (6) 0.0062 (6) 0.0030 (6) 0.0081 (5)
C1A 0.0271 (7) 0.0291 (6) 0.0282 (6) 0.0082 (5) 0.0020 (5) 0.0056 (5)
C2A 0.0252 (7) 0.0280 (6) 0.0266 (6) 0.0106 (5) 0.0001 (5) −0.0001 (5)
C3A 0.0327 (8) 0.0361 (7) 0.0294 (6) 0.0146 (6) −0.0004 (6) 0.0023 (5)
C4A 0.0330 (8) 0.0471 (8) 0.0371 (7) 0.0152 (7) −0.0087 (6) −0.0097 (6)
C5A 0.0316 (8) 0.0408 (8) 0.0581 (10) 0.0038 (7) −0.0024 (7) −0.0103 (7)
C6A 0.0441 (10) 0.0343 (7) 0.0544 (9) 0.0031 (7) 0.0059 (8) 0.0062 (7)
C7A 0.0372 (8) 0.0360 (7) 0.0326 (7) 0.0095 (6) 0.0015 (6) 0.0051 (5)
C1B 0.0236 (7) 0.0283 (6) 0.0282 (6) 0.0052 (5) 0.0004 (5) 0.0002 (5)
C2B 0.0249 (7) 0.0278 (6) 0.0277 (6) 0.0080 (5) −0.0003 (5) 0.0008 (5)
C3B 0.0278 (7) 0.0264 (6) 0.0345 (6) 0.0066 (5) 0.0037 (6) 0.0022 (5)
C4B 0.0420 (9) 0.0373 (7) 0.0360 (7) 0.0171 (7) 0.0054 (6) 0.0126 (6)
C5B 0.0406 (9) 0.0509 (8) 0.0327 (7) 0.0182 (7) −0.0042 (6) 0.0077 (6)
C6B 0.0325 (8) 0.0401 (7) 0.0413 (7) 0.0041 (6) −0.0087 (6) 0.0033 (6)
C7B 0.0306 (7) 0.0295 (6) 0.0368 (7) 0.0055 (6) −0.0025 (6) 0.0064 (5)

Geometric parameters (Å, º) 

F1—C3 1.3562 (16) C2A—C7A 1.3968 (18)
F1A—C3A 1.3571 (16) C3A—C4A 1.3681 (19)
F1B—C3B 1.3558 (15) C4A—C5A 1.376 (2)
N1A—C1A 1.2637 (15) C4A—H4AA 0.9500
N1A—C1 1.4725 (16) C5A—C6A 1.391 (2)
N1B—C1B 1.2632 (15) C5A—H5AA 0.9500
N1B—C1 1.4602 (16) C6A—C7A 1.380 (2)
C1—C2 1.5173 (18) C6A—H6AA 0.9500
C1—H1A 1.0000 C7A—H7AA 0.9500
C2—C3 1.3782 (18) C1B—C2B 1.4811 (17)
C2—C7 1.3958 (19) C1B—H1BA 0.9500
C3—C4 1.377 (2) C2B—C3B 1.3856 (17)
C4—C5 1.383 (2) C2B—C7B 1.3957 (17)
C4—H4A 0.9500 C3B—C4B 1.3833 (18)
C5—C6 1.385 (2) C4B—C5B 1.380 (2)
C5—H5A 0.9500 C4B—H4BA 0.9500
C6—C7 1.383 (2) C5B—C6B 1.387 (2)
C6—H6A 0.9500 C5B—H5BA 0.9500
C7—H7A 0.9500 C6B—C7B 1.3846 (18)
C1A—C2A 1.4656 (17) C6B—H6BA 0.9500
C1A—H1AA 0.9500 C7B—H7BA 0.9500
C2A—C3A 1.3914 (16)

C1A—N1A—C1 116.40 (11) C4A—C3A—C2A 123.58 (13)
C1B—N1B—C1 120.47 (10) C3A—C4A—C5A 118.57 (13)
N1B—C1—N1A 114.48 (10) C3A—C4A—H4AA 120.7
N1B—C1—C2 108.04 (10) C5A—C4A—H4AA 120.7
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N1A—C1—C2 109.45 (11) C4A—C5A—C6A 120.35 (13)
N1B—C1—H1A 108.2 C4A—C5A—H5AA 119.8
N1A—C1—H1A 108.2 C6A—C5A—H5AA 119.8
C2—C1—H1A 108.2 C7A—C6A—C5A 119.82 (14)
C3—C2—C7 116.89 (12) C7A—C6A—H6AA 120.1
C3—C2—C1 121.87 (12) C5A—C6A—H6AA 120.1
C7—C2—C1 121.24 (11) C6A—C7A—C2A 121.23 (12)
F1—C3—C4 118.24 (12) C6A—C7A—H7AA 119.4
F1—C3—C2 118.47 (13) C2A—C7A—H7AA 119.4
C4—C3—C2 123.29 (13) N1B—C1B—C2B 119.11 (11)
C3—C4—C5 118.71 (13) N1B—C1B—H1BA 120.4
C3—C4—H4A 120.6 C2B—C1B—H1BA 120.4
C5—C4—H4A 120.6 C3B—C2B—C7B 117.18 (11)
C4—C5—C6 119.87 (14) C3B—C2B—C1B 121.92 (11)
C4—C5—H5A 120.1 C7B—C2B—C1B 120.89 (11)
C6—C5—H5A 120.1 F1B—C3B—C4B 118.11 (12)
C7—C6—C5 120.09 (14) F1B—C3B—C2B 119.07 (11)
C7—C6—H6A 120.0 C4B—C3B—C2B 122.82 (12)
C5—C6—H6A 120.0 C5B—C4B—C3B 118.61 (13)
C6—C7—C2 121.14 (13) C5B—C4B—H4BA 120.7
C6—C7—H7A 119.4 C3B—C4B—H4BA 120.7
C2—C7—H7A 119.4 C4B—C5B—C6B 120.43 (12)
N1A—C1A—C2A 122.22 (12) C4B—C5B—H5BA 119.8
N1A—C1A—H1AA 118.9 C6B—C5B—H5BA 119.8
C2A—C1A—H1AA 118.9 C7B—C6B—C5B 119.84 (13)
C3A—C2A—C7A 116.45 (12) C7B—C6B—H6BA 120.1
C3A—C2A—C1A 121.58 (11) C5B—C6B—H6BA 120.1
C7A—C2A—C1A 121.97 (11) C6B—C7B—C2B 121.11 (12)
F1A—C3A—C4A 118.62 (11) C6B—C7B—H7BA 119.4
F1A—C3A—C2A 117.81 (12) C2B—C7B—H7BA 119.4

C1B—N1B—C1—N1A 2.17 (18) C7A—C2A—C3A—C4A 0.7 (2)
C1B—N1B—C1—C2 124.39 (13) C1A—C2A—C3A—C4A −179.39 (13)
C1A—N1A—C1—N1B −152.10 (12) F1A—C3A—C4A—C5A 179.56 (13)
C1A—N1A—C1—C2 86.45 (14) C2A—C3A—C4A—C5A −0.4 (2)
N1B—C1—C2—C3 122.02 (13) C3A—C4A—C5A—C6A −0.1 (2)
N1A—C1—C2—C3 −112.72 (13) C4A—C5A—C6A—C7A 0.2 (2)
N1B—C1—C2—C7 −57.86 (15) C5A—C6A—C7A—C2A 0.0 (2)
N1A—C1—C2—C7 67.40 (14) C3A—C2A—C7A—C6A −0.5 (2)
C7—C2—C3—F1 178.64 (11) C1A—C2A—C7A—C6A 179.60 (14)
C1—C2—C3—F1 −1.25 (18) C1—N1B—C1B—C2B 179.50 (12)
C7—C2—C3—C4 −0.6 (2) N1B—C1B—C2B—C3B 171.37 (12)
C1—C2—C3—C4 179.50 (13) N1B—C1B—C2B—C7B −7.51 (19)
F1—C3—C4—C5 −179.35 (13) C7B—C2B—C3B—F1B −178.25 (12)
C2—C3—C4—C5 −0.1 (2) C1B—C2B—C3B—F1B 2.83 (19)
C3—C4—C5—C6 0.9 (2) C7B—C2B—C3B—C4B 1.9 (2)
C4—C5—C6—C7 −0.9 (2) C1B—C2B—C3B—C4B −177.00 (13)
C5—C6—C7—C2 0.2 (2) F1B—C3B—C4B—C5B 178.88 (12)
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C3—C2—C7—C6 0.54 (19) C2B—C3B—C4B—C5B −1.3 (2)
C1—C2—C7—C6 −179.57 (12) C3B—C4B—C5B—C6B 0.0 (2)
C1—N1A—C1A—C2A −179.66 (11) C4B—C5B—C6B—C7B 0.5 (2)
N1A—C1A—C2A—C3A 171.24 (13) C5B—C6B—C7B—C2B 0.2 (2)
N1A—C1A—C2A—C7A −8.8 (2) C3B—C2B—C7B—C6B −1.3 (2)
C7A—C2A—C3A—F1A −179.31 (12) C1B—C2B—C7B—C6B 177.59 (13)
C1A—C2A—C3A—F1A 0.63 (19)

Hydrogen-bond geometry (Å, º) 

D—H···A D—H H···A D···A D—H···A

C5B—H5BA···F1Ai 0.95 2.53 3.3871 (16) 151

Symmetry code: (i) x+1, y, z+1.


