Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## $N^{\prime}-[(E)-2-C h l o r o b e n z y l i d e n e]-2-[(1,3,4-$ thiadiazol-2-yl)sulfanyl]acetohydrazide

S. Mohan,,$^{\text {a }} \ddagger$ S. Ananthan, ${ }^{\text {b }}$ P. Ramesh, ${ }^{\text {c }}$ D. Saravanan ${ }^{\text {d }}$ and M. N. Ponnuswamy ${ }^{\text {c* }}$

${ }^{\text {a }}$ Research and Development Centre, Orchid Chemicals and Pharmaceuticals Ltd, Chennai 600 119, India, ${ }^{\mathbf{b}}$ Department of Chemistry, Presidency College (Autonomous), Chennai 600 005, India, ${ }^{\text {c }}$ Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ${ }^{\text {d }}$ Department of Chemistry, National College, Tiruchirappali 620001 , India
Correspondence e-mail: mnpsy2004@yahoo.com
Received 25 July 2011; accepted 31 August 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; $R$ factor $=0.043 ; w R$ factor $=0.121$; data-to-parameter ratio $=19.6$.

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{OS}_{2}$, the thiadiazole and chlorophenyl rings are oriented at an angle of 43.1 (1) ${ }^{\circ}$. The sum of the bond angles around the amide N atom (359.8 ${ }^{\circ}$ ) of the acetohydrazide group is in accordance with a model of $s p^{2}$ hybridization. In the crystal, inversion dimers linked by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate $R_{2}^{2}(8)$ loops. Weak $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions also occur.

## Related literature

For related literature on the biological activities of 1,3,4thiadiazole derivatives, see: Alireza et al. (2005); Matysiak \& Opolski (2006); Wang et al. (1999). For hydrogen-bond motifs, see: Bernstein et al. (1995).


## Experimental

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{OS}_{2}$
Triclinic, $P \overline{1}$
$M_{r}=312.79$

$$
a=7.551(5) \AA
$$

$$
\begin{aligned}
& b=8.743(3) \AA \\
& c=11.269(5) \AA \\
& \alpha=69.295(5)^{\circ} \\
& \beta=87.493(4)^{\circ} \\
& \gamma=78.892(5)^{\circ} \\
& V=682.6(6) \AA^{3}
\end{aligned}
$$

## $Z=2$

Mo $K \alpha$ radiation
$\mu=0.58 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.20 \times 0.17 \times 0.16 \mathrm{~mm}$

## Data collection

Bruker SMART APEXII
area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\text {min }}=0.890, T_{\text {max }}=0.911$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.121$
$S=1.05$
3446 reflections
176 parameters

12836 measured reflections
3446 independent reflections 2858 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.81 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\min }=-0.70 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ( $\AA \AA^{\circ}$ ).
$C g 1$ is the centroid of the $\mathrm{S} 1 / \mathrm{C} 1 / \mathrm{N} 2 / \mathrm{N} 3 / \mathrm{C} 4$ ring.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| N7-H7 $\cdot \mathrm{O} 1^{\mathrm{i}}$ | $0.91(3)$ | $1.93(3)$ | $2.845(3)$ | $175(2)$ |
| C5-H5A $\cdots \mathrm{Cg} 1^{\mathrm{ii}}$ | 0.97 | 2.95 | $3.896(3)$ | 165 |

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $-x+1,-y,-z+1$.
Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2; data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The authors thank the GNR X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5593).

## References

Alireza, F., Saeed, E., Abdolreza, H., Majid, R., Kazem, S., Mohammad, H. M. \& Abbas, S. (2005). Bioorg. Med. Chem. Lett. 15, S4488-S4492.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Matysiak, J. \& Opolski, A. (2006). Bioorg. Med. Chem. 14, 4483-4489.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. \& Lu, B. X. (1999). Chem. J. Chin. Univ. 20, S1903-S1905.
$\ddagger$ Parent department: Department of Chemistry, Presidency College (Autonomous), Chennai 600 005, India.

## supporting information

Acta Cryst. (2011). E67, o2612 [https://doi.org/10.1107/S1600536811035549]

# $N^{\prime}$-[(E)-2-Chlorobenzylidene]-2-[(1,3,4-thiadiazol-2-yl)sulfanyl]acetohydrazide 

S. Mohan, S. Ananthan, P. Ramesh, D. Saravanan and M. N. Ponnuswamy

## S1. Comment

1,3,4-Thiadiazole derivatives are of interest because of their chemical and pharmaceutical properties. Some derivatives are useful in the preparation of intermediate for anticarcinogens. Recently many 1,3,4- thiadiazole nucleus have been synthesized and evaluated for their antiproliferative effect in vitro against the cells of various human tumor cell lines (Matysiak \& Opolski, 2006). Some of the derivatives have effective antibacterial (Alireza et al., 2005) and insecticidal activities (Wang et al., 1999). In view of these facts and to ascertain the molecular conformation, crystallographic study of the title compound has been carried out.
The ORTEP plot of the molecule is shown in Fig.1. The thiadiazole and the chlorophenyl rings are planar and oriented at an angle of $43.1(1)^{\circ}$ with each other. The sum of the bond angles around the N 7 atom $\left(359.8^{\circ}\right)$ of the acetohydrazide group in the molecule is in accordance with $s p^{2}$ hybridization. The packing of the molecules are controlled by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{C}-\mathrm{H} \cdots \pi, \pi \cdots \pi$ types of intra and intermolecular interactions. Atom N 7 of the molecule at $(x, y, z)$ donates a proton to atom O 1 of the molecule at $(2-x, 1-y, 1-z)$ forming an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bond which link the molecules into $R_{2}{ }^{2}(8)$ dimer (Bernstein et al., 1995) as shown in Fig 2. The acetohydrazide group interacts with the thiadiazole ring moiety through a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction involving atom C 5 , the separation between H 5 A and the centroid of the $\mathrm{S} 1 / \mathrm{C} 1 / \mathrm{N} 2 / \mathrm{N} 3 / \mathrm{C} 4(C g 1)$ ring being $2.95 \AA$.

## S2. Experimental

To a solution of 2-mercaptothiadiazole ( $50 \mathrm{~g} ; 423 \mathrm{mmol}$ ) in acetone ( 500 ml ) anhydrous sodium carbonate ( $24.66 \mathrm{~g} ; 233$ mmol ) was added. Ethyl bromoacetate ( $70.65 \mathrm{~g} ; 423 \mathrm{mmol}$ ) was added slowly to the reaction mixture at room temperature under stirring. The progress of the reaction was monitored by thin layer chromatography using ethyl acetate/n-hexane (3:7) as eluent. The bye-product sodium bromide was removed by filtration. The mother liquor was concentrated under vacuum to remove acetone and the residual acetone was removed by strip off with methanol to yield ethyl (1,3,4- thiadiazol-2-ylthio)acetate. The residue was dissolved in methanol ( 300 ml ) and the clear solution hydrazine hydrate ( $42.35 \mathrm{~g} ; 846 \mathrm{mmol}$ ) was added and heated under reflux. The progress of the reaction was monitored by thin layer chromatography using chloroform/methanol (9:1) as eluent. The reaction mass was cooled to $0-5^{\circ} \mathrm{C}$. The crystallized product, 2-(1,3,4- thiadiazol-2-ylthio)acetohydrazide was filtered and washed with chilled methanol. To a mixture of isolated product ( 10 mmol ) and 2-chlorobenzaldehyde ( 10 mmol ) in ethanol ( 20 ml ), a few drops of acetic acid was added. The reaction mixture was heated under reflux till completion of reaction. The reaction was monitored by thin layer chromatography using chloroform /methanol (8:2). The reaction mass was cooled to room temperature. The crystallized product, 2-[1,3,4-Thiadiazol-2-ylthio]- $\mathrm{N}^{\prime}$-[(1E) -(2-chlorophenyl)methylene]acetohydrazide was filtered and washed with ethanol.

## S3. Refinement

The N bound H atom was refined and the C bound H atoms positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ ) and allowed to ride on their parent atoms, with $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for all H atoms.


Figure 1
Perspective view of the molecule showing the thermal ellipsoids are drawn at $50 \%$ probability level.


Figure 2
The crystal packing of the molecules viewed down b-axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
$N^{\prime}$-[(E)-2-Chlorobenzylidene]-2-[(1,3,4-thiadiazol-2-yl)sulfanyl]acetohydrazide

## Crystal data

## $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{OS}_{2}$

$M_{r}=312.79$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.551$ (5) $\AA$
$b=8.743$ (3) $\AA$
$c=11.269(5) \AA$
$\alpha=69.295(5)^{\circ}$
$\beta=87.493$ (4) ${ }^{\circ}$
$\gamma=78.892(5)^{\circ}$
$V=682.6(6) \AA^{3}$

## Data collection

Bruker SMART APEXII area-detector diffractometer
Radiation source: fine-focus sealed tube
$Z=2$
$F(000)=320$
$D_{\mathrm{x}}=1.522 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1536 reflections
$\theta=1.9-28.6^{\circ}$
$\mu=0.58 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colorless
$0.20 \times 0.17 \times 0.16 \mathrm{~mm}$

Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min }=0.890, T_{\text {max }}=0.911$
12836 measured reflections
3446 independent reflections 2858 reflections with $I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.121$
$S=1.05$
3446 reflections
176 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& R_{\text {int }}=0.026 \\
& \theta_{\max }=28.6^{\circ}, \theta_{\min }=1.9^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-11 \rightarrow 11 \\
& l=-15 \rightarrow 15
\end{aligned}
$$

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\mathrm{iso}} * / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| S1 | $0.25535(9)$ | $0.03479(8)$ | $0.74213(5)$ | $0.06663(19)$ |
| S2 | $0.56742(7)$ | $0.20903(7)$ | $0.65247(4)$ | $0.05462(16)$ |
| C11 | $0.84070(13)$ | $0.88994(8)$ | $-0.05412(6)$ | $0.0894(3)$ |
| O1 | $0.8486(2)$ | $0.3817(2)$ | $0.59757(12)$ | $0.0554(3)$ |
| C1 | $0.1207(3)$ | $0.0256(3)$ | $0.6276(2)$ | $0.0626(5)$ |
| H1 | 0.0209 | -0.0258 | 0.6469 | $0.075^{*}$ |
| N2 | $0.1673(3)$ | $0.0946(3)$ | $0.51348(18)$ | $0.0629(5)$ |
| N3 | $0.3200(3)$ | $0.1628(2)$ | $0.50782(16)$ | $0.0562(4)$ |
| C4 | $0.3807(3)$ | $0.1407(2)$ | $0.61968(17)$ | $0.0463(4)$ |
| C5 | $0.6334(3)$ | $0.3041(2)$ | $0.49114(16)$ | $0.0471(4)$ |
| H5A | 0.6700 | 0.2203 | 0.4524 | $0.057 *$ |
| H5B | 0.5333 | 0.3857 | 0.4414 | $0.057^{*}$ |
| C6 | $0.7884(2)$ | $0.3867(2)$ | $0.49625(16)$ | $0.0438(4)$ |
| N7 | $0.8544(2)$ | $0.4699(2)$ | $0.38490(14)$ | $0.0489(4)$ |
| H7 | $0.950(3)$ | $0.519(3)$ | $0.386(2)$ | $0.065(7)^{*}$ |
| N8 | $0.7873(2)$ | $0.4676(2)$ | $0.27372(13)$ | $0.0460(3)$ |
| C9 | $0.8396(2)$ | $0.5689(2)$ | $0.17253(16)$ | $0.0449(4)$ |
| H9 | 0.9113 | 0.6420 | 0.1773 | $0.054^{*}$ |


| C10 | $0.7866(2)$ | $0.5701(2)$ | $0.04874(16)$ | $0.0454(4)$ |
| :--- | :--- | :--- | :--- | :--- |
| C11 | $0.7840(3)$ | $0.7090(3)$ | $-0.06154(18)$ | $0.0556(5)$ |
| C12 | $0.7388(3)$ | $0.7078(3)$ | $-0.17847(19)$ | $0.0672(6)$ |
| H12 | 0.7370 | 0.8021 | -0.2507 | $0.081^{*}$ |
| C13 | $0.6966(3)$ | $0.5678(4)$ | $-0.1873(2)$ | $0.0729(7)$ |
| H13 | 0.6667 | 0.5665 | -0.2661 | $0.087^{*}$ |
| C14 | $0.6980(3)$ | $0.4283(4)$ | $-0.0810(2)$ | $0.0694(6)$ |
| H14 | 0.6692 | 0.3330 | -0.0880 | $0.083^{*}$ |
| C15 | $0.7423(3)$ | $0.4294(3)$ | $0.0368(2)$ | $0.0562(5)$ |
| H15 | 0.7422 | 0.3348 | 0.1085 | $0.067^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 | $0.0858(4)$ | $0.0739(4)$ | $0.0431(3)$ | $-0.0386(3)$ | $0.0118(3)$ | $-0.0131(2)$ |
| S2 | $0.0671(3)$ | $0.0632(3)$ | $0.0327(2)$ | $-0.0252(2)$ | $-0.00281(19)$ | $-0.0087(2)$ |
| C11 | $0.1404(7)$ | $0.0620(4)$ | $0.0558(3)$ | $-0.0234(4)$ | $-0.0051(4)$ | $-0.0055(3)$ |
| O1 | $0.0617(8)$ | $0.0749(9)$ | $0.0336(6)$ | $-0.0256(7)$ | $-0.0014(5)$ | $-0.0173(6)$ |
| C1 | $0.0675(13)$ | $0.0632(13)$ | $0.0646(13)$ | $-0.0273(11)$ | $0.0083(10)$ | $-0.0247(10)$ |
| N2 | $0.0700(11)$ | $0.0703(12)$ | $0.0560(10)$ | $-0.0295(9)$ | $0.0011(8)$ | $-0.0228(9)$ |
| N3 | $0.0681(11)$ | $0.0625(10)$ | $0.0417(8)$ | $-0.0259(8)$ | $0.0007(7)$ | $-0.0155(7)$ |
| C4 | $0.0587(11)$ | $0.0410(8)$ | $0.0378(8)$ | $-0.0138(8)$ | $0.0045(7)$ | $-0.0102(7)$ |
| C5 | $0.0586(11)$ | $0.0522(10)$ | $0.0329(8)$ | $-0.0178(8)$ | $0.0016(7)$ | $-0.0140(7)$ |
| C6 | $0.0475(9)$ | $0.0489(9)$ | $0.0345(8)$ | $-0.0097(7)$ | $-0.0018(7)$ | $-0.0134(7)$ |
| N7 | $0.0493(9)$ | $0.0647(10)$ | $0.0330(7)$ | $-0.0199(8)$ | $-0.0038(6)$ | $-0.0125(7)$ |
| N8 | $0.0448(8)$ | $0.0608(9)$ | $0.0320(7)$ | $-0.0129(7)$ | $-0.0030(6)$ | $-0.0138(6)$ |
| C9 | $0.0429(9)$ | $0.0537(10)$ | $0.0365(8)$ | $-0.0108(7)$ | $-0.0017(7)$ | $-0.0126(7)$ |
| C10 | $0.0395(8)$ | $0.0597(11)$ | $0.0341(8)$ | $-0.0061(7)$ | $0.0009(6)$ | $-0.0148(7)$ |
| C11 | $0.0578(11)$ | $0.0646(12)$ | $0.0369(9)$ | $-0.0040(9)$ | $-0.0001(8)$ | $-0.0127(8)$ |
| C12 | $0.0677(14)$ | $0.0887(17)$ | $0.0342(9)$ | $-0.0003(12)$ | $-0.0031(9)$ | $-0.0154(10)$ |
| C13 | $0.0602(13)$ | $0.118(2)$ | $0.0442(11)$ | $-0.0046(13)$ | $-0.0054(9)$ | $-0.0385(13)$ |
| C14 | $0.0605(13)$ | $0.0982(18)$ | $0.0666(14)$ | $-0.0197(12)$ | $0.0004(11)$ | $-0.0470(14)$ |
| C15 | $0.0530(11)$ | $0.0702(13)$ | $0.0489(10)$ | $-0.0155(9)$ | $0.0012(8)$ | $-0.0230(9)$ |
|  |  |  |  |  |  |  |

Geometric parameters $\left(\hat{A},{ }^{\circ}\right)$

| $\mathrm{S} 1-\mathrm{C} 1$ | $1.711(3)$ | $\mathrm{N} 7-\mathrm{H} 7$ | $0.91(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{S} 1-\mathrm{C} 4$ | $1.725(2)$ | $\mathrm{N} 8-\mathrm{C} 9$ | $1.273(2)$ |
| $\mathrm{S} 2-\mathrm{C} 4$ | $1.734(2)$ | $\mathrm{C} 9-\mathrm{C} 10$ | $1.464(2)$ |
| $\mathrm{S} 2-\mathrm{C} 5$ | $1.8044(19)$ | $\mathrm{C} 9-\mathrm{H} 9$ | 0.9300 |
| $\mathrm{C} 11-\mathrm{C} 11$ | $1.747(3)$ | $\mathrm{C} 10-\mathrm{C} 15$ | $1.387(3)$ |
| $\mathrm{O} 1-\mathrm{C} 6$ | $1.231(2)$ | $\mathrm{C} 10-\mathrm{C} 11$ | $1.394(3)$ |
| $\mathrm{C} 1-\mathrm{N} 2$ | $1.278(3)$ | $\mathrm{C} 11-\mathrm{C} 12$ | $1.380(3)$ |
| $\mathrm{C} 1-\mathrm{H} 1$ | 0.9300 | $\mathrm{C} 12-\mathrm{C} 13$ | $1.360(4)$ |
| $\mathrm{N} 2-\mathrm{N} 3$ | $1.386(3)$ | $\mathrm{C} 12-\mathrm{H} 12$ | 0.9300 |
| $\mathrm{~N} 3-\mathrm{C} 4$ | $1.296(2)$ | $\mathrm{C} 13-\mathrm{C} 14$ | $1.373(4)$ |
| $\mathrm{C} 5-\mathrm{C} 6$ | $1.502(3)$ | $\mathrm{C} 13-\mathrm{H} 13$ | 0.9300 |
| $\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$ | 0.9700 | $\mathrm{C} 14-\mathrm{C} 15$ | $1.387(3)$ |


| C5-H5B | 0.9700 |
| :---: | :---: |
| C6-N7 | 1.338 (2) |
| N7-N8 | 1.380 (2) |
| C1-S1-C4 | 86.64 (11) |
| C4-S2-C5 | 97.92 (9) |
| $\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$ | 115.12 (18) |
| N2-C1-H1 | 122.4 |
| $\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1$ | 122.4 |
| C1-N2-N3 | 112.27 (18) |
| $\mathrm{C} 4-\mathrm{N} 3-\mathrm{N} 2$ | 112.06 (17) |
| N3-C4-S1 | 113.92 (16) |
| N3-C4-S2 | 126.04 (15) |
| S1-C4-S2 | 120.04 (11) |
| C6-C5-S2 | 107.09 (12) |
| C6-C5-H5A | 110.3 |
| S2-C5-H5A | 110.3 |
| C6-C5-H5B | 110.3 |
| S2-C5-H5B | 110.3 |
| H5A-C5-H5B | 108.6 |
| O1-C6-N7 | 121.70 (17) |
| O1-C6-C5 | 121.66 (16) |
| N7-C6-C5 | 116.62 (15) |
| C6-N7-N8 | 119.89 (16) |
| C6-N7-H7 | 118.1 (16) |
| N8-N7-H7 | 121.8 (16) |
| C4-S1-C1-N2 | -0.2 (2) |
| $\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 3$ | 0.1 (3) |
| $\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 4$ | 0.1 (3) |
| N2-N3-C4-S1 | -0.3 (2) |
| N2-N3-C4-S2 | -179.38 (15) |
| $\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 4-\mathrm{N} 3$ | 0.26 (17) |
| C1-S1-C4-S2 | 179.43 (14) |
| C5-S2-C4-N3 | -1.1 (2) |
| C5-S2-C4-S1 | 179.81 (12) |
| C4-S2-C5-C6 | 175.22 (13) |
| S2-C5-C6-O1 | 0.3 (2) |
| S2-C5-C6-N7 | -177.98 (14) |
| O1-C6-N7-N8 | 177.73 (17) |
| C5-C6-N7-N8 | -4.0 (3) |
| C6-N7-N8-C9 | 170.33 (17) |


| C14-H14 | 0.9300 |
| :---: | :---: |
| C15-H15 | 0.9300 |
| C9-N8-N7 | 115.02 (16) |
| N8-C9-C10 | 119.93 (17) |
| N8-C9-H9 | 120.0 |
| C10-C9-H9 | 120.0 |
| C15-C10-C11 | 117.46 (18) |
| C15-C10-C9 | 120.55 (17) |
| C11-C10-C9 | 121.96 (19) |
| C12-C11-C10 | 121.7 (2) |
| C12-C11-Cl1 | 118.25 (18) |
| C10-C11-C11 | 120.05 (16) |
| C13-C12-C11 | 119.5 (2) |
| C13-C12-H12 | 120.2 |
| C11-C12-H12 | 120.2 |
| C12-C13-C14 | 120.6 (2) |
| C12-C13-H13 | 119.7 |
| C14-C13-H13 | 119.7 |
| C13-C14-C15 | 120.0 (2) |
| C13-C14-H14 | 120.0 |
| C15-C14-H14 | 120.0 |
| C10-C15-C14 | 120.7 (2) |
| C10-C15-H15 | 119.6 |
| C14-C15-H15 | 119.6 |
| N7-N8-C9-C10 | 176.09 (16) |
| N8-C9-C10-C15 | -24.7 (3) |
| N8-C9-C10-C11 | 157.42 (19) |
| C15-C10-C11-C12 | 0.2 (3) |
| C9-C10-C11-C12 | 178.18 (19) |
| C15-C10-C11-Cl1 | -179.30 (15) |
| C9-C10-C11-Cl1 | -1.3 (3) |
| C10-C11-C12-C13 | -0.5 (3) |
| C11-C11-C12-C13 | 179.03 (18) |
| C11-C12-C13-C14 | 0.3 (4) |
| C12-C13-C14-C15 | 0.1 (4) |
| C11-C10-C15-C14 | 0.2 (3) |
| C9-C10-C15-C14 | -177.78 (19) |
| C13-C14-C15-C10 | -0.4 (3) |

Hydrogen-bond geometry ( $\AA,{ }^{o}$ )
Cg 1 is the centroid of the $\mathrm{S} 1 / \mathrm{C} 1 / \mathrm{N} 2 / \mathrm{N} 3 / \mathrm{C} 4$ ring.

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 9 — \mathrm{H} 9 \cdots \mathrm{Cl} 1$ | 0.93 | 2.73 | $3.056(2)$ | 102 |

## supporting information

| $\mathrm{N} 7-\mathrm{H} 7 \cdots \mathrm{O}^{\mathrm{i}}$ | $0.91(3)$ | $1.93(3)$ | $2.845(3)$ | $175(2)$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 5-\mathrm{H} 5 A \cdots C g 1^{\mathrm{ii}}$ | 0.97 | 2.95 | $3.896(3)$ | 165 |

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $-x+1,-y,-z+1$.

