Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 trans-Diaquabis(cyclohexane-1,2diamine)zinc(II) dichloride

Kamelia Karimnejad, Hamid Khaledi* and Hapipah Mohd Ali

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: khaledi@siswa.um.edu.my

Received 28 February 2011; accepted 3 March 2011

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.021 ; w R$ factor $=0.053$; data-to-parameter ratio $=16.4$.

In the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$, the $\mathrm{Zn}(\mathrm{II})$ atom resides on a special position with site symmetry $2 / m$ and is octahedrally coordinated by four N atoms from two trans 1,2-diaminocyclohexane ligands and two water O atoms. In the crystal, $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds link the molecules into a two-dimensional network parallel to the $b c$ plane.

Related literature

For an isotypic nickel(II) complex, see: Capilla et al. (1980) and for an analogous copper(II) complex, see: Pariya et al. (1998).

Experimental

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Zn}^{\left.\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}}\right.} \\
& M_{r}=400.69 \\
& \text { Orthorhombic, Cmce }
\end{aligned}
$$

$V=1798.52(7) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.670, T_{\max }=0.936$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.053$
$S=1.04$
999 reflections
61 parameters
3 restraints

$$
\mu=1.67 \mathrm{~mm}^{-1}
$$

$T=100 \mathrm{~K}$
$0.26 \times 0.21 \times 0.04 \mathrm{~mm}$

4324 measured reflections 999 independent reflections 805 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.87 (1)	2.80 (1)	3.6139 (13)	156 (1)
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 1$	0.87 (1)	2.70 (1)	3.5206 (14)	157 (1)
$\mathrm{O} 1-\mathrm{H} 1 O \cdots \mathrm{Cl} 1$	0.83 (1)	2.26 (1)	3.0857 (12)	173 (2)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

The authors thank University of Malaya for funding this study (FRGS grant No. FP004/2010B).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2395).

References

Barbour, L. J. (2001). J. Supramol. Chem, 1, 189-191.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Capilla, A. V., Aranda, R. A. \& Gomez-Beltran, F. (1980). Cryst. Struct. Соттии. 9, 147-150.
Pariya, C., Liao, F.-L., Wang, S.-L. \& Chung, C.-S. (1998). Polyhedron, 17, 547554.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, m421 [doi:10.1107/S1600536811008166]

trans-Diaquabis(cyclohexane-1,2-diamine)zinc(II) dichloride

Kamelia Karimnejad, Hamid Khaledi and Hapipah Mohd Ali

S1. Comment

The title $\mathrm{Zn}^{\mathrm{II}}$ complex (Fig. 1) is isostructural with a previously reported $\mathrm{Ni}^{\mathrm{II}}$ complex (Capilla et al., 1980). The metal center in the title complex is located on a special position with site symmetry $2 / \mathrm{m}$, and is six-coordinated in a distorted octahedral geometry. The equatorial plane is defined by four N atoms from two trans-1,2-diaminocyclohexane, while the axial positions are occupied by two water molecule oxygen atoms. This arrangement is similar to what was observed in an analogous $\mathrm{Cu}^{\text {II }}$ complex (Pariya et al., 1998). In the crystal, an $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ interaction connects the cationic complexes and chloride anions into infinite chains along the c-axis. The chains are further linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds into layers parallel to the $b c$ plane.

S2. Experimental

The colorless crystals of the title compound were obtained upon slow evaporation of an ethanolic solution (20 ml) of trans-1,2-diaminocyclohexane $(0.23 \mathrm{~g}, 2 \mathrm{mmol})$ and zinc(II) acetate dihydrate $(0.22 \mathrm{~g}, 1 \mathrm{mmol})$ in the presence of a few drops of $\mathrm{HCl}(37 \%)$.

S3. Refinement

The C-bound hydrogen atoms were placed at calculated positions with $\mathrm{C}-\mathrm{H}=0.99$ and $1.00 \AA$ for methylene and methyne type H -atoms, respectively. The hydrogen atoms bonded to N and water molecule were located from a difference map and included with restraints: $\mathrm{O}-\mathrm{H}=0.84$ (2) and $\mathrm{N}-\mathrm{H}=0.88$ (2) \AA. For hydrogen atoms Uiso(H) were set to 1.2-1.5 times Ueq(carrier atom).

Figure 1

Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry codes: ' = -x, -y, -z; " = x, -y, -z; "' = -x, y, z.
trans-Diaquabis(cyclohexane-1,2-diamine)zinc(II) dichloride

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$
$M_{r}=400.69$
Orthorhombic, Cmce
Hall symbol: -C 2bc 2
$a=24.6478$ (4) \AA
$b=9.5107$ (2) \AA
$c=7.6723$ (2) \AA
$V=1798.52(7) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.670, T_{\text {max }}=0.936$
$F(000)=848$
$D_{\mathrm{x}}=1.480 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2315 reflections
$\theta=3.3-30.5^{\circ}$
$\mu=1.67 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, colorless
$0.26 \times 0.21 \times 0.04 \mathrm{~mm}$

4324 measured reflections
999 independent reflections
805 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=27.0^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-31 \rightarrow 31$
$k=-11 \rightarrow 12$
$l=-9 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.053$
$S=1.04$
999 reflections
61 parameters

3 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0239 P)^{2}+1.6417 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Zn1	0.0000	0.0000	0.0000	$0.01354(11)$
O1	0.0000	$-0.10232(16)$	$0.2580(2)$	$0.0194(3)$
H1O	$0.0266(6)$	$-0.0795(18)$	$0.318(2)$	0.029^{*}
N1	$0.06632(5)$	$0.13128(13)$	$0.07888(18)$	$0.0163(3)$
H1A	$0.0617(6)$	$0.2190(15)$	$0.050(2)$	0.020^{*}
H1B	$0.0698(7)$	$0.1249(17)$	$0.1918(18)$	0.020^{*}
C1	$0.11721(5)$	$0.08041(15)$	$-0.0016(2)$	$0.0168(3)$
H1	0.1174	0.1111	-0.1263	0.020^{*}
C2	$0.16808(5)$	$0.13853(17)$	$0.0850(2)$	$0.0205(3)$
H2A	0.1678	0.1136	0.2102	0.025^{*}
H2B	0.1681	0.2423	0.0757	0.025^{*}
C3	$0.21934(6)$	$0.08004(18)$	$0.0001(2)$	$0.0255(4)$
H3A	0.2218	0.1146	-0.1213	0.031^{*}
H3B	0.2516	0.1145	0.0643	0.031^{*}
C11	$0.091868(19)$	0.0000	0.5000	$0.02019(14)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.01056(16)$	$0.01421(18)$	$0.01585(18)$	0.000	0.000	$-0.00039(15)$
O1	$0.0165(7)$	$0.0220(8)$	$0.0197(8)$	0.000	0.000	$0.0020(7)$
N1	$0.0158(6)$	$0.0144(6)$	$0.0188(6)$	$0.0013(5)$	$0.0016(5)$	$-0.0005(6)$
C 1	$0.0132(6)$	$0.0175(8)$	$0.0197(7)$	$0.0003(6)$	$0.0009(7)$	$0.0003(7)$
C 2	$0.0159(7)$	$0.0209(8)$	$0.0247(8)$	$-0.0033(6)$	$-0.0007(6)$	$-0.0013(7)$
C3	$0.0148(7)$	$0.0274(9)$	$0.0342(9)$	$-0.0031(6)$	$-0.0007(7)$	$0.0014(9)$
C11	$0.0188(3)$	$0.0243(3)$	$0.0174(3)$	0.000	0.000	$-0.0004(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

Zn1—N1 1^{i}	$2.1440(13)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.5227(19)$
$\mathrm{Zn} 1 — \mathrm{~N} 1^{\mathrm{ii}}$	$2.1440(13)$	$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{iii}}$	$1.530(3)$
Zn1—N1 1^{iii}	$2.1440(13)$	$\mathrm{C} 1-\mathrm{H} 1$	1.0000

Zn1-N1	2.1441 (13)	C2-C3	1.526 (2)
Zn1-O1	2.2057 (16)	C2-H2A	0.9900
$\mathrm{Zn} 1-\mathrm{Ol}^{\text {i }}$	2.2057 (16)	C2-H2B	0.9900
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$	0.831 (13)	$\mathrm{C} 3-\mathrm{C} 3{ }^{\text {iii }}$	1.522 (3)
N1-C1	1.4795 (18)	C3-H3A	0.9900
N1-H1A	0.871 (14)	C3-H3B	0.9900
N1-H1B	0.873 (13)		
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{N} 1^{\text {ii }}$	80.65 (7)	$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	108.4 (11)
N1 ${ }^{\text {i }}$ - Znl- ${ }^{\text {1ii }}$	99.35 (7)	H1A-N1-H1B	109.5 (16)
N1 ${ }^{\text {iii }}$-Zn1-N1 ${ }^{\text {iii }}$	180.00 (8)	N1-C1-C2	113.42 (12)
N1- ${ }^{\text {i }}$ n1-N1	180.0	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 1{ }^{\text {iii }}$	108.68 (10)
N1ii-Zn1-N1	99.35 (7)	C2-C1- $\mathrm{C}^{\text {iii }}$	110.85 (10)
N1 ${ }^{\text {iii }}$-Zn1-N1	80.65 (7)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	107.9
$\mathrm{N} 1{ }^{\text {i}}-\mathrm{Zn} 1-\mathrm{O} 1$	89.79 (5)	C2-C1-H1	107.9
N1i- ${ }^{\text {ii }}$ Zn1-O1	90.21 (5)	$\mathrm{C} 1{ }^{\text {iii }}-\mathrm{C} 1-\mathrm{H} 1$	107.9
N1 ${ }^{\text {iii }}$ - $\mathrm{Zn} 1-\mathrm{O} 1$	89.79 (5)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	111.30 (13)
N1-Zn1-O1	90.21 (5)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.4
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{i}}$	90.21 (5)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.4
$\mathrm{N} 1^{\text {ii}}-\mathrm{Zn} 1-\mathrm{O} 1^{\text {i }}$	89.79 (5)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.4
$\mathrm{N} 1{ }^{\text {iii }}-\mathrm{Zn} 1-\mathrm{O} 1^{\text {i }}$	90.21 (5)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.4
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{Ol}^{1}$	89.79 (5)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.0
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{Ol}^{\text {i }}$	180.00 (7)	$\mathrm{C} 3{ }^{\text {iii- }} \mathrm{C} 3-\mathrm{C} 2$	111.41 (11)
$\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{H1O}$	112.5 (13)	C3 ${ }^{\text {iii- }}$ - $3-\mathrm{H} 3 \mathrm{~A}$	109.3
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Zn} 1$	109.77 (9)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.3
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	108.5 (11)	C3iii-C3-H3B	109.3
$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	112.7 (11)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.3
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	107.9 (11)	H3A-C3-H3B	108.0

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x, y, z$; (iii) $x,-y,-z$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1—H1A $\cdots \mathrm{Cl1} 1^{\text {iv }}$	$0.87(1)$	$2.80(1)$	$3.6139(13)$	$156(1)$
N1—H1B $\cdots \mathrm{Cl} 1$	$0.87(1)$	$2.70(1)$	$3.5206(14)$	$157(1)$
O1—H1O $O \mathrm{Cl} 1$	$0.83(1)$	$2.26(1)$	$3.0857(12)$	$173(2)$

Symmetry code: (iv) $x, y+1 / 2,-z+1 / 2$.

