

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(4-cyanophenolato)[hydrotris(3,5dimethylpyrazolyl)borato]nitrosylmolybdenum(II)-4-hydroxybenzonitriledichloromethane (1/1/1)

Mohammad B. Kassim*‡ and Jon A. McCleverty

School of Chemistry, University of Bristol, Cantock Close, BS8 ITS Bristol, England Correspondence e-mail: mbkassim@ukm.my

Received 3 November 2010; accepted 5 November 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.006 Å; R factor = 0.052; wR factor = 0.129; data-to-parameter ratio = 17.7.

In the title compound, $[Mo(C_{15}H_{22}BN_6)(C_7H_4NO)_2(NO)]$ - $C_7H_5NO\cdotCH_2Cl_2$, the central Mo^{II} atom adopts a distorted *cis*-MoO_2N_4 octahedral geometry with the hydrotris(3,5dimethylpyrazolylborate) anion attached to the metal in an N,N',N''-tridentate tripodal coordination mode. Two Obonded 4-cyanophenolate anions and a nitrosyl cation complete the coodination of the Mo^{II} atom. Two intramolecular C-H···O and one C-H···N hydrogen bonds help to establish the configuration of the complex molecule. The crystal structure is stabilized by intermolecular C-H···N and C-H···O hydrogen bonds.

Related literature

For related compounds, see: Kassim *et al.* (2002); Jones *et al.* (1997); Amoroso *et al.* (1994). For background to poly-(pyrazolyl)borate ligands, see: Trofimenko (1993).

[‡] Present address: School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia.

 $\beta = 92.459 \ (3)^{\circ}$

 $\gamma = 94.300 (3)^{\circ}$ V = 1943.0 (5) Å³

Mo $K\alpha$ radiation

 $0.18 \times 0.10 \times 0.05 \; \rm mm$

19938 measured reflections 8844 independent reflections

5548 reflections with $I > 2\sigma(I)$

 $\mu = 0.53 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.066$

Z = 2

Experimental

Crystal data

$$\begin{split} & [\text{Mo}(\text{C}_{15}\text{H}_{22}\text{BN}_6)(\text{C}_7\text{H}_4\text{-} \\ \text{NO})_2(\text{NO})]\cdot\text{C}_7\text{H}_5\text{NO}\cdot\text{CH}_2\text{Cl}_2 \\ & M_r = 863.42 \\ & \text{Triclinic, } P\overline{1} \\ & a = 11.9792 \text{ (19) } \text{\AA} \\ & b = 12.630 \text{ (2) } \text{\AA} \\ & c = 12.891 \text{ (2) } \text{\AA} \\ & \alpha = 90.120 \text{ (3)}^\circ \end{split}$$

Data collection

Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min} = 0.938, \ T_{\max} = 0.974$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	H atoms treated by a mixture of
$wR(F^2) = 0.129$	independent and constrained
S = 0.98	refinement
8844 reflections	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
500 parameters	$\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected bond lengths (Å).

Mo1-N7	1.762 (4)	Mo1-N6	2.179 (3)
Mo1-O1	1.949 (3)	Mo1-N4	2.186 (3)
Mo1-O2	1.954 (3)	Mo1-N2	2.220 (3)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C5-H5A···O2	0.96	2.46	3.189 (5)	133
C10−H10A···N7	0.96	2.47	3.228 (6)	136
$C15-H15A\cdots N7$	0.96	2.47	3.288 (6)	143
$C4-H4D\cdots O4^{i}$	0.96	2.52	3.360 (6)	146
$C9-H9B\cdots O3^{ii}$	0.96	2.37	3.219 (6)	147
$C37 - H37B \cdot \cdot \cdot N9^{iii}$	0.96	2.53	3.366 (7)	144

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y + 2, -z + 1; (iii) x - 1, y, z + 1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009) and *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *PLATON*.

The authors thank the University of Bristol for providing the facilities and Universiti Kebangsaan Malaysia/World Bank for MBK's PhD scholarship and grant UKM-OUP-TK-16–73/ 2010.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5724).

References

- Amoroso, A. J., Cargill Thompson, A. M., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1994). J. Chem. Soc. Chem. Commun. pp. 2751–2752.
- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Jones, P. L., Amoroso, A. J., Jeffery, J. C., McCleverty, J. A., Psillakis, E., Rees, L. H. & Ward, M. D. (1997). *Inorg. Chem.* 36, 10–18.

- Kassim, M. B., Paul, R. L., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (2002). *Inorg. Chim. Acta*, **327**, 160–168.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Trofimenko, S. (1993). Chem. Rev. 93, 943-980.

Acta Cryst. (2010). E66, m1541-m1542 [https://doi.org/10.1107/S160053681004537X]

Bis(4-cyanophenolato)[hydrotris(3,5-dimethylpyrazolyl)borato]nitrosylmolybdenum(II)-4-hydroxybenzonitrile-dichloromethane (1/1/1)

Mohammad B. Kassim and Jon A. McCleverty

S1. Comment

Poly(pyrazolyl)borate ligands [Trofimenko (1993)] have attracted many researchers for the coordination chemistry of molybdenum complexes [Kassim *et al.* (2002), Jones *et al.* (1997) & Amoroso *et al.* (1994)]. In the title compound, (I), the hydrotris(3,5-dimethyl(pyrazolyl)borate ligand bonds to the central molybdenum atom in a tridentate manner through the N-atom at the 6-position of the pyrazolyl rings. Two 4-hydroxybenzonitrileate and a nitrosyl cation, bond *via* the O– and N-atom respectively, complete the octahedral coordination of the Mo(II) centre (Fig1). In addition, one molecule of the excess 4-hydroxybenzonitrile ligand and one molecule of CH_2Cl_2 solvent cystallized in the structure (Fig. 2).

The crystal structure is stabilized by three intramolecular hydrogen bonds C(5)—H(5 A)···O(2), C(10)—H(10 A)···N(7) and C(15)—H(15 A)···N(7). The crystal packing is stabilized by two C—H···O and one C—H···N intermolecular hydrogen bonds (Fig. 3).

S2. Experimental

The title compound was synthesized from a reaction of $Mo(NO)Tp*Cl_2$ (0.1 mmol) with *p*-cyanophenol (0.25 mmol) in dichloromethane in the presence of triethylammine at refluxing temperature under N₂ atmosphere (Kassim *et al.* 2002). Dark brown plates of (I) were obtained from a slow evaporation of dichloromethane solution of the title compound at room temperature. Yield 80%.

S3. Refinement

The H atoms attached to the B atom was located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range of 0.93–0.98, and O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figure 1

The complex in (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Figure 2

Molecules in the asymmetric unit with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Figure 3

The packing diagram of the title compound showing the intermolecular H– bonds with dotted line with displacement ellipsoids drawn at the 50% probability level.

Bis(4-hydroxybenzonitrileato)[hydrotris(3,5- dimethylpyrazolyl)borato]nitrosylmolybdenum(II)-4hydroxybenzonitrile- dichloromethane (1/1/1)

Crystal data

$[Mo(C_{15}H_{22}BN_6)]$
$(C_7H_4NO)_2(NO)]\cdot C_7H_5NO\cdot CH_2Cl_2$
$M_r = 863.42$
Triclinic, $P\overline{1}$
Hall symbol: -P 1
a = 11.9792 (19) Å
b = 12.630 (2) Å
c = 12.891 (2) Å
$\alpha = 90.120 \ (3)^{\circ}$
$\beta = 92.459 \ (3)^{\circ}$
$\gamma = 94.300 \ (3)^{\circ}$

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Parallel, Graphite monochromator $\omega/2\theta$ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.938$, $T_{\max} = 0.974$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.129$ S = 0.988844 reflections 500 parameters 0 restraints Primary atom site location: structure-invariant direct methods $V = 1943.0 (5) \text{ Å}^{3}$ Z = 2 F(000) = 884 $D_x = 1.476 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3353 reflections $\theta = 1.6-27.5^{\circ}$ $\mu = 0.53 \text{ mm}^{-1}$ T = 173 KPlate, dark brown $0.18 \times 0.10 \times 0.05 \text{ mm}$

19938 measured reflections 8844 independent reflections 5548 reflections with $I > 2\sigma(I)$ $R_{int} = 0.066$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 1.6^\circ$ $h = -15 \rightarrow 15$ $k = -16 \rightarrow 16$ $l = -16 \rightarrow 16$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0563P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.59$ e Å⁻³ $\Delta\rho_{min} = -0.69$ e Å⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat [Cosier, J. & Glazer, A. M. (1986). *J. Appl. Cryst.* **19**, 105–107] with a nominal stability of 0.1 K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Mol	0.73371 (3)	0.79886 (3)	0.61020 (3)	0.01838 (11)	
Cl1	0.10962 (12)	0.73930 (12)	0.85992 (11)	0.0521 (4)	
Cl2	0.11742 (12)	0.51320 (11)	0.90460 (11)	0.0526 (4)	
01	0.7960 (2)	0.8548 (2)	0.7431 (2)	0.0219 (6)	
02	0.8338 (2)	0.6892 (2)	0.5782 (2)	0.0244 (7)	
03	0.8373 (3)	0.9671 (3)	0.4762 (2)	0.0372 (8)	
O4	0.6205 (3)	0.6806 (2)	1.0784 (2)	0.0334 (8)	
H4A	0.5905	0.6522	1.1283	0.050*	
N1	0.5443 (3)	0.6553 (3)	0.7131 (2)	0.0190 (7)	
N2	0.6586 (3)	0.6735 (3)	0.7118 (2)	0.0187 (8)	
N3	0.4812 (3)	0.8253 (3)	0.6395 (2)	0.0192 (7)	
N4	0.5838 (3)	0.8832 (3)	0.6333 (2)	0.0195 (8)	
N5	0.5173 (3)	0.6799 (3)	0.5197 (2)	0.0203 (8)	
N6	0.6173 (3)	0.7294 (3)	0.4898 (2)	0.0204 (8)	
N7	0.7943 (3)	0.8988 (3)	0.5306 (3)	0.0250 (8)	
N8	1.1473 (3)	1.2538 (3)	0.9349 (3)	0.0345 (10)	
N9	1.2037 (4)	0.6758 (4)	0.2015 (3)	0.0447 (11)	
N10	0.2755 (3)	1.0246 (3)	0.8680 (3)	0.0385 (10)	
C1	0.5158 (4)	0.5900 (3)	0.7920 (3)	0.0224 (9)	
C2	0.6143 (4)	0.5627 (3)	0.8408 (3)	0.0265 (10)	
H2A	0.6209	0.5175	0.8972	0.032*	
C3	0.7015 (4)	0.6152 (3)	0.7898 (3)	0.0229 (9)	
C4	0.3968 (4)	0.5638 (4)	0.8183 (4)	0.0340 (11)	
H4B	0.3481	0.5955	0.7682	0.051*	
H4C	0.3848	0.5910	0.8862	0.051*	
H4D	0.3810	0.4882	0.8173	0.051*	
C5	0.8241 (4)	0.6155 (4)	0.8143 (3)	0.0307 (11)	
H5A	0.8640	0.6592	0.7652	0.046*	
H5B	0.8466	0.5443	0.8104	0.046*	
H5C	0.8407	0.6432	0.8831	0.046*	
C6	0.3999 (3)	0.8931 (3)	0.6482 (3)	0.0213 (9)	
C7	0.4492 (4)	0.9948 (3)	0.6481 (3)	0.0246 (10)	
H7A	0.4133	1.0572	0.6537	0.029*	
C8	0.5630 (4)	0.9862 (3)	0.6380 (3)	0.0225 (9)	
C9	0.2803 (3)	0.8542 (4)	0.6581 (3)	0.0294 (10)	
H9A	0.2734	0.7780	0.6553	0.044*	
H9B	0.2357	0.8818	0.6022	0.044*	
H9C	0.2546	0.8777	0.7232	0.044*	
C10	0.6525 (4)	1.0744 (4)	0.6366 (3)	0.0318 (11)	
H10A	0.7238	1.0457	0.6293	0.048*	
H10B	0.6537	1.1140	0.7003	0.048*	
H10C	0.6379	1.1204	0.5792	0.048*	
C11	0.4625 (4)	0.6304 (3)	0.4370 (3)	0.0224 (9)	
C12	0.5288 (4)	0.6482 (3)	0.3529 (3)	0.0253 (10)	
H12A	0.5131	0.6230	0.2856	0.030*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C13	0.6228 (4)	0.7104 (3)	0.3872 (3)	0.0214 (9)
C14	0.3518 (4)	0.5694 (4)	0.4444 (3)	0.0322 (11)
H14A	0.3280	0.5725	0.5145	0.048*
H14B	0.3585	0.4967	0.4252	0.048*
H14C	0.2978	0.5996	0.3985	0.048*
C15	0.7181 (4)	0.7532 (4)	0.3242 (3)	0.0288 (11)
H15A	0.7720	0.7940	0.3682	0.043*
H15B	0.6903	0.7977	0.2701	0.043*
H15C	0.7531	0.6953	0.2938	0.043*
C16	0.8660 (3)	0.9372 (3)	0.7777 (3)	0.0209 (9)
C17	0.8478 (3)	0.9804 (3)	0.8746 (3)	0.0253 (10)
H17A	0.7876	0.9534	0.9123	0.030*
C18	0.9183 (4)	1.0624 (4)	0.9145(3)	0.0286 (10)
H18A	0.9050	1.0915	0.9788	0.034*
C19	1 0096 (3)	1 1025 (3)	0.8595 (3)	0.0227(9)
C20	1.0090 (3)	1.0589 (4)	0.0000 (3)	0.0227(9)
H20A	1.0203 (1)	1.0851	0.7265	0.0251 (11)
C21	0.9575(4)	0.9774(4)	0.7231(3)	0.039
H21A	0.9575 (4)	0.9487	0.6586	0.0309 (11)
C22	1.0870(4)	1.1871(4)	0.0000	0.037 0.0283(10)
C22	1.0870(4) 0.0130(3)	0.6850(3)	0.5021(3)	0.0233(10) 0.0228(0)
C24	0.9139(3)	0.0850(3)	0.3002(3)	0.0228(9)
	0.9113 (4)	0.5388	0.4432 (3)	0.0314 (11)
1124A C25	0.8589	0.5588	0.4331 0.2657 (2)	0.038°
U25	0.9872 (4)	0.5900 (4)	0.3037 (3)	0.0556 (11)
H25A	0.9849	0.5510	0.3230	0.041^{*}
C26	1.0005 (4)	0.0743(4)	0.3515(3)	0.0261(10)
C27	1.0730 (4)	0.7615 (4)	0.4182 (4)	0.0342 (11)
H2/A	1.1277	0.8169	0.4105	0.041*
C28	0.9978 (4)	0.7648 (4)	0.4957 (3)	0.0323 (11)
H28A	1.0036	0.8218	0.5418	0.039*
C29	1.1427 (4)	0.6732 (4)	0.2677 (4)	0.0317 (11)
C30	0.3336 (4)	0.9645 (4)	0.9018 (3)	0.0302 (11)
C31	0.4072 (4)	0.8889 (4)	0.9451 (3)	0.0268 (10)
C32	0.3746 (4)	0.8264 (4)	1.0294 (3)	0.0317 (11)
H32A	0.3044	0.8317	1.0562	0.038*
C33	0.4462 (4)	0.7573 (4)	1.0728 (3)	0.0304 (11)
H33A	0.4241	0.7159	1.1290	0.036*
C34	0.5512 (4)	0.7487 (3)	1.0335 (3)	0.0257 (10)
C35	0.5824 (4)	0.8075 (3)	0.9467 (3)	0.0243 (10)
H35A	0.6512	0.7993	0.9182	0.029*
C36	0.5121 (4)	0.8775 (3)	0.9033 (3)	0.0238 (10)
H36A	0.5338	0.9174	0.8460	0.029*
C37	0.1033 (5)	0.6406 (4)	0.9550 (4)	0.0489 (14)
H37A	0.0322	0.6409	0.9882	0.059*
H37B	0.1625	0.6570	1.0076	0.059*
B1	0.4723 (4)	0.7041 (4)	0.6283 (4)	0.0223 (11)
H1	0.386 (3)	0.671 (3)	0.629 (3)	0.009 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	U^{13}	<i>U</i> ²³
Mol	0.01678 (19)	0.0215 (2)	0.01643 (18)	-0.00219 (14)	0.00264 (13)	-0.00082 (13)
Cl1	0.0532 (9)	0.0483 (9)	0.0535 (8)	-0.0093 (7)	0.0112 (7)	0.0095 (7)
Cl2	0.0503 (9)	0.0440 (9)	0.0645 (9)	0.0010 (7)	0.0197 (7)	-0.0023 (7)
01	0.0210 (16)	0.0221 (16)	0.0215 (15)	-0.0056 (13)	0.0017 (12)	-0.0017 (12)
O2	0.0220 (16)	0.0300 (18)	0.0217 (15)	0.0035 (14)	0.0046 (12)	-0.0013 (13)
O3	0.035 (2)	0.038 (2)	0.0381 (19)	-0.0068 (16)	0.0096 (15)	0.0151 (16)
O4	0.0366 (19)	0.0328 (19)	0.0303 (17)	0.0024 (16)	-0.0029 (14)	0.0124 (14)
N1	0.0199 (19)	0.0192 (19)	0.0177 (17)	-0.0026 (15)	0.0047 (14)	0.0002 (14)
N2	0.0184 (18)	0.022 (2)	0.0157 (17)	-0.0024 (15)	0.0015 (14)	0.0001 (14)
N3	0.0163 (18)	0.024 (2)	0.0171 (17)	0.0007 (15)	0.0036 (13)	0.0012 (14)
N4	0.0188 (18)	0.022 (2)	0.0171 (17)	-0.0017 (15)	0.0039 (14)	-0.0011 (14)
N5	0.0166 (18)	0.025 (2)	0.0187 (17)	-0.0049 (15)	0.0003 (14)	0.0000 (14)
N6	0.0188 (19)	0.022 (2)	0.0196 (17)	-0.0021 (15)	0.0004 (14)	-0.0010 (14)
N7	0.021 (2)	0.031 (2)	0.0217 (19)	-0.0033 (17)	0.0019 (15)	0.0013 (16)
N8	0.025 (2)	0.032 (2)	0.045 (2)	-0.0007 (19)	0.0017 (18)	-0.0116 (19)
N9	0.041 (3)	0.053 (3)	0.041 (3)	0.003 (2)	0.018 (2)	0.003 (2)
N10	0.039 (3)	0.040 (3)	0.039 (2)	0.014 (2)	0.0002 (19)	-0.005 (2)
C1	0.029 (2)	0.021 (2)	0.018 (2)	-0.0006 (19)	0.0079 (17)	-0.0010 (17)
C2	0.034 (3)	0.022 (2)	0.024 (2)	0.004 (2)	0.0029 (19)	0.0078 (18)
C3	0.033 (3)	0.017 (2)	0.019 (2)	0.0032 (19)	-0.0033 (18)	-0.0047 (17)
C4	0.029 (3)	0.029 (3)	0.045 (3)	0.003 (2)	0.015 (2)	0.013 (2)
C5	0.026 (3)	0.034 (3)	0.032 (3)	0.005 (2)	-0.0042 (19)	0.004 (2)
C6	0.022 (2)	0.027 (2)	0.015 (2)	0.0038 (19)	0.0023 (16)	0.0015 (17)
C7	0.027 (2)	0.023 (2)	0.024 (2)	0.007 (2)	0.0040 (18)	0.0026 (18)
C8	0.030 (2)	0.023 (2)	0.015 (2)	0.002 (2)	0.0050 (17)	0.0008 (17)
C9	0.022 (2)	0.032 (3)	0.035 (3)	0.004 (2)	0.0073 (19)	0.003 (2)
C10	0.034 (3)	0.026 (3)	0.035 (3)	-0.006 (2)	0.009 (2)	0.000 (2)
C11	0.028 (2)	0.017 (2)	0.022 (2)	0.0038 (19)	-0.0070 (18)	-0.0025 (17)
C12	0.038 (3)	0.024 (2)	0.015 (2)	0.007 (2)	-0.0043 (18)	-0.0023 (17)
C13	0.030 (2)	0.020 (2)	0.015 (2)	0.0048 (19)	0.0010 (17)	0.0008 (16)
C14	0.029 (3)	0.032 (3)	0.034 (3)	-0.003 (2)	-0.007(2)	-0.006 (2)
C15	0.032 (3)	0.035 (3)	0.019 (2)	0.003 (2)	0.0080 (18)	-0.0003 (19)
C16	0.021 (2)	0.021 (2)	0.020 (2)	-0.0004 (18)	-0.0035 (17)	0.0007 (17)
C17	0.020 (2)	0.031 (3)	0.024 (2)	-0.007 (2)	0.0060 (17)	-0.0032 (19)
C18	0.030 (3)	0.029 (3)	0.026 (2)	-0.001 (2)	0.0045 (19)	-0.0070 (19)
C19	0.019 (2)	0.017 (2)	0.032 (2)	0.0022 (18)	-0.0036 (18)	-0.0014 (18)
C20	0.024 (2)	0.037 (3)	0.026 (2)	-0.003 (2)	0.0072 (18)	-0.003 (2)
C21	0.029 (3)	0.036 (3)	0.026 (2)	-0.009 (2)	0.0074 (19)	-0.010 (2)
C22	0.027 (3)	0.028 (3)	0.031 (2)	0.002 (2)	0.0023 (19)	-0.004 (2)
C23	0.021 (2)	0.028 (3)	0.020 (2)	0.0064 (19)	0.0034 (17)	-0.0008 (18)
C24	0.032 (3)	0.024 (3)	0.038 (3)	-0.003 (2)	0.011 (2)	0.001 (2)
C25	0.041 (3)	0.030 (3)	0.032 (3)	0.005 (2)	0.011 (2)	-0.005 (2)
C26	0.024 (2)	0.032 (3)	0.024 (2)	0.007 (2)	0.0059 (18)	0.0026 (19)
C27	0.021 (2)	0.037 (3)	0.044 (3)	-0.005 (2)	0.011 (2)	-0.007(2)
C28	0.020(2)	0.039 (3)	0.037 (3)	-0.003(2)	0.0048 (19)	-0.018(2)

C29	0.032 (3)	0.027 (3)	0.037 (3)	0.004 (2)	0.010 (2)	0.004 (2)
C30	0.030 (3)	0.037 (3)	0.024 (2)	0.003 (2)	0.005 (2)	-0.004 (2)
C31	0.031 (3)	0.024 (3)	0.025 (2)	0.001 (2)	-0.0023 (19)	-0.0020 (19)
C32	0.027 (3)	0.040 (3)	0.028 (2)	-0.003 (2)	0.0056 (19)	0.000 (2)
C33	0.030 (3)	0.035 (3)	0.026 (2)	-0.001 (2)	0.0057 (19)	0.010 (2)
C34	0.028 (2)	0.026 (3)	0.023 (2)	-0.001 (2)	-0.0053 (18)	0.0008 (18)
C35	0.024 (2)	0.025 (2)	0.024 (2)	0.000 (2)	0.0036 (18)	-0.0016 (18)
C36	0.028 (2)	0.024 (2)	0.018 (2)	-0.002 (2)	-0.0011 (18)	-0.0032 (17)
C37	0.067 (4)	0.043 (3)	0.036 (3)	-0.004 (3)	0.010 (3)	0.000 (2)
B1	0.022 (3)	0.022 (3)	0.022 (2)	0.000 (2)	0.003 (2)	-0.002 (2)

Geometric parameters (Å, °)

Mol—N7	1.762 (4)	C10—H10C	0.9600
Mo1—O1	1.949 (3)	C11—C12	1.380 (6)
Mo1—O2	1.954 (3)	C11—C14	1.489 (6)
Mo1—N6	2.179 (3)	C12—C13	1.380 (6)
Mo1—N4	2.186 (3)	C12—H12A	0.9300
Mo1—N2	2.220 (3)	C13—C15	1.498 (6)
Cl1—C37	1.750 (5)	C14—H14A	0.9600
Cl2—C37	1.757 (5)	C14—H14B	0.9600
O1—C16	1.348 (5)	C14—H14C	0.9600
O2—C23	1.366 (5)	C15—H15A	0.9600
O3—N7	1.211 (4)	C15—H15B	0.9600
O4—C34	1.353 (5)	C15—H15C	0.9600
O4—H4A	0.8200	C16—C21	1.392 (6)
N1-C1	1.350 (5)	C16—C17	1.395 (5)
N1—N2	1.372 (4)	C17—C18	1.372 (6)
N1—B1	1.523 (6)	C17—H17A	0.9300
N2—C3	1.354 (5)	C18—C19	1.394 (6)
N3—C6	1.352 (5)	C18—H18A	0.9300
N3—N4	1.387 (4)	C19—C20	1.386 (6)
N3—B1	1.532 (6)	C19—C22	1.452 (6)
N4—C8	1.345 (5)	C20—C21	1.372 (6)
N5-C11	1.355 (5)	C20—H20A	0.9300
N5—N6	1.379 (4)	C21—H21A	0.9300
N5—B1	1.560 (5)	C23—C28	1.380 (6)
N6-C13	1.349 (5)	C23—C24	1.389 (6)
N8—C22	1.136 (5)	C24—C25	1.382 (6)
N9—C29	1.146 (5)	C24—H24A	0.9300
N10-C30	1.143 (6)	C25—C26	1.385 (6)
C1—C2	1.379 (6)	C25—H25A	0.9300
C1—C4	1.493 (6)	C26—C27	1.391 (6)
C2—C3	1.386 (6)	C26—C29	1.445 (6)
C2—H2A	0.9300	C27—C28	1.377 (6)
C3—C5	1.489 (6)	C27—H27A	0.9300
C4—H4B	0.9600	C28—H28A	0.9300
C4—H4C	0.9600	C30—C31	1.444 (7)

C4—H4D	0.9600	C31—C32	1.397 (6)
С5—Н5А	0.9600	C31—C36	1.405 (6)
С5—Н5В	0.9600	C32—C33	1.372 (6)
C5—H5C	0.9600	С32—Н32А	0.9300
С6—С7	1.373 (6)	C33—C34	1.388 (6)
С6—С9	1.491 (6)	С33—Н33А	0.9300
C7—C8	1.388 (6)	C34—C35	1.393 (6)
C7—H7A	0.9300	C35—C36	1.370 (6)
C8—C10	1.488 (6)	С35—Н35А	0.9300
С9—Н9А	0.9600	С36—Н36А	0.9300
С9—Н9В	0.9600	С37—Н37А	0.9700
C9—H9C	0.9600	С37—Н37В	0.9700
C10—H10A	0.9600	B1—H1	1 09 (4)
C10—H10B	0.9600		1.05 (1)
	0.9000		
N7—Mo1—O1	97.65 (13)	N6—C13—C12	109.4 (4)
N7—Mo1—O2	97.14 (14)	N6—C13—C15	123.2 (4)
O1—Mo1—O2	102.85 (11)	C12—C13—C15	127.5 (4)
N7—Mo1—N6	95.33 (14)	C11—C14—H14A	109.5
O1—Mo1—N6	162.05 (11)	C11—C14—H14B	109.5
O2—Mo1—N6	87.73 (12)	H14A—C14—H14B	109.5
N7—Mo1—N4	93.57 (14)	C11—C14—H14C	109.5
O1—Mo1—N4	88.99 (12)	H14A—C14—H14C	109.5
O2—Mo1—N4	162.77 (12)	H14B—C14—H14C	109.5
N6—Mo1—N4	77.84 (12)	С13—С15—Н15А	109.5
N7—Mo1—N2	179.42 (15)	C13—C15—H15B	109.5
01—Mo1—N2	81.80 (11)	H15A—C15—H15B	109.5
O2—Mo1—N2	82.84 (12)	C13—C15—H15C	109.5
N6—Mo1—N2	85.25 (12)	H15A—C15—H15C	109.5
N4—Mo1—N2	86.58 (12)	H15B—C15—H15C	109.5
C16—O1—Mo1	137.6 (2)	O1—C16—C21	122.9 (4)
C23—O2—Mo1	131.6 (3)	O1—C16—C17	117.9 (4)
C34—O4—H4A	109.5	C21—C16—C17	119.1 (4)
C1—N1—N2	110.3 (3)	C18—C17—C16	120.2 (4)
C1—N1—B1	130.9 (4)	C18—C17—H17A	119.9
N2—N1—B1	118.8 (3)	C16—C17—H17A	119.9
C3—N2—N1	106.4 (3)	C17—C18—C19	120.5 (4)
C3—N2—Mo1	133.0 (3)	C17—C18—H18A	119.8
N1—N2—Mo1	119.9 (2)	C19—C18—H18A	119.8
C6—N3—N4	109.1 (3)	C20—C19—C18	119.3 (4)
C6—N3—B1	130.0 (3)	C20—C19—C22	119.6 (4)
N4—N3—B1	120.6 (3)	C18—C19—C22	121.1 (4)
C8—N4—N3	106.5 (3)	C21—C20—C19	120.4 (4)
C8—N4—Mo1	134.3 (3)	C21—C20—H20A	119.8
N3—N4—Mo1	119.1 (2)	C19—C20—H20A	119.8
C11—N5—N6	109.8 (3)	C20—C21—C16	120.5 (4)
C11—N5—B1	128.8 (4)	C20—C21—H21A	119.7
N6—N5—B1	120.1 (3)	C16—C21—H21A	119.7

C13—N6—N5	106.5 (3)	N8—C22—C19	179.4 (5)
C13—N6—Mo1	134.9 (3)	O2—C23—C28	122.6 (4)
N5—N6—Mo1	118.1 (2)	O2—C23—C24	118.2 (4)
O3—N7—Mo1	179.1 (3)	C28—C23—C24	119.2 (4)
N1—C1—C2	107.0 (4)	C25—C24—C23	120.0 (4)
N1—C1—C4	122.2 (4)	C25—C24—H24A	120.0
C2—C1—C4	130.6 (4)	C23—C24—H24A	120.0
C1—C2—C3	107.1 (4)	C24—C25—C26	120.1 (4)
C1—C2—H2A	126.5	C24—C25—H25A	119.9
C3—C2—H2A	126.5	C26—C25—H25A	119.9
$N^2 - C^2 - C^2$	109 1 (4)	$C_{25} = C_{26} = C_{27}$	1199(4)
$N_2 = C_3 = C_5$	109.1(1) 122 4 (4)	$C_{25} = C_{26} = C_{29}$	119.9(1) 121.1(4)
$C_2 - C_3 - C_5$	122.1(1) 128 5 (4)	$C_{23} = C_{20} = C_{23}$	121.1(1) 1190(4)
C1 - C4 - H4B	109 5	$C_{28} = C_{27} = C_{26}$	119.0(4) 119.3(4)
C1 - C4 - H4C	109.5	$C_{28} = C_{27} = C_{20}$	120.4
HAB CA HAC	109.5	$C_{26} = C_{27} = H_{27A}$	120.4
$C_{1} = C_{4} = H_{4} D$	109.5	$C_{20} = C_{27} = M_{27} = M_{27}$	120.4
	109.5	$C_{27} = C_{28} = C_{25}$	121.2 (4)
H4D - C4 - H4D	109.5	$C_{27} = C_{28} = H_{28A}$	119.4
H4C - C4 - H4D	109.5	C25-C26-FI26A	119.4
$C_3 - C_5 - H_5 A$	109.5	N9-C29-C26	1//.8 (5)
С3—С5—Н5В	109.5	N10 - C30 - C31	1/9.6 (5)
H5A—C5—H5B	109.5	$C_{32} = C_{31} = C_{36}$	119.3 (4)
С3—С5—Н5С	109.5	$C_{32} = C_{31} = C_{30}$	120.1 (4)
H5A—C5—H5C	109.5	C36—C31—C30	120.6 (4)
H5B—C5—H5C	109.5	C33—C32—C31	120.0 (4)
N3—C6—C7	108.1 (4)	С33—С32—Н32А	120.0
N3—C6—C9	121.6 (4)	C31—C32—H32A	120.0
C7—C6—C9	130.2 (4)	C32—C33—C34	120.5 (4)
C6—C7—C8	106.5 (4)	С32—С33—Н33А	119.7
С6—С7—Н7А	126.7	C34—C33—H33A	119.7
С8—С7—Н7А	126.7	O4—C34—C33	119.3 (4)
N4—C8—C7	109.7 (4)	O4—C34—C35	121.0 (4)
N4—C8—C10	123.2 (4)	C33—C34—C35	119.7 (4)
C7—C8—C10	127.1 (4)	C36—C35—C34	120.3 (4)
С6—С9—Н9А	109.5	С36—С35—Н35А	119.9
С6—С9—Н9В	109.5	С34—С35—Н35А	119.9
Н9А—С9—Н9В	109.5	C35—C36—C31	120.1 (4)
С6—С9—Н9С	109.5	C35—C36—H36A	120.0
Н9А—С9—Н9С	109.5	C31—C36—H36A	120.0
Н9В—С9—Н9С	109.5	Cl1—C37—Cl2	112.9 (3)
C8—C10—H10A	109.5	Cl1—C37—H37A	109.0
C8—C10—H10B	109.5	Cl2—C37—H37A	109.0
H10A—C10—H10B	109.5	Cl1—C37—H37B	109.0
C8—C10—H10C	109.5	Cl2—C37—H37B	109.0
H10A—C10—H10C	109.5	H37A—C37—H37B	107.8
H10B—C10—H10C	109.5	N1—B1—N3	110.1 (3)
N5-C11-C12	107.0 (4)	N1—B1—N5	109.8 (3)
N5-C11-C14	122.7 (4)	N3—B1—N5	106.2 (3)
			· · · - (-)

C12—C11—C14	130.3 (4)	N1—B1—H1	111.3 (19)
C13—C12—C11	107.3 (4)	N3—B1—H1	111.6 (19)
C13—C12—H12A	126.4	N5—B1—H1	107.7 (18)
C11—C12—H12A	126.4		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	D—H···A
С5—Н5А…О2	0.96	2.46	3.189 (5)	133
C10—H10A…N7	0.96	2.47	3.228 (6)	136
C15—H15A…N7	0.96	2.47	3.288 (6)	143
C4—H4 D ···O4 ⁱ	0.96	2.52	3.360 (6)	146
C9—H9 <i>B</i> ···O3 ⁱⁱ	0.96	2.37	3.219 (6)	147
C37—H37 <i>B</i> ····N9 ⁱⁱⁱ	0.96	2.53	3.366 (7)	144

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+2, -z+1; (iii) x-1, y, z+1.