

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(μ -Piperazine-1,4-dicarbodithioato- $\kappa^4 S^1, S^{1'}: S^4, S^{4'}$)bis[bis(triphenylphos-phane- κP)gold(I)] chloroform disolvate

Ilia A. Guzei,^a* Lara C. Spencer,^a Stacy Lillywhite^b and James Darkwa^b

^aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, and ^bDepartment of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, South Africa Correspondence e-mail: iguzei@chem.wisc.edu

Received 18 October 2011; accepted 24 October 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.006 Å; R factor = 0.028; wR factor = 0.074; data-to-parameter ratio = 16.0.

In the title compound, $[Au_2(C_6H_8N_2S_4)(C_{18}H_{15}P)_4]\cdot 2CHCl_3$, the digold complex resides on a crystallographic inversion center and co-crystallizes with two molecules of chloroform solvent. The piperazine-1,4-dicarbodithioate linker has an almost ideal chair conformation. The geometry about the gold atoms is severely distorted tetrahedral punctuated by a very acute S-Au-S bite angle.

Related literature

For stabilization of gold salts by dithiocarbonates, see: Fernandez *et al.* (1998). For use of piperazine dithiocarbamates as ligands used to engineer multimetallic assemblies, see: Wilton-Ely *et al.* (2008); Knight *et al.* (2009*a,b*); Oliver *et al.* (2011). For the copper analgoue, see: Kumar *et al.* (2009). For other related gold complexes, see: Razak *et al.* (2000); Jian *et al.* (2000). A molecular geometry check was performed with *Mogul*, see: Bruno *et al.* (2002). Related compounds were found in the Cambridge Structural Database (Allen, 2002). For ring analysis, see: Cremer & Pople (1975).

30338 measured reflections 7089 independent reflections

 $R_{\rm int} = 0.031$

7080 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$Au_2(C_4H_8N_2S_4)(C_{18}H_{15}P)_4]$	$\beta = 101.544 \ (2)^{\circ}$
2CHCl ₃	$\gamma = 96.039 \ (2)^{\circ}$
$M_r = 1918.13$	V = 1895.2 (3) Å ³
Triclinic, P1	Z = 1
a = 12.8455 (17) Å	Cu $K\alpha$ radiation
p = 13.2879 (10) Å	$\mu = 11.30 \text{ mm}^{-1}$
r = 13.4197 (9) Å	T = 100 K
$\alpha = 119.572 \ (2)^{\circ}$	$0.44 \times 0.35 \times 0.29 \text{ mm}$

Data collection

Bruker SMART APEXII	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2007)	
$T_{\min} = 0.083, \ T_{\max} = 0.140$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	442 parameters
$vR(F^2) = 0.074$	H-atom parameters constrained
S = 1.15	$\Delta \rho_{\rm max} = 2.40 \ {\rm e} \ {\rm \AA}^{-3}$
7089 reflections	$\Delta \rho_{\rm min} = -1.35 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Au1-P2	2.2994 (8)	Au1-S2	2.6133 (8)
Au1-P1	2.3233 (8)	Au1-S1	2.7414 (8)
P2-Au1-P1	134.65 (3)	P2-Au1-S1	107.34 (3)
P2 - Au1 - S2	116.81 (3)	P1-Au1-S1	99.39 (3)
P1-Au1-S2	107.10 (3)	S2-Au1-S1	67.03 (2)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008), *FCF_filter* (Guzei, 2007) and *INSerter* (Guzei, 2007); molecular graphics: *SHELXTL* and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*, *publCIF* (Westrip, 2010) and *modiCIFer* (Guzei, 2007).

We acknowledge support from the University of Johannesburg for this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5253).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1358-1367.
- Fernandez, E. J., Lopez-de-Luzuriaga, J. M., Monge, M., Olmos, E., Gimeno, M. C., Laguna, A. & Jones, P. G. (1998). *Inorg. Chem.* 37, 5532–5536.
- Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.
- Jian, F., Lu, L., Wang, X., Shanmuga Sundara Raj, S., Razak, I. A. & Fun, H.-K. (2000). Acta Cryst. C56, 939–940.

- Knight, E. R., Leung, N. H., Lin, Y. H., Cowley, A. R., Watkins, D. J., Thompson, A. L., Hogarth, G. & Wilton-Ely, J. D. E. T. (2009a). Dalton Trans. pp. 3688–3697.
- Knight, E. R., Leung, N. H., Thompson, A. L., Hogarth, G. & Wilton-Ely, J. D. E. T. (2009b). Inorg. Chem. 48, 3866–3874.
- Kumar, A., Mayer-Figge, H., Sheldrick, W. S. & Singh, N. (2009). Eur. J. Inorg. Chem. pp. 2720–2725.
- Oliver, K., White, A. J. P., Hogarth, G. & Wilton-Ely, J. D. E. T. (2011). Dalton Trans. 40, 5852–5864.
- Razak, I. A., Shanmuga Sundara Raj, S., Fun, H.-K., Jian, F., Bei, F., Yang, X., Lu, L. & Wang, X. (2000). *Acta Cryst.* C**56**, 666–667.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Wilton-Ely, J. D. E. T., Solanki, D., Knight, E. R., Holt, K. B., Thompson, A. L. & Hogarth, G. (2008). *Inorg. Chem.* 47, 9642–9653.

supporting information

Acta Cryst. (2011). E67, m1629-m1630 [doi:10.1107/S1600536811044229]

(μ -Piperazine-1,4-dicarbodithioato- $\kappa^4 S^1, S^{1'}: S^4, S^{4'}$)bis[bis(triphenylphosphane- κP)gold(I)] chloroform disolvate

Ilia A. Guzei, Lara C. Spencer, Stacy Lillywhite and James Darkwa

S1. Comment

Dithiocarbamates have long been used as ligands to stabilize gold(I) and gold(III) salts (Fernandez *et al.*, 1998), but piperazine dithiocarbamates are currently receiving a lot more attention as ligands that can be used to engineer multimetallic assemblies including making gold nanoparticles (Wilton-Ely *et al.*, 2008; Knight *et al.* 2009*a*; Knight *et al.*, 2009*b*; Oliver *et al.*, 2011). We recently isolated the title compound (**I**) *via* a slight modification of one of the routes described in the aforementioned literature.

The crystal structure of (I) contains the digold complex residing on a crystallographic inversion center and two molecules of solvent chloroform solvent per digold complex. The piperzine dithiocarbamate linker exhibits an almost ideal chair conformation (puckering coordinates θ =177.97 (1)° φ =0°, Cremer & Pople, 1975) similar to the analogous compounds with group ten square-planar metal centers nickel, palladium, and platinum (Knight *et al.*, 2009*a*) and the tetrahedral copper analogue (Kumar *et al.*, 2009). All bond distances and angles are typical as confirmed by a *Mogul* geometry check except for the S1—C1—S2, S1—C1—N1, and S2—C1—N1 angles (Bruno *et al.*, 2002). However these angles in (I) are similar to those in the closely related compounds (*N*,*N*-diisopropyldithiocarbamato-*S*,*S*')-bis(triphenyl-phosphane-P)-gold(I) (Jian *et al.*, 2000) and (piperidine-1-carbodithioato-*S*,*S*')-bis(triphenylphosphane-P)-gold(I) (Razak *et al.*, 2000).

The geometry about the gold atom is severely distorted tetrahedral with the dihedral angle between the planes defined by atoms S1, Au1, S1 and P1, Au1, P1 measuring 88.77 (3)°. Such a distorted tetrahedral geometry and acute S—Au—S bite angle (67.03 (2)°) are typical of complexes where gold is bonded to two phosphorous atoms and two sulfur atoms of a bidentale ligand forming a four-membered metallocycle. For eight such compounds in the Cambridge Structural Database (CSD; August 2011 update; Allen, 2002) the S—Au—S bite angle has an average of 66 (3)°. These compounds also have very large P—Au—P angles with a 135 (5)° average corresponding well to the 134.65 (3)° value found in (I). The copper analogue of (I) also exhibits a similarly distorted tetrahedral geometry but with a larger S—Cu—S bite angle of 75.41 (2)° (Kumar *et al.*, 2009). The group ten analogues exhibit distorted square planar geometries with larger S metal—S bite angles that average 77 (3)° (Knight *et al.*, 2009*a*). The Au—S distances in (I) differ by 0.1281 Å; this value agrees well with the differences in the two Au—S bonds in the eight related compounds in the CSD where such distances differ by an average of 0.18 (11) Å.

S2. Experimental

To a solution of potassium piperazine-1,4-bis(dithiocarbamate) (0.17 g, 0.57 mmol) in water (10 mL) was added a solution of [AuCl(PPh₃)] (0.40 g, 0.81 mmol) in dichloromethane (10 mL). The biphasic reaction mixture was stirred for 30 minutes. The organic layer was separated and layered with chloroform and hexane to yield a yellow solid. Yield: 0.32 g (69%). ¹H NMR (CDCl₃): δ 7.53 (m, 12H), 7.42 (m, 18H), 4.30 (s, 8H). ¹³C {¹H} NMR (CDCl₃): δ 208.2 (2 C, C=S),

134.1, 130.7, 128.9, 50.1. ³¹ P{¹H} NMR (CDCl₃): δ 28.9. ESI-MS (m/z): 1155 ([*M*], 5%), 721 [Au(PPh₃)₂]⁺, 100%). IR (ATR, cm⁻¹): $v(_{C-N}) = 1451$, $v(_{C-S}) = 1026$, $v(_{C-S}) = 997$. Anal. Calc. for C₇₈H₆₈Au₂N₂P₂S₄·CHCl₃: C 50.09, H 3.68, N 1.46. Found: C 49.73, H 3.76, N 1.60%.

S3. Refinement

All H-atoms attached to carbon atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients $U_{iso}(H) = 1.2$ times U_{eq} (bearing atom). Default effective *X*—H distances for T = -173.0°C C(*sp* 3)–1H=1.00, C(*sp* 3)–2H=0.99, C(*sp* 2)–H=0.95. The final difference map had a peak and a hole in the vicinities of Au.

Figure 1

Molecular structure of (I) (Brandenburg, 1999). The thermal ellipsoids are shown at 50% probability level. All hydrogen atoms were omitted. Symmetry code: (i) -x,2-y, 2-z.

(μ -Piperazine-1,4-dicarbodithioato- $\kappa^4 S^1, S^{1'}: S^4, S^4$) bis[bis(triphenylphosphane- κP)gold(I)] chloroform disolvate

Z = 1
F(000) = 948
$D_{\rm x} = 1.681 {\rm ~Mg} {\rm ~m}^{-3}$
Cu K α radiation, $\lambda = 1.54178$ Å
Cell parameters from 9936 reflections
$\theta = 3.6 - 71.7^{\circ}$
$\mu = 11.30 \text{ mm}^{-1}$
T = 100 K
Block, colourless
$0.44 \times 0.35 \times 0.29 \text{ mm}$

Data collection

Bruker SMART APEXII diffractometer	30338 measured reflections 7089 independent reflections
Radiation source: fine-focus sealed tube	7080 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.031$
$0.50^{\circ} \omega$ and $0.5^{\circ} \varphi$ scans	$\theta_{\rm max} = 72.3^{\circ}, \theta_{\rm min} = 3.6^{\circ}$
Absorption correction: multi-scan	$h = -15 \rightarrow 14$
(SADABS; Bruker, 2007)	$k = -16 \rightarrow 16$
$T_{\min} = 0.083, \ T_{\max} = 0.140$	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: inferred from
$wR(F^2) = 0.074$	neighbouring sites
<i>S</i> = 1.15	H-atom parameters constrained
7089 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0416P)^2 + 3.5159P]$
442 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 2.40 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.35 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
Au1	0.234436 (10)	0.776500 (10)	0.653197 (10)	0.01426 (6)	
S1	0.25387 (6)	0.94442 (7)	0.88645 (7)	0.01770 (16)	
S2	0.04873 (6)	0.82819 (7)	0.68645 (7)	0.01689 (16)	
P1	0.24564 (7)	0.61270 (7)	0.67150 (7)	0.01428 (16)	
P2	0.32654 (7)	0.86933 (7)	0.57904 (7)	0.01350 (16)	
N1	0.0585 (2)	0.9761 (2)	0.9150 (2)	0.0168 (5)	
C1	0.1155 (3)	0.9217 (3)	0.8365 (3)	0.0156 (6)	
C2	0.1115 (3)	1.0645 (3)	1.0418 (3)	0.0195 (7)	
H2AB	0.1051	1.1446	1.0584	0.023*	
H2AA	0.1903	1.0655	1.0614	0.023*	
C3	0.0590 (3)	1.0359 (3)	1.1199 (3)	0.0192 (7)	
H3AA	0.0737	0.9608	1.1113	0.023*	
H3AB	0.0913	1.1005	1.2050	0.023*	
C4	0.3628 (3)	0.6456 (3)	0.7941 (3)	0.0183 (7)	
C5	0.4568 (3)	0.7301 (3)	0.8254 (3)	0.0215 (7)	
H5AA	0.4581	0.7723	0.7854	0.026*	

C6	0.5488 (3)	0.7527 (4)	0.9152 (3)	0.0285 (8)
H6AA	0.6130	0.8098	0.9357	0.034*
C7	0.5471 (3)	0.6927 (4)	0.9744 (3)	0.0311 (9)
H7AA	0.6101	0.7085	1.0357	0.037*
C8	0.4537 (3)	0.6093 (4)	0.9447 (3)	0.0301 (8)
H8AA	0.4526	0.5687	0.9863	0.036*
C9	0.3620 (3)	0.5849 (3)	0.8550 (3)	0.0238(7)
H9AA	0.2985	0.5270	0.8346	0.029*
C10	0.2675 (3)	0.4871 (3)	0.5424 (3)	0.0159 (6)
C11	0.3632 (3)	0.4487 (3)	0.5474 (3)	0.0203 (7)
H11A	0.4171	0.4825	0.6223	0.024*
C12	0.3813 (3)	0.3601 (3)	0.4429 (3)	0.0245 (7)
H12A	0.4475	0.3346	0.4470	0.029*
C13	0.3025 (3)	0.3101 (3)	0.3339 (3)	0.0229(7)
H13A	0.3145	0.2498	0.2631	0.027*
C14	0.2067 (3)	0.3477 (3)	0.3280 (3)	0.0215 (7)
H14A	0.1527	0.3128	0.2530	0.026*
C15	0.1887(3)	0.4362(3)	0.4311 (3)	0.0190(7)
H15A	0.1228	0.4624	0.4262	0.023*
C16	0.1298(3)	0.5531(3)	0.7022(3)	0.0168 (6)
C17	0.0658(3)	0.4376 (3)	0.6282(3)	0.0187(7)
H17A	0.0823	0.3836	0.5574	0.022*
C18	-0.0229(3)	0.4005(3)	0.6578 (3)	0.0236(7)
H18A	-0.0670	0.3215	0.6065	0.028*
C19	-0.0467(3)	0.4788(3)	0.7617 (3)	0.0243 (7)
H19A	-0.1067	0.4534	0.7820	0.029*
C20	0.0174(3)	0.5941 (3)	0.8355(3)	0.0248(7)
H20A	0.0017	0.6474	0.9072	0.030*
C21	0.1042 (3)	0.6322 (3)	0.8060(3)	0.0204 (7)
H21A	0.1464	0.7121	0.8561	0.025*
C22	0.2798(3)	0.9894(3)	0.5672 (3)	0.0169 (6)
C23	0.1719(3)	0.9678(3)	0.5049(3)	0.0218(7)
H23A	0.1233	0.8929	0.4726	0.026*
C24	0.1338 (3)	1.0550 (3)	0.4894(3)	0.0269 (8)
H24A	0.0604	1 0382	0.4438	0.032*
C25	0.2025 (3)	1,1658 (3)	0.5399 (3)	0.0262(8)
H25A	0.1764	1.2252	0.5293	0.031*
C26	0.3099(3)	1,1904 (3)	0.6063(3)	0.0242(7)
H26A	0.3567	1.2672	0.6431	0.029*
C27	0.3491(3)	1.1018 (3)	0.6189 (3)	0.0207(7)
H27A	0.4230	1.1181	0.6628	0.025*
C28	0.4678(3)	0.9384(3)	0.6736 (3)	0.0157 (6)
C29	0.4856 (3)	1.0177 (3)	0.7967 (3)	0.0187(7)
H29A	0.4249	1.0341	0.8276	0.022*
C30	0.5910 (3)	1.0720 (3)	0.8732(3)	0.0214(7)
H30A	0.6027	1.1262	0.9563	0.026*
C31	0.6797 (3)	1.0473 (3)	0.8284 (3)	0.0208 (7)
H31A	0.7520	1.0844	0.8812	0.025*

C32	0.6637 (3)	0.9691 (3)	0.7077 (3)	0.0206 (7)	
H32A	0.7247	0.9524	0.6776	0.025*	
C33	0.5574 (3)	0.9145 (3)	0.6298 (3)	0.0177 (6)	
H33A	0.5464	0.8610	0.5467	0.021*	
C34	0.3386 (3)	0.7666 (3)	0.4312 (3)	0.0154 (6)	
C35	0.3435 (3)	0.7995 (3)	0.3476 (3)	0.0205 (7)	
H35A	0.3372	0.8769	0.3657	0.025*	
C36	0.3575 (3)	0.7189 (3)	0.2381 (3)	0.0247 (7)	
H36A	0.3597	0.7410	0.1810	0.030*	
C37	0.3683 (3)	0.6067 (3)	0.2119 (3)	0.0220 (7)	
H37A	0.3790	0.5524	0.1374	0.026*	
C38	0.3635 (3)	0.5729 (3)	0.2941 (3)	0.0220 (7)	
H38A	0.3715	0.4960	0.2763	0.026*	
C39	0.3470 (3)	0.6526 (3)	0.4026 (3)	0.0184 (7)	
H39A	0.3413	0.6288	0.4578	0.022*	
Cl1	0.15739 (10)	0.41053 (9)	0.95175 (11)	0.0451 (3)	
C12	0.14677 (11)	0.15846 (10)	0.81701 (11)	0.0455 (3)	
C13	-0.05265 (9)	0.24127 (10)	0.82114 (9)	0.0383 (2)	
C40	0.0848 (3)	0.2721 (4)	0.8232 (4)	0.0305 (8)	
H40A	0.0863	0.2762	0.7511	0.037*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Aul	0.01735 (9)	0.01435 (8)	0.01405 (8)	0.00500 (5)	0.00798 (6)	0.00817 (6)
S1	0.0143 (4)	0.0222 (4)	0.0133 (3)	0.0047 (3)	0.0051 (3)	0.0065 (3)
S2	0.0149 (4)	0.0209 (4)	0.0123 (3)	0.0050 (3)	0.0044 (3)	0.0066 (3)
P1	0.0157 (4)	0.0147 (4)	0.0139 (4)	0.0043 (3)	0.0058 (3)	0.0080 (3)
P2	0.0156 (4)	0.0141 (4)	0.0136 (4)	0.0045 (3)	0.0063 (3)	0.0084 (3)
N1	0.0135 (14)	0.0212 (14)	0.0138 (13)	0.0050 (11)	0.0049 (10)	0.0073 (11)
C1	0.0168 (16)	0.0153 (15)	0.0155 (15)	0.0025 (12)	0.0057 (12)	0.0085 (13)
C2	0.0175 (17)	0.0210 (16)	0.0151 (16)	0.0036 (13)	0.0056 (13)	0.0058 (14)
C3	0.0156 (17)	0.0260 (17)	0.0147 (15)	0.0079 (13)	0.0062 (12)	0.0086 (14)
C4	0.0197 (17)	0.0199 (16)	0.0145 (15)	0.0068 (13)	0.0062 (13)	0.0077 (13)
C5	0.0224 (18)	0.0199 (16)	0.0170 (16)	0.0042 (13)	0.0077 (13)	0.0054 (14)
C6	0.0201 (19)	0.0315 (19)	0.0225 (18)	0.0079 (15)	0.0067 (14)	0.0057 (16)
C7	0.028 (2)	0.041 (2)	0.0168 (17)	0.0185 (17)	0.0045 (15)	0.0091 (16)
C8	0.035 (2)	0.043 (2)	0.0243 (19)	0.0203 (18)	0.0115 (16)	0.0225 (18)
С9	0.027 (2)	0.0289 (18)	0.0237 (18)	0.0109 (15)	0.0102 (15)	0.0175 (16)
C10	0.0218 (18)	0.0128 (14)	0.0159 (15)	0.0054 (12)	0.0090 (13)	0.0080 (12)
C11	0.0209 (18)	0.0190 (16)	0.0211 (17)	0.0069 (13)	0.0052 (14)	0.0105 (14)
C12	0.0243 (19)	0.0223 (17)	0.0285 (19)	0.0087 (14)	0.0117 (15)	0.0124 (15)
C13	0.030(2)	0.0157 (15)	0.0219 (17)	0.0062 (14)	0.0130 (15)	0.0071 (14)
C14	0.0243 (19)	0.0198 (16)	0.0166 (16)	0.0027 (14)	0.0037 (13)	0.0084 (14)
C15	0.0199 (18)	0.0184 (16)	0.0200 (16)	0.0053 (13)	0.0060 (13)	0.0108 (14)
C16	0.0155 (17)	0.0200 (16)	0.0204 (16)	0.0062 (13)	0.0053 (12)	0.0143 (14)
C17	0.0193 (18)	0.0195 (16)	0.0206 (16)	0.0062 (13)	0.0061 (13)	0.0125 (14)
C18	0.0196 (18)	0.0260 (18)	0.0286 (19)	0.0013 (14)	0.0043 (14)	0.0185 (16)

supporting information

C19	0.0173 (18)	0.037 (2)	0.0321 (19)	0.0067 (15)	0.0089 (14)	0.0270 (17)
C20	0.026 (2)	0.0334 (19)	0.0237 (18)	0.0115 (15)	0.0123 (15)	0.0189 (16)
C21	0.0233 (18)	0.0206 (16)	0.0202 (16)	0.0052 (13)	0.0079 (13)	0.0122 (14)
C22	0.0216 (18)	0.0187 (15)	0.0169 (15)	0.0095 (13)	0.0105 (13)	0.0113 (13)
C23	0.0222 (18)	0.0218 (17)	0.0239 (17)	0.0069 (14)	0.0073 (14)	0.0132 (15)
C24	0.027 (2)	0.032 (2)	0.0281 (19)	0.0129 (16)	0.0090 (15)	0.0191 (17)
C25	0.032 (2)	0.0299 (19)	0.0308 (19)	0.0190 (16)	0.0162 (16)	0.0216 (17)
C26	0.030 (2)	0.0188 (16)	0.0276 (18)	0.0067 (14)	0.0125 (15)	0.0134 (15)
C27	0.0203 (18)	0.0218 (17)	0.0244 (17)	0.0077 (14)	0.0080 (14)	0.0142 (15)
C28	0.0176 (17)	0.0152 (14)	0.0173 (15)	0.0045 (12)	0.0047 (12)	0.0108 (13)
C29	0.0180 (17)	0.0222 (16)	0.0182 (16)	0.0062 (13)	0.0068 (13)	0.0114 (14)
C30	0.0228 (18)	0.0239 (17)	0.0165 (16)	0.0060 (14)	0.0044 (13)	0.0104 (14)
C31	0.0158 (17)	0.0238 (17)	0.0240 (17)	0.0056 (13)	0.0027 (13)	0.0143 (15)
C32	0.0203 (18)	0.0236 (17)	0.0252 (18)	0.0114 (14)	0.0110 (14)	0.0154 (15)
C33	0.0199 (17)	0.0192 (15)	0.0199 (16)	0.0070 (13)	0.0080 (13)	0.0132 (14)
C34	0.0129 (16)	0.0172 (15)	0.0152 (15)	0.0041 (12)	0.0048 (12)	0.0075 (13)
C35	0.0275 (19)	0.0193 (16)	0.0176 (16)	0.0062 (13)	0.0086 (14)	0.0109 (14)
C36	0.031 (2)	0.0309 (19)	0.0186 (17)	0.0078 (15)	0.0111 (14)	0.0162 (15)
C37	0.0231 (18)	0.0237 (17)	0.0152 (16)	0.0053 (14)	0.0097 (13)	0.0059 (14)
C38	0.0239 (19)	0.0192 (16)	0.0224 (17)	0.0064 (13)	0.0102 (14)	0.0093 (14)
C39	0.0196 (17)	0.0208 (16)	0.0169 (15)	0.0051 (13)	0.0068 (13)	0.0109 (14)
Cl1	0.0397 (6)	0.0299 (5)	0.0451 (6)	-0.0012 (4)	0.0001 (5)	0.0112 (5)
Cl2	0.0608 (7)	0.0342 (5)	0.0547 (7)	0.0180 (5)	0.0278 (6)	0.0276 (5)
C13	0.0355 (5)	0.0420 (5)	0.0346 (5)	-0.0020 (4)	0.0028 (4)	0.0230 (4)
C40	0.035 (2)	0.030 (2)	0.0264 (19)	0.0009 (16)	0.0048 (16)	0.0183 (17)

Geometric parameters (Å, °)

Au1—P2	2.2994 (8)	C17—H17A	0.9500
Au1—P1	2.3233 (8)	C18—C19	1.388 (6)
Au1—S2	2.6133 (8)	C18—H18A	0.9500
Au1—S1	2.7414 (8)	C19—C20	1.384 (5)
S1—C1	1.706 (3)	C19—H19A	0.9500
S2—C1	1.718 (3)	C20—C21	1.383 (5)
P1—C10	1.818 (3)	C20—H20A	0.9500
P1—C4	1.823 (4)	C21—H21A	0.9500
P1—C16	1.825 (3)	C22—C23	1.386 (5)
P2—C34	1.822 (3)	C22—C27	1.398 (5)
P2—C28	1.823 (3)	C23—C24	1.393 (5)
P2—C22	1.829 (3)	C23—H23A	0.9500
N1—C1	1.354 (4)	C24—C25	1.382 (6)
N1—C3 ⁱ	1.454 (4)	C24—H24A	0.9500
N1—C2	1.460 (4)	C25—C26	1.389 (6)
C2—C3	1.524 (5)	C25—H25A	0.9500
C2—H2AB	0.9900	C26—C27	1.397 (5)
C2—H2AA	0.9900	C26—H26A	0.9500
C3—N1 ⁱ	1.454 (4)	С27—Н27А	0.9500
С3—НЗАА	0.9900	C28—C33	1.392 (5)

С3—НЗАВ	0.9900	C28—C29	1.403 (5)
C4—C5	1.393 (5)	C29—C30	1.385 (5)
C4—C9	1.405 (5)	C29—H29A	0.9500
C5—C6	1.392 (5)	C30—C31	1.387 (5)
С5—Н5АА	0.9500	С30—Н30А	0.9500
C6—C7	1.378 (6)	C31—C32	1.381 (5)
С6—Н6АА	0.9500	C31—H31A	0.9500
C7—C8	1.386 (6)	C32—C33	1.397 (5)
С7—Н7АА	0.9500	С32—Н32А	0.9500
C8—C9	1.380 (5)	С33—Н33А	0.9500
C8—H8AA	0.9500	C34—C39	1.390 (5)
С9—Н9АА	0.9500	C34—C35	1.400 (5)
C10—C11	1.381 (5)	C35—C36	1.390 (5)
C10—C15	1.403 (5)	С35—Н35А	0.9500
C11—C12	1.402 (5)	C36—C37	1.383 (5)
C11—H11A	0.9500	С36—Н36А	0.9500
C12—C13	1.382 (5)	С37—С38	1.389 (5)
C12—H12A	0.9500	С37—Н37А	0.9500
C13—C14	1.378 (5)	C38—C39	1.392 (5)
C13—H13A	0.9500	C38—H38A	0.9500
C14—C15	1.390 (5)	С39—Н39А	0.9500
C14—H14A	0.9500	Cl1—C40	1.758 (4)
C15—H15A	0.9500	Cl2—C40	1.754 (4)
C16—C17	1.386 (5)	Cl3—C40	1.762 (4)
C16—C21	1.402 (5)	C40—H40A	1.0000
C17—C18	1.398 (5)		
P2—Au1—P1	134.65 (3)	C21—C16—P1	116.5 (3)
P2—Au1—S2	116.81 (3)	C16—C17—C18	120.1 (3)
P1—Au1—S2	107.10 (3)	C16—C17—H17A	120.0
P2—Au1—S1	107.34 (3)	C18—C17—H17A	120.0
P1—Au1—S1	99.39 (3)	C19—C18—C17	120.2 (3)
S2—Au1—S1	67.03 (2)	C19—C18—H18A	119.9
C1—S1—Au1	84.64 (11)	C17—C18—H18A	119.9
C1—S2—Au1	88.55 (12)	C20-C19-C18	119.6 (3)
C10—P1—C4	103.04 (16)	С20—С19—Н19А	120.2
C10—P1—C16	106.19 (15)	C18—C19—H19A	120.2
C4—P1—C16	103.85 (15)	C21—C20—C19	120.6 (3)
C10—P1—Au1	113.94 (10)	C21—C20—H20A	119.7
C4—P1—Au1	112.18 (11)	C19—C20—H20A	119.7
C16—P1—Au1	116.33 (11)	C20—C21—C16	120.1 (3)
C34—P2—C28	104.10 (15)	C20—C21—H21A	120.0
C34—P2—C22	104.72 (15)	C16—C21—H21A	120.0
C28—P2—C22	103.69 (15)	C23—C22—C27	119.1 (3)
C34—P2—Au1	113.39 (11)	C23—C22—P2	118.6 (3)
C28—P2—Au1	109.59 (10)	C27—C22—P2	122.3 (3)
C22—P2—Au1	119.85 (11)	C22—C23—C24	120.6 (3)
$C1 - N1 - C3^{i}$	123.8 (3)	C22—C23—H23A	119.7

C1—N1—C2	122.7 (3)	C24—C23—H23A	119.7
C3 ⁱ —N1—C2	113.0 (3)	C25—C24—C23	120.2 (4)
N1—C1—S1	120.2 (2)	C25—C24—H24A	119.9
N1—C1—S2	120.3 (3)	C23—C24—H24A	119.9
S1—C1—S2	119.56 (19)	C24—C25—C26	119.9 (3)
N1—C2—C3	110.7 (3)	C24—C25—H25A	120.1
N1—C2—H2AB	109.5	C26—C25—H25A	120.1
C3—C2—H2AB	109.5	C25—C26—C27	119.9 (3)
N1—C2—H2AA	109.5	C25—C26—H26A	120.0
C3—C2—H2AA	109.5	C27—C26—H26A	120.0
H2AB—C2—H2AA	108.1	C26—C27—C22	120.2 (3)
N1 ⁱ —C3—C2	110.2 (3)	С26—С27—Н27А	119.9
N1 ⁱ —C3—H3AA	109.6	С22—С27—Н27А	119.9
С2—С3—НЗАА	109.6	C33—C28—C29	119.1 (3)
N1 ⁱ —C3—H3AB	109.6	C33—C28—P2	123.2 (3)
С2—С3—НЗАВ	109.6	C29—C28—P2	117.7 (3)
НЗАА—СЗ—НЗАВ	108.1	C30—C29—C28	120.4 (3)
C5—C4—C9	119.1 (3)	С30—С29—Н29А	119.8
C5—C4—P1	119.3 (3)	C28—C29—H29A	119.8
C9—C4—P1	121.6 (3)	C29—C30—C31	119.9 (3)
C6—C5—C4	120.2 (3)	С29—С30—Н30А	120.0
С6—С5—Н5АА	119.9	C31—C30—H30A	120.0
С4—С5—Н5АА	119.9	C32—C31—C30	120.5 (3)
C7—C6—C5	120.2 (4)	C32—C31—H31A	119.8
С7—С6—Н6АА	119.9	C30—C31—H31A	119.8
С5—С6—Н6АА	119.9	C31—C32—C33	119.9 (3)
C6—C7—C8	120.0 (4)	C31—C32—H32A	120.0
С6—С7—Н7АА	120.0	С33—С32—Н32А	120.0
С8—С7—Н7АА	120.0	C28—C33—C32	120.2 (3)
C9—C8—C7	120.5 (4)	С28—С33—Н33А	119.9
С9—С8—Н8АА	119.8	С32—С33—Н33А	119.9
С7—С8—Н8АА	119.8	C39—C34—C35	119.2 (3)
C8—C9—C4	119.9 (4)	C39—C34—P2	118.2 (2)
С8—С9—Н9АА	120.0	C35—C34—P2	122.6 (2)
С4—С9—Н9АА	120.0	C36—C35—C34	120.0 (3)
C11—C10—C15	119.0 (3)	С36—С35—Н35А	120.0
C11—C10—P1	122.6 (3)	С34—С35—Н35А	120.0
C15—C10—P1	118.0 (3)	C37—C36—C35	120.2 (3)
C10-C11-C12	120.6 (3)	С37—С36—Н36А	119.9
C10-C11-H11A	119.7	С35—С36—Н36А	119.9
C12—C11—H11A	119.7	C36—C37—C38	120.3 (3)
C13—C12—C11	119.8 (3)	С36—С37—Н37А	119.8
C13—C12—H12A	120.1	С38—С37—Н37А	119.8
C11—C12—H12A	120.1	C37—C38—C39	119.5 (3)
C14—C13—C12	120.1 (3)	C37—C38—H38A	120.2
C14—C13—H13A	120.0	C39—C38—H38A	120.2
C12—C13—H13A	120.0	C34—C39—C38	120.7 (3)
C13—C14—C15	120.4 (3)	С34—С39—Н39А	119.6

C13—C14—H14A	119.8	С38—С39—Н39А	119.6
C15—C14—H14A	119.8	Cl2—C40—Cl1	110.6 (2)
C14—C15—C10	120.1 (3)	Cl2—C40—Cl3	110.7 (2)
C14—C15—H15A	120.0	Cl1—C40—Cl3	110.3 (2)
С10—С15—Н15А	120.0	Cl2—C40—H40A	108.4
C17—C16—C21	119.4 (3)	Cl1—C40—H40A	108.4
C17—C16—P1	124.1 (3)	Cl3—C40—H40A	108.4
P2—Au1—S1—C1	115.18 (11)	C13—C14—C15—C10	-0.8(5)
P1—Au1—S1—C1	-101.89 (11)	C11—C10—C15—C14	0.7 (5)
S2—Au1—S1—C1	2.79 (11)	P1-C10-C15-C14	173.9 (3)
P2—Au1—S2—C1	-101.30 (11)	C10—P1—C16—C17	-7.7 (3)
P1—Au1—S2—C1	90.39 (11)	C4—P1—C16—C17	-116.0(3)
S1—Au1—S2—C1	-2.76 (11)	Au1—P1—C16—C17	120.2 (3)
P2—Au1—P1—C10	-40.63 (13)	C10—P1—C16—C21	174.0 (3)
S2—Au1—P1—C10	124.64 (13)	C4—P1—C16—C21	65.7 (3)
S1—Au1—P1—C10	-166.64(13)	Au1—P1—C16—C21	-58.0(3)
P2—Au1—P1—C4	75.96 (12)	C21-C16-C17-C18	-0.4(5)
S2—Au1—P1—C4	-118.77(12)	P1-C16-C17-C18	-178.6(3)
S1—Au1—P1—C4	-50.05(12)	$C_{16} - C_{17} - C_{18} - C_{19}$	-0.6(5)
P^2 —Au1—P1—C16	$-164\ 70\ (12)$	C_{17} C_{18} C_{19} C_{20}	0.0(2)
S_{2} Au1 P_{1} C_{16}	0 57 (13)	$C_{18} - C_{19} - C_{20} - C_{21}$	0.7(5)
S1 - Au1 - P1 - C16	69 29 (13)	C_{19} C_{20} C_{21} C_{16}	-1.7(5)
P1 = Au1 = P2 = C34	48 64 (13)	C_{17} C_{16} C_{21} C_{10} C_{20}	1.7(5)
$S_{$	-11556(12)	$P_1 = C_16 = C_21 = C_20$	1.0(3) 1799(3)
$S1_{2}$ Au1_P2_C34	171.92 (12)	$C_{34} P_{2} C_{22} C_{23}$	74 3 (3)
$P1_{P1} = P2_{P2} = C28$	-67.20(12)	C_{28} P_{2} C_{22} C_{23}	-176.8(3)
$S_{$	128 61 (11)	Au1 - P2 - C22 - C23	-543(3)
S1 - Au1 - P2 - C28	56 08 (11)	C_{34} P_{2} C_{22} C_{23} C_{23}	-105.8(3)
$P1_{P1}_{P1}_{P2}_{P2}_{P1}_{P2}_{P2}_{P1}_{P2}_{P2}_{P2}_{P2}_{P2}_{P2}_{P2}_{P2$	173 21 (13)	C_{28} P_{2} C_{22} C_{27}	3 1 (3)
$S_{2}^{-}A_{11}^{-}P_{2}^{-}C_{22}^{-}$	9 01 (13)	A_{11} P_{2} C_{22} C_{27}	125.6(3)
$S1_{401} = P2_{20} = C22$	-6352(13)	C27 - C22 - C23 - C24	28(5)
$C_{3^{i}}$ N1 C_{1} S1	1785(2)	$P_2 = C_{22} = C_{23} = C_{24}$	-1773(3)
$C_2 = N_1 = C_1 = S_1$	63(4)	$C^{22} = C^{23} = C^{24} = C^{25}$	-24(6)
C_{2}^{i} N1 C_{1}^{i} S1	-22(4)	$C_{22} = C_{23} = C_{24} = C_{25} = C_{26}$	2.4(0)
$C_2 = N_1 = C_1 = S_2$	-1744(2)	$C_{23} = C_{24} = C_{23} = C_{20}$	1.8(5)
$A_{\rm H}1$ $S1$ $C1$ $N1$	174.4(2)	$C_{24} = C_{25} = C_{26} = C_{27} = C$	-1.5(5)
Au1 - S1 - C1 - S2	-4.50(17)	C_{23} C_{20} C_{27} C_{22}	-0.8(5)
Au1 = S1 = C1 = S2 $Au1 = S2 = C1 = N1$	-174.6(3)	$P_2 = C_{22} = C_{27} = C_{20}$	1703(3)
Au1 = S2 = C1 = N1 $Au1 = S2 = C1 = S1$	174.0(3)	12 - C22 - C27 - C20	1/9.5(3)
Au1 = 32 = C1 = 51	-1212(3)	$C_{2}^{2} = C_{2}^{2} = C_{2}^{2} = C_{2}^{2}$	2.9(3)
$C_1 = N_1 = C_2 = C_3$	131.2 (3) 55 8 (4)	22 - 12 - 23 - 233	100.4(3)
$C_{3} = 1 \times 1 = C_{2} = C_{3}$ $N_{1} = C_{2} = C_{3} = C_{3}$ $N_{1} = C_{2} = C_{3}$	-54.2(4)	$Au_1 - r_2 - c_{20} - c_{33}$	-1750(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57.2(7)	$C_{2} = 12 - C_{2} - C_{2}$	1/3.9(2)
C_{10} $-r_{1}$ $-C_{4}$ $-C_{5}$	92.7(3)	C_{22} = r_2 = C_{20} = C_{20}	74.0 (3) -54 2 (2)
10-11-04-05	-130.7(3)	$Au1 - r_2 - C_{20} - C_{29}$	-34.3(3)
AuI - PI - C4 - C3	-50.2(3)	$C_{23} = C_{23} = C$	0.3(3)
C10 - P1 - C4 - C9	-85.0(3)	$r_2 - c_2 = c_2 = c_3 $	1/9.4 (3)
C10-P1-C4-C9	25.6 (3)	U28—U29—U30—U31	-0.6 (5)

Au1—P1—C4—C9	152.0 (3)	C29—C30—C31—C32	0.3 (5)
C9—C4—C5—C6	0.6 (5)	C30—C31—C32—C33	0.1 (5)
P1-C4-C5-C6	-177.2 (3)	C29—C28—C33—C32	-0.1 (5)
C4—C5—C6—C7	-0.7 (5)	P2-C28-C33-C32	-178.9 (2)
C5—C6—C7—C8	0.1 (6)	C31—C32—C33—C28	-0.2 (5)
C6—C7—C8—C9	0.6 (6)	C28—P2—C34—C39	86.8 (3)
C7—C8—C9—C4	-0.6 (6)	C22—P2—C34—C39	-164.7 (3)
C5—C4—C9—C8	0.0 (5)	Au1—P2—C34—C39	-32.3 (3)
P1—C4—C9—C8	177.8 (3)	C28—P2—C34—C35	-91.1 (3)
C4—P1—C10—C11	-8.8 (3)	C22—P2—C34—C35	17.5 (3)
C16—P1—C10—C11	-117.7 (3)	Au1—P2—C34—C35	149.9 (3)
Au1—P1—C10—C11	113.0 (3)	C39—C34—C35—C36	-0.6 (5)
C4—P1—C10—C15	178.2 (3)	P2-C34-C35-C36	177.2 (3)
C16—P1—C10—C15	69.4 (3)	C34—C35—C36—C37	-0.9 (6)
Au1—P1—C10—C15	-60.0 (3)	C35—C36—C37—C38	1.0 (6)
C15-C10-C11-C12	0.0 (5)	C36—C37—C38—C39	0.5 (6)
P1-C10-C11-C12	-172.9 (3)	C35—C34—C39—C38	2.1 (5)
C10-C11-C12-C13	-0.5 (5)	P2-C34-C39-C38	-175.8 (3)
C11—C12—C13—C14	0.3 (5)	C37—C38—C39—C34	-2.0 (5)
C12—C13—C14—C15	0.3 (5)		

Symmetry code: (i) -x, -y+2, -z+2.