Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(2E)-1-(2-Bromophenyl)-3-(4-chloro-phenyl)prop-2-en-1-one

Jerry P. Jasinski, ${ }^{\text {a* }}$ Ray J. Butcher, ${ }^{\text {b }}$ K. Veena, ${ }^{\text {c }}$ B. Narayana ${ }^{c}$ and H. S. Yathirajan ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ${ }^{\text {b }}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ${ }^{\text {c }}$ Department of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and d Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India Correspondence e-mail: jjasinski@keene.edu

Received 3 June 2010; accepted 7 June 2010
Key indicators: single-crystal X-ray study; $T=110 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.044 ; \omega R$ factor $=0.126 ;$ data-to-parameter ratio $=15.1$.

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrClO}$, the dihedral angle between the mean planes of the benzene rings in the ortho-bromo- and para-chloro-substituted rings is 70.5 (6) ${ }^{\circ}$. The dihedral angles between the mean plane of the prop-2-en-1one group and the mean planes of the benzene rings in the 4 chlorophenyl and 2-bromophenyl rings are 14.9 (3) and $63.3(8)^{\circ}$, respectively. In the crystal, inversion dimers linked by pairs of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are observed as well as aromatic $\pi-\pi$ stacking interactions.

Related literature

For the radical quenching properties of the phenol groups present in many chalcones, see: Dhar (1981). For the anticancer activity of chalcones, see: Dimmock et al. (1999) and for their antimalarial activity, see: Troeberg et al. (2000). For their non-linear optical properties, see: Sarojini et al. (2006). For related structures, see: Fun et al. (2008); Li et al. (2009); Ng et al. (2006); Teh et al. (2007); Yang et al. (2006), Jasinski et al. (2009, 2010). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrClO}$
$M_{r}=321.59$
Monoclinic, $P 2_{1} / c$
$a=5.7317$ (6) A
$V=1272.9(2) \AA^{3}$
$Z=4$
$b=9.3920$ (7) A
$\mathrm{Cu} K \alpha$ radiation
$b=9.3920(7) \AA$
$c=23.6517(18) \AA$
$\mu=6.19 \mathrm{~mm}^{-1}$
$c=23.6517(18) ~$
$\beta=91.231(8)^{\circ}$
$T=110 \mathrm{~K}$
$0.84 \times 0.49 \times 0.13 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur Ruby Gemini R diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)
$T_{\text {min }}=0.039, T_{\text {max }}=0.512$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.126$
163 parameters
H -atom parameters constrained
$S=1.05$
$\Delta \rho_{\text {max }}=0.80 \mathrm{e}_{\AA^{-3}}$
2466 reflections

4362 measured reflections 2466 independent reflections
2275 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.44	$3.319(4)$	154
Symmetry code: (i) $-x,-y+2,-z+1$				

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

KV thanks the UGC for the sanction of a Junior Research Fellowship and for a SAP Chemical grant. HSY thanks UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2282).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.
Dimmock, J. R., Elias, D. W., Beazely, M. A. \& Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.
Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. \& Chantrapromma, S. (2008). Acta Cryst. E64, o1464.
Jasinski, J. P., Butcher, R. J., Narayana, B., Veena, K. \& Yathirajan, H. S. (2009). Acta Cryst. E65, o2641-o2642.

Jasinski, J. P., Butcher, R. J., Narayana, B., Veena, K. \& Yathirajan, H. S. (2010). Acta Cryst. E66, o158.

Li, H., Kamath, K. P., Narayana, B., Yathirajan, H. S. \& Harrison, W. T. A. (2009). Acta Cryst. E65, o1915.

Ng, S.-L., Razak, I. A., Fun, H.-K., Shettigar, V., Patil, P. S. \& Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2175-o2177.

Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. \& Lobo, K. J. (2006). J. Cryst. Growth, 295, 54-59.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Teh, J. B.-J., Patil, P. S., Fun, H.-K., Satheesh, Y. E., Razak, I. A. \& Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1844-o1845.
Troeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. \& Cohen, F. E. (2000). Mol. Med. 6, 660-669.

Yang, W., Wang, L. \& Zhang, D. (2006). J. Chem. Crystallogr. 36, 195-198.

supporting information

Acta Cryst. (2010). E66, o1638 [doi:10.1107/S1600536810021562]

(2E)-1-(2-Bromophenyl)-3-(4-chlorophenyl)prop-2-en-1-one

Jerry P. Jasinski, Ray J. Butcher, K. Veena, B. Narayana and H. S. Yathirajan

S1. Comment

Chalcones, or 1,3-diaryl-2-propen-1-ones, belong to the flavonoid family. Chemically they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α, β-unsaturated carbonyl system. A vast number of naturally occurring chalcones are polyhydroxylated in the aryl rings. The radical quenching properties of the phenol groups present in many chalcones have raised interest in using the compounds or chalcone rich plant extracts as drugs or food preservatives (Dhar, 1981). Chalcones have been reported to possess many useful properties, including antiinflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, anticancer activities (Dimmock et al., 1999). Many chalcones have been described for their high antimalarial activity, probably as a result of Michael addition of nucleophilic species to the double bond of the enone (Troeberg et al., 2000). Chalcones are finding applications as organic non-linear optical materials (NLO) due to their good SHG conversion efficiencies (Sarojini et al., 2006). Hence, in continuation with our synthesis and crystal structure determinations of similar compounds (Jasinski et al., 2009; Jasinski et al., 2010) and also owing to the importance of these flavanoid analogs, this new bromo-chloro substituted chalcone, $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrClO}$, is synthesized and its crystal structure is reported.

The title compound, $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrClO}$, is a chalcone with 4-chlorophenyl and 2-bromophenyl rings bonded to opposite sides of a propenone group (Fig. 2). The dihedral angle between mean planes of the benzene rings in the ortho-bromo and para-chloro substituted rings is $70.5(6)^{\circ}$. The angle between the mean plane of the prop-2-ene-1-one group ($\mathrm{C} 1 / \mathrm{C} 7 / \mathrm{O} / \mathrm{C} 8$) and the mean planes of the benzene rings in the 4 -chlorophenyl ($\mathrm{C} 10-\mathrm{CC} 15$) and 2-bromophenyl rings (C1-C6) are $14.9(3)^{\circ}$ and $63.3(8)^{\circ}$, respectively. Bond distances and angles are in normal ranges (Allen et al., 1987). While no classical hydrogen bonds are present, a weak intermolecular C14-H14A $\cdots \mathrm{O}$ interaction (Table 1) and weak π π stacking interactions [Cg2_perp $\cdots \mathrm{Cg} 2 _$perp $=3.3466(14) \AA$; slippage $\left.=2.931 \AA \AA ; 1-\mathrm{x}, 2-\mathrm{y}, 1-\mathrm{z}\right]$ are observed which contribute to the stability of crystal packing (Fig. 3).

S2. Experimental

A $50 \% \mathrm{KOH}$ solution was added to a mixture of 2-bromo acetophenone ($0.01 \mathrm{~mol}, 1.99 \mathrm{~g}$) and 4-chloro benzaldehyde ($0.01 \mathrm{~mol}, 1.40 \mathrm{~g}$) in 25 ml of ethanol (Fig. 1). The mixture was stirred for an hour at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from ethyl acetate by slow evaporation and the yield of the compound was 58% (m.p.368-370 K). Analytical data: Composition (\%) found (Calculated): C: 55.97 (56.02); H: 3.09(3.13).

S3. Refinement

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with $\mathrm{C}-\mathrm{H}$ distances $=0.95 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.18-1.22 U_{\text {eq }}(\mathrm{C})$.

KOH

Figure 1
Reaction Scheme for the title compound.

Figure 2
Molecular structure of the title compound, $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrClO}$, showing the atom labeling scheme and 50% probability displacement ellipsoids.

Figure 3
Packing diagram of the title compound, $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrClO}$ viewed down the a axis. Dashed lines indicate a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bond interaction which links the molecules into chains along the (011) direction.

(2E)-1-(2-Bromophenyl)-3-(4-chlorophenyl)prop-2-en-1-one

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrClO}$
$M_{r}=321.59$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=5.7317$ (6) Å
$b=9.3920(7) \AA$
$c=23.6517(18) \AA$
$\beta=91.231$ (8$)^{\circ}$
$V=1272.9(2) \AA^{3}$
$Z=4$

Data collection

Oxford Diffraction Xcalibur Ruby Gemini R diffractometer
Radiation source: Enhance (Cu) X-ray Source
Graphite monochromator
Detector resolution: 10.5081 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
$T_{\text {min }}=0.039, T_{\text {max }}=0.512$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.126$
$S=1.05$
2466 reflections
163 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& F(000)=640 \\
& D_{\mathrm{x}}=1.678 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation, } \lambda=1.54184 \AA \\
& \text { Cell parameters from } 2738 \text { reflections } \\
& \theta=4.7-74.2^{\circ} \\
& \mu=6.19 \mathrm{~mm}^{-1} \\
& T=110 \mathrm{~K} \\
& \text { Plate, yellow } \\
& 0.84 \times 0.49 \times 0.13 \mathrm{~mm}
\end{aligned}
$$

4362 measured reflections

2466 independent reflections
2275 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=74.2^{\circ}, \theta_{\text {min }}=5.1^{\circ}$
$h=-6 \rightarrow 6$
$k=-11 \rightarrow 10$
$l=-25 \rightarrow 29$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0875 P)^{2}+2.2371 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.80$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.07 \mathrm{e}^{-3}$

Special details

Experimental. IR data (KBr) $v \mathrm{~cm}^{-1}: 2837 \mathrm{~cm}^{-1}, 2966 \mathrm{~cm}^{-1}$, ($\mathrm{C}-\mathrm{H}$ al. str) $3061 \mathrm{~cm}^{-1}$, ($\mathrm{C}-\mathrm{H}$ ar. str), $1655 \mathrm{~cm}^{-1}$ (C=O), $1584 \mathrm{~cm}^{-1}$ (C=C); $1254 \mathrm{~cm}^{-1}$ (C-O-C).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Br	$-0.27391(6)$	$0.44265(4)$	$0.639317(15)$	$0.02097(17)$
Cl	$0.85133(14)$	$0.88426(9)$	$0.35152(3)$	$0.0207(2)$

O	$-0.2348(4)$	$0.7916(3)$
C 1	$0.0767(5)$	$0.6542(3)$
C 2	$-0.0160(6)$	$0.5245(4)$
C3	$0.0796(7)$	$0.4490(4)$
H 3 A	0.0157	0.3598
C 4	$0.2681(7)$	$0.5048(4)$
H 4 A	0.3305	0.4549
C5	$0.3679(6)$	$0.6328(4)$
H5A	0.4999	0.6697
C6	$0.2715(6)$	$0.7065(4)$
H6A	0.3399	0.7937
C7	$-0.0380(6)$	$0.7467(3)$
C8	$0.0907(6)$	$0.7835(4)$
H8A	0.0264	0.8560
C9	$0.2903(5)$	$0.7243(3)$
H9A	0.3548	0.6525
C10	$0.4194(5)$	$0.7595(3)$
C11	$0.6205(6)$	$0.6846(4)$
H11A	0.6685	0.6077
C12	$0.7537(6)$	$0.7200(4)$
H12A	0.8904	0.6676
C13	$0.6820(6)$	$0.8334(4)$
C14	$0.4794(6)$	$0.9079(4)$
H14A	0.4303	0.9836
C15	$0.3494(6)$	$0.8706(4)$
H15A	0.2100	0.9213
H		

$0.62618(11)$	$0.0207(5)$
$0.66371(13)$	$0.0132(6)$
$0.68014(13)$	$0.0168(7)$
$0.72552(15)$	$0.0228(8)$
0.7360	0.027^{*}
$0.75513(15)$	$0.0257(8)$
0.7869	0.031^{*}
$0.73916(14)$	$0.0230(8)$
0.7593	0.028^{*}
$0.69309(14)$	$0.0192(7)$
0.6816	0.023^{*}
$0.61912(14)$	$0.0150(6)$
$0.56835(13)$	$0.0163(6)$
0.5447	0.020^{*}
$0.55238(13)$	$0.0139(6)$
0.5763	0.017^{*}
$0.50142(13)$	$0.0143(6)$
$0.48865(13)$	$0.0167(7)$
0.5122	0.020^{*}
$0.44200(14)$	$0.0173(7)$
0.4335	0.021^{*}
$0.40819(13)$	$0.0151(6)$
$0.41904(14)$	$0.0189(7)$
0.3950	0.023^{*}
$0.46533(15)$	$0.0201(7)$
0.4728	0.024^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	$0.0157(2)$	$0.0143(2)$	$0.0329(3)$	$-0.00300(13)$	$0.00039(15)$	$-0.00360(12)$
C 1	$0.0199(4)$	$0.0216(4)$	$0.0206(4)$	$-0.0025(3)$	$0.0026(3)$	$0.0022(3)$
O	$0.0112(12)$	$0.0199(13)$	$0.0311(12)$	$0.0037(10)$	$0.0003(9)$	$0.0024(10)$
C 1	$0.0071(14)$	$0.0153(15)$	$0.0173(14)$	$0.0035(12)$	$0.0011(10)$	$-0.0007(12)$
C 2	$0.0191(17)$	$0.0126(15)$	$0.0187(15)$	$0.0031(13)$	$0.0017(12)$	$-0.0013(12)$
C 3	$0.027(2)$	$0.0180(18)$	$0.0232(16)$	$0.0062(14)$	$0.0053(14)$	$0.0054(13)$
C 4	$0.0289(19)$	$0.030(2)$	$0.0177(15)$	$0.0130(17)$	$-0.0004(13)$	$0.0023(14)$
C 5	$0.0163(17)$	$0.0297(19)$	$0.0227(16)$	$0.0080(15)$	$-0.0047(13)$	$-0.0056(14)$
C 6	$0.0130(16)$	$0.0191(17)$	$0.0255(16)$	$0.0005(13)$	$-0.0020(12)$	$-0.0024(13)$
C 7	$0.0125(15)$	$0.0094(14)$	$0.0230(15)$	$-0.0002(12)$	$-0.0031(11)$	$-0.0009(12)$
C 8	$0.0149(16)$	$0.0143(15)$	$0.0196(15)$	$0.0009(13)$	$-0.0029(12)$	$0.0023(12)$
C 9	$0.0097(15)$	$0.0122(14)$	$0.0197(14)$	$-0.0037(12)$	$-0.0027(11)$	$0.0012(12)$
C 10	$0.0113(15)$	$0.0124(15)$	$0.0190(14)$	$-0.0022(12)$	$-0.0030(11)$	$-0.0017(12)$
C 11	$0.0143(16)$	$0.0150(15)$	$0.0207(15)$	$-0.0005(13)$	$-0.0045(12)$	$0.0033(12)$
C12	$0.0118(15)$	$0.0161(16)$	$0.0240(15)$	$0.0016(13)$	$-0.0021(12)$	$-0.0005(13)$
C13	$0.0121(15)$	$0.0156(16)$	$0.0176(14)$	$-0.0046(13)$	$-0.0019(11)$	$-0.0022(12)$
C14	$0.0186(18)$	$0.0148(15)$	$0.0232(15)$	$0.0017(14)$	$-0.0038(12)$	$0.0030(13)$
C15	$0.0187(17)$	$0.0166(17)$	$0.0249(16)$	$0.0045(14)$	$-0.0032(13)$	$0.0011(13)$

Geometric parameters (A, ${ }^{\circ}$)

$\mathrm{Br}-\mathrm{C} 2$	1.910 (3)	C8-C9	1.334 (5)
$\mathrm{Cl}-\mathrm{C} 13$	1.739 (3)	C8-H8A	0.9500
O-C7	1.219 (4)	C9-C10	1.466 (4)
C1-C2	1.388 (5)	C9-H9A	0.9500
C1-C6	1.392 (4)	C10-C11	1.389 (5)
C1-C7	1.506 (4)	C10-C15	1.402 (5)
C2-C3	1.389 (5)	C11-C12	1.395 (5)
C3-C4	1.378 (6)	C11-H11A	0.9500
C3-H3A	0.9500	C12-C13	1.389 (5)
C4-C5	1.387 (6)	C12-H12A	0.9500
C4-H4A	0.9500	C13-C14	1.384 (5)
C5-C6	1.395 (5)	C14-C15	1.383 (5)
C5-H5A	0.9500	C14-H14A	0.9500
C6-H6A	0.9500	C15-H15A	0.9500
C7- C 8	1.464 (4)		
C2-C1-C6	118.5 (3)	C7-C8-H8A	117.1
C2-C1-C7	122.6 (3)	C8-C9-C10	126.2 (3)
C6-C1-C7	118.6 (3)	C8-C9-H9A	116.9
C1-C2-C3	121.2 (3)	C10-C9-H9A	116.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br}$	120.6 (2)	C11-C10-C15	118.2 (3)
C3-C2- Br	118.3 (3)	C11-C10-C9	120.0 (3)
C4-C3-C2	119.4 (3)	C15-C10-C9	121.7 (3)
C4-C3-H3A	120.3	C10-C11-C12	121.5 (3)
C2-C3-H3A	120.3	C10-C11-H11A	119.3
C3-C4-C5	121.0 (3)	C12-C11-H11A	119.3
C3-C4-H4A	119.5	C13-C12-C11	118.5 (3)
C5-C4-H4A	119.5	C13-C12-H12A	120.7
C4-C5-C6	118.9 (3)	C11-C12-H12A	120.7
C4-C5-H5A	120.5	C14-C13-C12	121.3 (3)
C6-C5-H5A	120.5	C14-C13-Cl	119.3 (3)
C1-C6-C5	121.0 (3)	C12-C13-Cl	119.4 (3)
C1-C6-H6A	119.5	C15-C14-C13	119.2 (3)
C5-C6-H6A	119.5	C15-C14-H14A	120.4
O-C7-C8	120.9 (3)	C13-C14-H14A	120.4
O-C7-C1	119.7 (3)	C14-C15-C10	121.2 (3)
C8-C7-C1	119.4 (3)	C14-C15-H15A	119.4
C9-C8-C7	125.7 (3)	C10-C15-H15A	119.4
C9-C8-H8A	117.1		
C6-C1-C2-C3	1.2 (5)	O-C7-C8-C9	-169.4 (3)
C7- $12-\mathrm{C} 2-\mathrm{C} 3$	-172.9 (3)	C1-C7-C8-C9	11.8 (5)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br}$	-177.0 (2)	C7- $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	179.4 (3)
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br}$	8.8 (4)	C8-C9-C10-C11	-177.2 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.8 (5)	C8-C9-C10-C15	4.7 (5)
$\mathrm{Br}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	179.0 (3)	C15-C10-C11-C12	1.4 (5)

supporting information

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-2.1(6)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-176.8(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$1.3(5)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$0.4(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-2.0(5)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-2.0(5)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$172.4(3)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 1$	$177.4(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.7(5)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$1.7(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O}$	$60.4(4)$	$\mathrm{C} 1-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-177.7(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O}$	$-113.7(4)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 10$	$0.2(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$-120.8(3)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14$	$-1.7(5)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$65.1(4)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14$	$176.5(3)$

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 14 — \mathrm{H} 14 A \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.44	$3.319(4)$	154

Symmetry code: (i) $-x,-y+2,-z+1$.

