metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(μ -diphenylarsine- $\kappa^2 As: As$)bis[tetracarbonyltungsten(0)]

Edward R. T. Tiekink^a* and James L. Wardell^b‡

^aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^bCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil

Correspondence e-mail: edward.tiekink@gmail.com

Received 25 February 2010; accepted 27 February 2010

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.018 Å; *R* factor = 0.061; *wR* factor = 0.120; data-to-parameter ratio = 14.0.

The title compound, $[W_2(C_{12}H_{10}As)_2(CO)_8]$, features a diamond-shaped W_2As_2 core with a W–W distance of 3.0948 (7) Å. The coordination geometry for each W atom is based on a pentagonal bipyramid within a As_2C_4W donor set, with carbonyl ligands defining the axial positions; the As atoms exist within distorted tetrahedral C_2W_2 donor sets.

Related literature

For information on the preparation, from $M(CO)_6$ and RE_2 - ER_2 , and the IR spectra of $[M_2(ER_2)_2(CO)_8]$ (M = Cr, Mo, or W; E = P or As; R = alkyl or aryl), see: Chatt & Thornton (1964). For other preparations and spectra of $[W_2(PPh_2)_2$ -(CO)₈], see: Shyu *et al.* (1987); Keiter & Madigan (1982); Keiter *et al.* (1989); Brown *et al.* (1995); Planinic & Matkovic-Calogovic (2001). For the crystal structure of $[W_2(PPh_2)_2-$ (CO)₈], see: Shyu *et al.* (1987).

Experimental

m364

Crystal data $[W_2(C_{12}H_{10}As)_2(CO)_8]$ $M_r = 1050.02$

Monoclinic, $P2_1/c$ a = 9.7052 (4) Å

‡ Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Tiekink and Wardell

b = 20.1288 (7) Å c = 16.6450 (7) Å $\beta = 102.835 (2)^{\circ}$ $V = 3170.4 (2) \text{ Å}^{3}$ Z = 4

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2007) $T_{min} = 0.604, T_{max} = 0.746$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ 192 restraints $wR(F^2) = 0.120$ H-atom parameters constrainedS = 1.62 $\Delta \rho_{max} = 2.56$ e Å $^{-3}$ 5544 reflections $\Delta \rho_{min} = -1.28$ e Å $^{-3}$ 397 parameters

Table 1 Selected bond lengths (Å).

W1-C1	2.027 (13)	W2-C6	1.983 (13)
W1-C3	2.031 (14)	W2-C8	2.027 (13)
W1-C4	2.057 (15)	W2-C7	2.033 (15)
W1-C2	2.061 (14)	W2-C5	2.048 (15)
W1-As2	2.5597 (12)	W2-As2	2.5559 (13)
W1-As1	2.5686 (13)	W2-As1	2.5652 (13)
W1-W2	3.0948 (7)		

Mo $K\alpha$ radiation

 $0.06 \times 0.05 \times 0.02 \text{ mm}$

25035 measured reflections

5544 independent reflections

4274 reflections with $I > 2\sigma(I)$

 $\mu = 9.37 \text{ mm}^{-1}$

T = 120 K

 $R_{\rm int} = 0.105$

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5346).

References

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Brown, M. A., Howie, R. A., Wardell, J. L., Cox, P. J. & Melvin, O. A. (1995). *J. Organomet. Chem.* **493**, 199–203.

Chatt, J. & Thornton, D. A. (1964). J. Chem. Soc. pp. 1005-1011.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Keiter, R. L., Keiter, E. A., Mittelberg, K. N., Martin, J. S., Meyers, V. M. & Wang, J.-G. (1989). Organometallics, 8, 1399–1403.
- Keiter, R. L. & Madigan, M. J. (1982). Organometallics, 1, 409-411.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Planinic, P. & Matkovic-Calogovic, D. (2001). Struct. Chem. 12, 439-444.

- Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shyu, S.-G., Calligaris, M., Nardin, G. & Wojcicki, A. (1987). J. Am. Chem. Soc. 109, 3617–3625.

Westrip, S. P. (2010). publCIF. In preparation.

supporting information

Acta Cryst. (2010). E66, m364 [doi:10.1107/S1600536810007592]

Bis(μ -diphenylarsine- $\kappa^2 As: As$)bis[tetracarbonyltungsten(0)]

Edward R. T. Tiekink and James L. Wardell

S1. Comment

The title compound, (I), was isolated from a reaction mixture of $W(CO)_6$ and the arsinosugar derivative, 4,6-benzylidene-3-deoxy-3-diphenylarsino- α -*D*-altropyranoside, **1** (Brown *et al.*, 1995), Fig. 1. The intention was to obtain a chiral tungsten complex, [$W(CO)_4(1)$], but instead the species isolated indicated that the diphenylarsino fragment had been extracted from the chiral ligand with probable reformation of the epoxide reactant, **1**, used in the preparation of **2** (Brown *et al.*, 1995), Fig. 1.

More direct routes to $[M_2(ER_2)_2(CO)_8]$ compounds (M = Cr, Mo, or W; R = P or As) are available (Chatt & Thornton, 1964; Shyu *et al.*, 1987; Keiter & Madigan, 1982; Keiter *et al.*, 1989), including for $[W_2(AsMe_2)_2(CO)_8]$ (Chatt & Thornton, 1964). Planinic & Matkovic-Calogovic (2001) reported the formation of $[M_2(PPh_2)_2(CO)_8]$ (M = Mo or W) from a reaction mixture containing M(CO)₆ and 1,4,8,11-tetrakis(methyldiphenylphosphino)-1,4,8,11-tetraazacyclotetradecane, another example of an abstraction of a Ph₂M fragment from an elaborate and potential ligand.

The molecular structure of (I), Fig. 2, is constructed about planar four-membered W_2As_2 metallacycle [mean deviation = 0.012 (1) Å]. Even though the W–As distances span a narrow range [2.5559 (13) – 2.5686 (13) Å], the core has the shape of a diamond as the angles subtended at the W atoms [105.58 (4) and 105.79 (4) °] are greater than those subtended at the As atoms [74.15 (3) and 74.45 (3) °]. Each W atom exists within a pentagonal bipyramidal geometry defined by a W atom, two As atoms, and four carbonyl ligands. In this description, carbonyl ligands occupy axial positions: the C2–W1–C4 and C5–W2–C7 axial angles are 177.3 (5) and 177.7 (5) °, respectively. The As atoms exists in distorted tetrahedral C₂W₂ geometries [range of angles: 74.15 (3) to 124.4 (4) °]. The W1–W2 distance in (I) of 3.0948 (7) Å is longer than the corresponding distance [3.0256 (4) Å] in the isomorphous phosphino derivative (Shyu *et al.*, 1987).

S2. Experimental

A solution of tungsten hexacarbonyl (0.32 g, 1 mmol) and 4,6-benzylidene-3-deoxy-3-diphenylarsino- α -D-altropyranoside (0.49 g, 1 mmol) (Brown *et al.*, 1995) in THF (25 ml) was refluxed for 1 h and maintained at room temperature. Red plates of (I) formed slowly from this solution; m.pt. > 560 K. Found: C, 36.38; H, 2.27%; C₃₂H₂₀As₂O₈W₂ requires C, 36.60; H, 2.12%. IR (KBr) *v*(CO) 2035(s), 1958(vs,br) cm⁻¹.

S3. Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}$ (parent atom). The carbon atoms were refined with the ISOR command in SHELXL-97 (Sheldrick, 2008) to restrain the displacement parameters to be approximately isotropic. The maximum and minimum residual electron density peaks of 1.11 and 1.28 e Å⁻³, respectively, were located 0.99 Å and 0.84 Å from the W1 and H31 atoms, respectively.

Figure 1

Reaction scheme leading to (I).

Figure 2

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Bis(μ -diphenylarsine- $\kappa^2 As:As$)bis[tetracarbonyltungsten(0)]

$[W_{2}(C_{12}H_{10}As)_{2}(CO)_{8}]$ $M_{r} = 1050.02$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 9.7052 (4) Å b = 20.1288 (7) Å c = 16.6450 (7) Å $\beta = 102.835$ (2)° V = 3170.4 (2) Å ³ Z = 4	F(000) = 1960 $D_x = 2.200 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 46502 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 9.37 \text{ mm}^{-1}$ T = 120 K Plate, red $0.06 \times 0.05 \times 0.02 \text{ mm}$
Data collection	$T_{\rm c} = 0.604$ $T_{\rm c} = 0.746$
diffractometer	25035 measured reflections
Radiation source: Enraf Nonius FR591 rotating anode	5544 independent reflections 4274 reflections with $I > 2\sigma(I)$
10 cm confocal mirrors monochromator	$R_{\rm int} = 0.105$
Detector resolution: 9.091 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 2.9^{\circ}$
φ and ω scans	$h = -11 \rightarrow 10$
Absorption correction: multi-scan	$k = -23 \rightarrow 23$
(SADABS; Sheldrick, 2007)	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from
$wR(F^2) = 0.120$	neighbouring sites
S = 1.62	H-atom parameters constrained
5544 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0272P)^2]$
397 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
192 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 2.56 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -1.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
W1	0.79610 (5)	0.22692 (2)	0.67301 (3)	0.02265 (16)
W2	0.64555 (5)	0.17590 (2)	0.80661 (3)	0.02228 (16)
As1	0.82208 (13)	0.11196 (6)	0.74172 (8)	0.0232 (3)
As2	0.62376 (13)	0.29106 (6)	0.74031 (8)	0.0232 (3)
O1	1.0294 (10)	0.1749 (5)	0.5819 (6)	0.044 (3)
O2	0.5631 (9)	0.1541 (4)	0.5380 (5)	0.030 (2)
O3	0.7593 (11)	0.3558 (5)	0.5629 (6)	0.050 (3)
O4	1.0392 (10)	0.2917 (5)	0.8121 (6)	0.044 (3)
05	0.3671 (10)	0.1453 (4)	0.6717 (6)	0.034 (2)
O6	0.4540 (11)	0.2428 (5)	0.9133 (6)	0.049 (3)
07	0.9180 (10)	0.2103 (4)	0.9456 (6)	0.039 (2)
08	0.6112 (10)	0.0395 (5)	0.8927 (7)	0.048 (3)
C1	0.9463 (14)	0.1950 (6)	0.6147 (8)	0.031 (3)
C2	0.6436 (13)	0.1799 (6)	0.5857 (8)	0.022 (3)
C3	0.7752 (14)	0.3102 (7)	0.6025 (9)	0.033 (3)
C4	0.9516 (15)	0.2696 (6)	0.7624 (8)	0.031 (3)
C5	0.4670 (14)	0.1558 (6)	0.7184 (8)	0.026 (3)
C6	0.5239 (13)	0.2183 (6)	0.8732 (8)	0.027 (3)
C7	0.8194 (15)	0.1994 (6)	0.8951 (8)	0.028 (3)
C8	0.6259 (14)	0.0879 (7)	0.8622 (8)	0.032 (3)
C9	0.7768 (13)	0.0330 (6)	0.6756 (8)	0.025 (3)
C10	0.8833 (14)	-0.0035 (6)	0.6561 (8)	0.027 (3)
H10	0.9789	0.0090	0.6768	0.032*
C11	0.8508 (13)	-0.0599 (5)	0.6048 (7)	0.023 (3)
H11	0.9251	-0.0855	0.5919	0.028*

C12	0.7164 (14)	-0.0775 (6)	0.5744 (8)	0.031 (3)
H12	0.6961	-0.1162	0.5412	0.037*
C13	0.6057 (13)	-0.0396 (6)	0.5912 (8)	0.027 (3)
H13	0.5103	-0.0512	0.5679	0.032*
C14	0.6369 (13)	0.0151 (5)	0.6421 (7)	0.023 (3)
H14	0.5622	0.0409	0.6544	0.027*
C15	0.9982 (12)	0.0849 (5)	0.8157 (7)	0.020 (3)
C16	1.1266 (13)	0.1157 (6)	0.8160 (8)	0.031 (3)
H16	1.1307	0.1513	0.7791	0.037*
C17	1.2498 (15)	0.0944 (7)	0.8707 (9)	0.037 (3)
H17	1.3373	0.1160	0.8719	0.044*
C18	1.2434 (13)	0.0410 (6)	0.9237 (8)	0.028 (3)
H18	1.3270	0.0255	0.9599	0.034*
C19	1.1158 (14)	0.0110 (6)	0.9231 (8)	0.030 (3)
H19	1.1110	-0.0247	0.9597	0.036*
C20	0.9946 (14)	0.0328 (6)	0.8693 (8)	0.027 (3)
H20	0.9071	0.0116	0.8692	0.032*
C21	0.6862 (13)	0.3708 (6)	0.8044 (7)	0.024 (3)
C22	0.6774 (14)	0.4307 (6)	0.7634 (8)	0.032 (3)
H22	0.6413	0.4318	0.7055	0.038*
C23	0.7196 (13)	0.4886 (6)	0.8045 (8)	0.031 (3)
H23	0.7134	0.5295	0.7754	0.037*
C24	0.7724 (14)	0.4870 (6)	0.8903 (8)	0.033 (3)
H24	0.7993	0.5270	0.9199	0.039*
C25	0.7847 (13)	0.4280 (6)	0.9309 (8)	0.025 (3)
H25	0.8223	0.4262	0.9886	0.031*
C26	0.7420 (13)	0.3707 (7)	0.8871 (8)	0.033 (3)
H26	0.7519	0.3295	0.9157	0.040*
C27	0.4386 (13)	0.3185 (6)	0.6796 (8)	0.026 (3)
C28	0.3853 (14)	0.3008 (6)	0.5980 (8)	0.033 (3)
H28	0.4433	0.2772	0.5687	0.040*
C29	0.2473 (15)	0.3172 (6)	0.5588 (9)	0.040 (4)
H29	0.2109	0.3044	0.5032	0.048*
C30	0.1641 (14)	0.3521 (6)	0.6008 (8)	0.033 (3)
H30	0.0706	0.3642	0.5738	0.039*
C31	0.2163 (13)	0.3700 (6)	0.6833 (8)	0.028 (3)
H31	0.1581	0.3938	0.7124	0.034*
C32	0.3506 (13)	0.3532 (6)	0.7218 (8)	0.029 (3)
H32	0.3854	0.3651	0.7778	0.034*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
W1	0.0259 (3)	0.0199 (3)	0.0226 (3)	-0.0006 (2)	0.0062 (2)	0.0000 (2)
W2	0.0227 (3)	0.0228 (3)	0.0208 (3)	-0.0012 (2)	0.0038 (2)	0.0014 (2)
As1	0.0220 (7)	0.0211 (6)	0.0251 (8)	-0.0009 (5)	0.0022 (6)	0.0006 (5)
As2	0.0273 (8)	0.0216 (6)	0.0210 (7)	-0.0009 (5)	0.0058 (6)	-0.0012 (5)
01	0.041 (6)	0.052 (6)	0.045 (6)	0.010 (5)	0.024 (5)	-0.010 (5)
01	0.041 (6)	0.052 (6)	0.045 (6)	0.010 (5)	0.024 (5)	-0.010 (5)

O2	0.033 (6)	0.030 (5)	0.022 (5)	-0.004 (4)	-0.005 (4)	-0.005 (4)
O3	0.070 (8)	0.032 (6)	0.045 (7)	-0.004 (5)	0.011 (6)	0.017 (5)
O4	0.035 (6)	0.039 (6)	0.058 (7)	-0.012 (5)	0.006 (5)	-0.016 (5)
05	0.034 (6)	0.025 (5)	0.038 (6)	0.000 (4)	0.003 (5)	0.000 (4)
06	0.058 (7)	0.047 (6)	0.047 (7)	-0.006 (5)	0.026 (6)	-0.007 (5)
O7	0.043 (6)	0.040 (5)	0.031 (6)	0.002 (5)	0.003 (5)	-0.004 (4)
08	0.044 (6)	0.033 (5)	0.066 (8)	0.001 (5)	0.010 (6)	0.030 (5)
C1	0.030 (5)	0.034 (5)	0.026 (5)	0.002 (4)	0.002 (4)	-0.002 (4)
C2	0.023 (5)	0.022 (4)	0.023 (5)	0.001 (4)	0.011 (4)	-0.001 (4)
C3	0.035 (5)	0.033 (5)	0.033 (5)	0.000 (4)	0.012 (4)	-0.006 (4)
C4	0.033 (5)	0.029 (5)	0.030 (5)	-0.008 (4)	0.006 (4)	-0.001 (4)
C5	0.025 (5)	0.022 (4)	0.029 (5)	0.006 (4)	0.000 (4)	0.002 (4)
C6	0.025 (5)	0.031 (5)	0.026 (5)	-0.008 (4)	0.006 (4)	0.003 (4)
C7	0.027 (5)	0.030 (5)	0.026 (5)	0.003 (4)	0.002 (4)	0.003 (4)
C8	0.031 (5)	0.032 (5)	0.032 (5)	-0.004 (4)	0.004 (4)	0.002 (4)
C9	0.030 (5)	0.022 (4)	0.025 (5)	-0.001 (4)	0.005 (4)	0.000 (4)
C10	0.025 (5)	0.024 (4)	0.029 (5)	-0.001 (4)	0.001 (4)	-0.001 (4)
C11	0.024 (5)	0.020 (4)	0.026 (5)	0.008 (4)	0.005 (4)	0.001 (4)
C12	0.033 (5)	0.027 (5)	0.035 (5)	0.000 (4)	0.010 (4)	-0.004 (4)
C13	0.022 (5)	0.029 (5)	0.030 (5)	-0.003 (4)	0.007 (4)	-0.003 (4)
C14	0.028 (5)	0.019 (4)	0.020 (4)	0.001 (4)	0.004 (4)	-0.001 (4)
C15	0.017 (4)	0.020 (4)	0.021 (4)	-0.002 (4)	0.001 (4)	-0.002 (4)
C16	0.030 (5)	0.028 (5)	0.035 (5)	0.000 (4)	0.006 (4)	0.003 (4)
C17	0.035 (5)	0.039 (5)	0.036 (5)	-0.006 (4)	0.007 (4)	-0.004 (4)
C18	0.024 (5)	0.031 (5)	0.026 (5)	0.008 (4)	-0.003 (4)	-0.002 (4)
C19	0.034 (5)	0.030 (5)	0.027 (5)	0.001 (4)	0.005 (4)	0.003 (4)
C20	0.026 (5)	0.028 (5)	0.027 (5)	-0.001 (4)	0.009 (4)	0.001 (4)
C21	0.024 (5)	0.023 (4)	0.026 (5)	-0.008 (4)	0.007 (4)	-0.003 (4)
C22	0.032 (5)	0.035 (5)	0.030 (5)	-0.001 (4)	0.007 (4)	-0.003 (4)
C23	0.029 (5)	0.030 (5)	0.034 (5)	0.001 (4)	0.010 (4)	0.002 (4)
C24	0.033 (5)	0.031 (5)	0.037 (5)	0.002 (4)	0.013 (4)	-0.006 (4)
C25	0.027 (5)	0.029 (4)	0.020 (5)	0.000 (4)	0.005 (4)	-0.005 (4)
C26	0.029 (5)	0.034 (5)	0.035 (5)	0.001 (4)	0.005 (4)	0.003 (4)
C27	0.023 (5)	0.022 (4)	0.030 (5)	0.003 (4)	0.002 (4)	0.006 (4)
C28	0.033 (5)	0.036 (5)	0.032 (5)	0.001 (4)	0.010 (4)	0.002 (4)
C29	0.041 (5)	0.035 (5)	0.043 (5)	0.003 (4)	0.005 (4)	-0.001 (4)
C30	0.031 (5)	0.032 (5)	0.033 (5)	0.004 (4)	0.003 (4)	0.005 (4)
C31	0.024 (5)	0.026 (4)	0.032 (5)	0.002 (4)	0.002 (4)	0.002 (4)
C32	0.031 (5)	0.031 (5)	0.024 (5)	-0.003 (4)	0.005 (4)	-0.004 (4)

Geometric parameters (Å, °)

W1-C1	2.027 (13)	C14—H14	0.9500	
W1—C3	2.031 (14)	C15—C20	1.382 (16)	
W1C4	2.057 (15)	C15—C16	1.392 (16)	
W1-C2	2.061 (14)	C16—C17	1.400 (18)	
W1—As2	2.5597 (12)	C16—H16	0.9500	
W1—As1	2.5686 (13)	C17—C18	1.399 (18)	

W1—W2	3.0948 (7)	С17—Н17	0.9500
W2—C6	1.983 (13)	C18—C19	1.376 (17)
W2—C8	2.027 (13)	C18—H18	0.9500
W2	2.033 (15)	C19—C20	1.382 (18)
W2C5	2.000 (10) 2.048 (15)	C19H19	0.9500
W2 A 22	2.046(13)		0.9500
W2—ASZ	2.3339(13)	C20—H20	0.9300
W2—ASI	2.3632 (13)		1.362 (18)
As1—C9	1.928 (12)	C21—C22	1.380 (17)
As1—C15	1.949 (12)	C22—C23	1.367 (17)
As2—C27	1.936 (13)	C22—H22	0.9500
As2—C21	1.948 (12)	C23—C24	1.407 (18)
O1—C1	1.143 (14)	С23—Н23	0.9500
O2—C2	1.110 (14)	C24—C25	1.358 (17)
O3—C3	1.120 (15)	C24—H24	0.9500
04—C4	1 136 (15)	C_{25} C_{26}	1.377(17)
05 C5	1.120(13) 1.120(14)	C25 H25	0.9500
05-05	1.120(14) 1.162(14)	C_{25} H_{25}	0.9500
00	1.102(14)	C20—H20	0.9300
0/	1.146 (15)	$C_2/-C_{32}$	1.405 (16)
08—C8	1.122 (15)	C27—C28	1.389 (18)
C9—C10	1.364 (16)	C28—C29	1.393 (19)
C9—C14	1.396 (17)	C28—H28	0.9500
C10—C11	1.413 (16)	C29—C30	1.373 (18)
C10—H10	0.9500	С29—Н29	0.9500
C11—C12	1.339 (17)	C30—C31	1.401 (18)
С11—Н11	0.9500	С30—Н30	0.9500
C12-C13	1 395 (16)	$C_{31} - C_{32}$	1 361 (17)
C12 H12	0.9500	C31 H31	0.9500
$C_{12} = C_{14}$	1.291(10)		0.9500
	1.581 (10)	С32—П32	0.9300
С13—Н13	0.9500		
C1—W1—C3	88.6 (5)	C11—C10—H10	120.1
C1—W1—C4	89.3 (5)	C12—C11—C10	120.6 (11)
C3—W1—C4	92.1 (5)	C12—C11—H11	119.7
C1—W1—C2	89.8 (5)	C10-C11-H11	119.7
C3—W1—C2	90.5 (5)	C11—C12—C13	120.5 (12)
C4—W1—C2	177.3 (5)	C11—C12—H12	119.7
$C1-W1-As^2$	168 2 (4)	C_{13} $-C_{12}$ $-H_{12}$	119 7
$C_3 = W_1 = \Lambda_{S2}$	81 1 (3)	C_{14} C_{13} C_{12}	119.7 110.0(12)
$C_3 = W_1 = A_{32}$	81.1(3)	C14 - C12 - C12	119.0 (12)
C4—w1—AS2	83.3 (4)		120.3
C2—W1—As2	96.0 (3)	C12—C13—H13	120.5
CI—WI—AsI	85.3 (4)	C13—C14—C9	120.8 (11)
C3—W1—As1	171.3 (4)	C13—C14—H14	119.6
C4—W1—As1	94.0 (4)	C9—C14—H14	119.6
C2—W1—As1	83.4 (3)	C20-C15-C16	119.1 (11)
As2—W1—As1	105.58 (4)	C20-C15-As1	118.4 (9)
C1—W1—W2	138.1 (4)	C16-C15-As1	122.5 (9)
C3—W1—W2	133.4 (3)	C15—C16—C17	120.0 (12)
C4—W1—W2	90.4 (3)	C15—C16—H16	120.0
	· · · · · · · · · · · · · · · · · · ·		

C2—W1—W2	88.6 (3)	С17—С16—Н16	120.0
As2—W1—W2	52,72 (3)	C16-C17-C18	119.6(12)
As1—W1—W2	52.88 (3)	C16—C17—H17	120.2
C6—W2—C8	89.6 (5)	C18—C17—H17	120.2
C6-W2-C7	89.8 (5)	C19 - C18 - C17	1199(12)
$C_{8} = W_{2} = C_{7}$	91.1 (5)	C19 - C18 - H18	120.0
C6-W2-C5	88.4 (5)	C17 - C18 - H18	120.0
$C_{0} = W_{2} = C_{2}$	90.2 (5)	C_{18} C_{19} C_{20}	120.0(12)
$C_{3} = W_{2} = C_{3}$	177.7(5)	$C_{18} = C_{19} = C_{20}$	120.0 (12)
$C_{1} = W_{2} = C_{3}$	81 3 (3)	$C_{10} = C_{10} = H_{10}$	120.0
$C_0 = W_2 = A_{S_2}$	160.3(3)	$C_{20} = C_{19} = M_{19}$	120.0 121.3(12)
$C_0 = W_2 = A_{S_2}$	109.3(4)	$C_{15} = C_{20} = C_{15}$	121.3 (12)
$C = W^2 = As^2$	94.4 (3)	$C_{10} = C_{20} = H_{20}$	119.5
C_{3} W2 As1	33.9(3)	C19 - C20 - H20	119.5
$C_0 = W_2 = A_{S1}$	1/1.0(4)	$C_{20} = C_{21} = C_{22}$	117.9 (12)
C8 - W2 - As1	83.8 (4)	C_{20} C_{21} A_{32}	123.9 (9)
$C/-W^2$ -Asi	84.1 (3)	C22—C21—As2	118.2 (9)
C_{3} W_{2} A_{1}	97.9 (3)	$C_{23} = C_{22} = C_{21}$	121.2 (13)
As2—W2—As1	105.79 (4)	C23—C22—H22	119.4
C6—W2—W1	133.9 (3)	C21—C22—H22	119.4
C8—W2—W1	136.5 (4)	C24—C23—C22	119.3 (12)
C7—W2—W1	89.7 (3)	С24—С23—Н23	120.3
C5—W2—W1	90.6 (4)	C22—C23—H23	120.3
As2—W2—W1	52.83 (3)	C23—C24—C25	119.8 (12)
As1—W2—W1	52.98 (3)	C23—C24—H24	120.1
C9—As1—C15	100.8 (5)	C25—C24—H24	120.1
C9—As1—W2	124.4 (4)	C26—C25—C24	119.1 (12)
C15—As1—W2	116.6 (3)	C26—C25—H25	120.5
C9—As1—W1	120.1 (4)	С24—С25—Н25	120.5
C15—As1—W1	121.2 (3)	C25—C26—C21	122.6 (12)
W2—As1—W1	74.15 (3)	С25—С26—Н26	118.7
C27—As2—C21	101.0 (5)	C21—C26—H26	118.7
C27—As2—W2	117.5 (3)	C32—C27—C28	118.7 (12)
C21—As2—W2	121.7 (4)	C32—C27—As2	118.5 (10)
C27—As2—W1	122.4 (4)	C28—C27—As2	122.6 (9)
C21—As2—W1	120.1 (3)	C29—C28—C27	120.5 (12)
W2—As2—W1	74.45 (3)	C29—C28—H28	119.7
O1—C1—W1	177.7 (11)	С27—С28—Н28	119.7
O2—C2—W1	178.9 (10)	C30—C29—C28	119.7 (14)
O3—C3—W1	177.8 (13)	С30—С29—Н29	120.1
O4—C4—W1	178.3 (12)	С28—С29—Н29	120.1
O5—C5—W2	178.0 (11)	C29—C30—C31	120.4 (13)
O6—C6—W2	178.9 (12)	С29—С30—Н30	119.8
O7—C7—W2	177.6 (11)	С31—С30—Н30	119.8
O8—C8—W2	178.1 (12)	C32—C31—C30	119.7 (12)
C10—C9—C14	119.1 (11)	C32—C31—H31	120.1
C10-C9-As1	119.4 (10)	C30—C31—H31	120.1
C14—C9—As1	121.3 (9)	C31—C32—C27	120.9 (12)
C9—C10—C11	119.8 (12)	$C_{31} - C_{32} - H_{32}$	119.5
.,		551 652 1152	

supporting information

С9—С10—Н10	120.1	С27—С32—Н32	119.5
C1—W1—W2—C6	166.9 (8)	W1—W2—As2—C21	-116.1 (4)
C3—W1—W2—C6	-15.7 (8)	C6—W2—As2—W1	175.4 (4)
C4—W1—W2—C6	77.5 (6)	C8—W2—As2—W1	-153 (2)
C2—W1—W2—C6	-105.0 (6)	C7—W2—As2—W1	86.3 (3)
As2—W1—W2—C6	-6.4 (5)	C5—W2—As2—W1	-95.3 (3)
As1—W1—W2—C6	172.3 (5)	As1—W2—As2—W1	1.14 (5)
C1—W1—W2—C8	-13.9(8)	C1—W1—As2—C27	89.4 (19)
C3—W1—W2—C8	163.5 (8)	C3—W1—As2—C27	60.1 (6)
C4—W1—W2—C8	-103.3 (7)	C4—W1—As2—C27	152.9 (5)
C2—W1—W2—C8	74.2 (6)	C2—W1—As2—C27	-29.4 (5)
As2—W1—W2—C8	172.8 (6)	As1—W1—As2—C27	-114.2 (4)
As1—W1—W2—C8	-8.5 (6)	W2—W1—As2—C27	-113.0 (4)
C1—W1—W2—C7	77.5 (7)	C1—W1—As2—C21	-39.6 (19)
C3—W1—W2—C7	-105.1 (6)	C3—W1—As2—C21	-68.9 (6)
C4—W1—W2—C7	-11.9 (5)	C4—W1—As2—C21	23.9 (6)
C2—W1—W2—C7	165.6 (5)	C2—W1—As2—C21	-158.4 (5)
As2—W1—W2—C7	-95.8 (3)	As1—W1—As2—C21	116.8 (4)
As1—W1—W2—C7	82.8 (3)	W2—W1—As2—C21	118.0 (4)
C1—W1—W2—C5	-104.8 (6)	C1—W1—As2—W2	-157.6 (19)
C3—W1—W2—C5	72.6 (6)	C3—W1—As2—W2	173.1 (4)
C4—W1—W2—C5	165.8 (5)	C4—W1—As2—W2	-94.0 (3)
C2—W1—W2—C5	-16.7 (4)	C2—W1—As2—W2	83.6 (3)
As2—W1—W2—C5	81.9 (3)	As1—W1—As2—W2	-1.13 (5)
As1—W1—W2—C5	-99.4 (3)	C15—As1—C9—C10	-35.6 (11)
C1—W1—W2—As2	173.3 (6)	W2—As1—C9—C10	-168.7 (8)
C3—W1—W2—As2	-9.3 (5)	W1—As1—C9—C10	100.5 (10)
C4—W1—W2—As2	83.8 (4)	C15—As1—C9—C14	149.3 (10)
C2—W1—W2—As2	-98.6 (3)	W2—As1—C9—C14	16.2 (12)
As1—W1—W2—As2	178.63 (6)	W1—As1—C9—C14	-74.6 (10)
C1—W1—W2—As1	-5.4 (6)	C14—C9—C10—C11	-2.2 (18)
C3—W1—W2—As1	172.0 (5)	As1-C9-C10-C11	-177.4 (9)
C4—W1—W2—As1	-94.8 (4)	C9-C10-C11-C12	0.7 (19)
C2—W1—W2—As1	82.8 (3)	C10-C11-C12-C13	1.6 (19)
As2—W1—W2—As1	-178.63 (6)	C11—C12—C13—C14	-2.4 (18)
C6—W2—As1—C9	102 (2)	C12—C13—C14—C9	0.9 (18)
C8—W2—As1—C9	58.2 (6)	C10-C9-C14-C13	1.4 (18)
C7—W2—As1—C9	150.0 (6)	As1-C9-C14-C13	176.5 (9)
C5—W2—As1—C9	-31.2 (6)	C9—As1—C15—C20	-63.9 (10)
As2—W2—As1—C9	-117.0 (4)	W2—As1—C15—C20	73.8 (10)
W1—W2—As1—C9	-115.9 (4)	W1—As1—C15—C20	160.7 (8)
C6—W2—As1—C15	-24 (2)	C9—As1—C15—C16	115.7 (10)
C8—W2—As1—C15	-68.5 (5)	W2—As1—C15—C16	-106.6 (10)
C7—W2—As1—C15	23.3 (5)	W1—As1—C15—C16	-19.7 (11)
C5—W2—As1—C15	-157.8 (5)	C20-C15-C16-C17	-0.6 (18)
As2—W2—As1—C15	116.3 (4)	As1-C15-C16-C17	179.8 (9)
W1—W2—As1—C15	117.4 (4)	C15—C16—C17—C18	1.4 (19)

C6—W2—As1—W1	-142 (2)	C16—C17—C18—C19	-1.6 (19)
C8—W2—As1—W1	174.1 (4)	C17—C18—C19—C20	1.1 (18)
C7—W2—As1—W1	-94.1 (3)	C16-C15-C20-C19	0.1 (18)
C5—W2—As1—W1	84.7 (3)	As1-C15-C20-C19	179.7 (9)
As2—W2—As1—W1	-1.14 (5)	C18—C19—C20—C15	-0.4 (19)
C1—W1—As1—C9	-62.6 (6)	C27—As2—C21—C26	131.1 (11)
C3—W1—As1—C9	-17 (3)	W2—As2—C21—C26	-1.2 (12)
C4—W1—As1—C9	-151.6 (6)	W1—As2—C21—C26	-90.8 (11)
C2—W1—As1—C9	27.8 (5)	C27—As2—C21—C22	-50.9 (10)
As2—W1—As1—C9	122.1 (4)	W2—As2—C21—C22	176.8 (8)
W2-W1-As1-C9	121.0 (4)	W1—As2—C21—C22	87.2 (10)
C1—W1—As1—C15	64.5 (5)	C26—C21—C22—C23	-1.7 (18)
C3—W1—As1—C15	110 (3)	As2—C21—C22—C23	-179.9 (9)
C4—W1—As1—C15	-24.5 (5)	C21—C22—C23—C24	-0.3 (19)
C2—W1—As1—C15	154.9 (5)	C22—C23—C24—C25	2.0 (19)
As2—W1—As1—C15	-110.7 (4)	C23—C24—C25—C26	-1.5 (18)
W2-W1-As1-C15	-111.9 (4)	C24—C25—C26—C21	-0.7 (19)
C1—W1—As1—W2	176.4 (4)	C22—C21—C26—C25	2.3 (19)
C3—W1—As1—W2	-138 (3)	As2—C21—C26—C25	-179.7 (9)
C4—W1—As1—W2	87.4 (4)	C21—As2—C27—C32	-43.6 (10)
C2—W1—As1—W2	-93.2 (3)	W2—As2—C27—C32	91.2 (9)
As2—W1—As1—W2	1.13 (5)	W1—As2—C27—C32	179.6 (8)
C6—W2—As2—C27	-65.8 (6)	C21—As2—C27—C28	141.5 (10)
C8—W2—As2—C27	-34 (2)	W2—As2—C27—C28	-83.7 (10)
C7—W2—As2—C27	-154.8 (5)	W1—As2—C27—C28	4.8 (12)
C5—W2—As2—C27	23.5 (5)	C32—C27—C28—C29	0.1 (18)
As1—W2—As2—C27	120.0 (4)	As2—C27—C28—C29	174.9 (10)
W1—W2—As2—C27	118.9 (4)	C27—C28—C29—C30	1.0 (19)
C6—W2—As2—C21	59.3 (6)	C28—C29—C30—C31	-1.3 (19)
C8—W2—As2—C21	91 (2)	C29—C30—C31—C32	0.6 (19)
C7—W2—As2—C21	-29.8 (5)	C30—C31—C32—C27	0.5 (18)
C5—W2—As2—C21	148.6 (5)	C28—C27—C32—C31	-0.8 (18)
As1—W2—As2—C21	-114.9 (4)	As2—C27—C32—C31	-175.9 (9)