

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis{*u*-2-[3-carboxylatomethyl-4-(phenylsulfanvl)phenvl]propanoato- $\kappa^4 O.O'$:-O'', O'''}bis[(2,2'-bipyridine- $\kappa^2 N, N'$)cadmium]

Long Li, Yu-Qiu Ding and Kai-Sheng Diao*

School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China Correspondence e-mail: 497426630@gg.com

Received 11 March 2012; accepted 25 March 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.005$ Å; disorder in main residue; R factor = 0.036; wR factor = 0.090; data-to-parameter ratio = 17.3.

In the title complex, $[Cd_2(C_{17}H_{14}O_4S)_2(C_{10}H_8N_2)_2]$, which was hydrothermally synthesized, the Cd^{II} cation is hexacoordinated in a distorted octahedral geometry by two N atoms from a 2,2'-bipyridine ligand and by four O atoms from two different 2-[3-carboxylatomethyl-4-(phenylsulfanyl)phenyl]propanoate ligands, forming a cyclic dimetallic complex.

Related literature

For reviews of metal-organic network solids, see: Batten & Robson (1998); Lu (2003); Moulton & Zaworotko (2001); Pan et al. (2004). For the synthesis and structure of helical Cd complexes with related ligands, see: Wang et al. (2004).

 $V = 2446.2 (10) \text{ Å}^3$

Mo Ka radiation

 $0.35 \times 0.34 \times 0.32 \text{ mm}$

14971 measured reflections

5706 independent reflections

4170 reflections with $I > 2\sigma(I)$

 $\mu = 1.02 \text{ mm}^-$

T = 296 K

 $R_{\rm int} = 0.042$

Z = 2

Experimental

Crystal data

 $[Cd_2(C_{17}H_{14}O_4S)_2(C_{10}H_8N_2)_2]$ $M_r = 1165.85$ Monoclinic, $P2_1/c$ a = 13.567 (3) Å b = 11.572 (3) Å c = 15.595 (4) Å $\beta = 92.540 \ (3)^{\circ}$

Data collection

Bruker SMART BREEZE CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.718, \ T_{\max} = 0.737$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	329 parameters
$wR(F^2) = 0.090$	3 restraints
S = 1.04	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
5706 reflections	$\Delta \rho_{\rm min} = -0.67 \ {\rm e} \ {\rm \AA}^-$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported financially by the Scientific Research Program of the Education Department of Guangxi Zhuang Autonomous Region (project No. 201010LX081) and the Scientific Research Program of Guangxi University for Nationalities (project No. 2010QD019).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2060).

References

- Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Lu, J. Y. (2003). Coord. Chem. Rev. 246, 327-347.
- Moulton, B. & Zaworotko, M. (2001). Chem. Rev. 101, 1629-1658.
- Pan, L., Sander, M. B., Huang, X., Li, J., Smith, M., Bittner, E., Bockrath, B. & Johnson, J. K. (2004). J. Am. Chem. Soc. 126, 1308-1309.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, X. L., Qin, C., Wang, E. B., Xu, L., Su, Z. M. & Hu, C. W. (2004). Angew. Chem. Int. Ed. 43, 5036-5040.

supporting information

Acta Cryst. (2012). E68, m511 [https://doi.org/10.1107/S1600536812013049]

Bis{ μ -2-[3-carboxylatomethyl-4-(phenylsulfanyl)phenyl]propanoato- $\kappa^4 O, O': O'', O'''$ }bis[(2,2'-bipyridine- $\kappa^2 N, N'$)cadmium]

Long Li, Yu-Qiu Ding and Kai-Sheng Diao

S1. Comment

The design and synthesis of coordination polymers is of great interest due to their intriguing topologic architecture and significant application in many fields (Pan *et al.*, 2004; Batten *et al.*, 1998). Among the variety of organic molecules acting as linkers in the design of supramolecular networks, heterocyclic N rings and polycarboxylates are the most widely used ligands due to their rigidity in structure and flexibility in coordination modes (Moulton *et al.*, 2001; Wang *et al.*, 2004; Lu *et al.*, 2003). In this work we report a cyclic Cd^{II} coordination complex, (I), constructed from 5-(1-carboxy-ethyl)-2-(phenylthio)phenylacetic acid and 2,2'-bipyridine (Fig. 1). The O—Cd bond distances range from 2.277 (6) to 2.416 (6) Å and the Cd—N bond distances are 2.311 (3) and 2.320 (3) Å. The dihedral angle between two benzene rings in the same *L* ligand is 78.73 (6)° and the C—S—C angle is 102.11 (6)°. It is to be noted that both carboxylates of *L* are bidentate but asymmetrically coordinated with the Cd1—O1 and Cd1—O2 bond distance of 2.276 (3) and 2.415 (3) Å, respectively while the Cd1—O3 and Cd1—O4 distances are 2.345 (3) and 2.309 (3) Å. These differences can likely be attibuted to packing considerations since of the four carboxylate oxygen atoms, only O1 is not involved with C—H…O hydrogen bonding interactions. The self-assembly of the metal with 5-(1-carboxyethyl)-2-(phenylthio)phenylacetic acid and 2,2'-bipyridine [Fig. 1). Weak π - π stacking interactions between pyridine rings from different bipy ligands (interplanar spacing = 3.708 (4) Å, dihedral angle between planes = 1.07 (4)°) as well as a number of short (C—H…X (X = O, N)) contacts generate a 3-D structure (Fig. 2).

S2. Experimental

 H_2L (0.5 mmol) and 2,2'-bipyridine (0.5 mmol) were dissolved in a mixture of 5 ml of ethanol and 15 ml of H_2O to which an aqueous solution of sodium hydroxide was added dropwise with stirring to adjust the pH to 6. After addition of 10 ml of an aqueous solution of cadmium chloride (0.5 mmol) the mixture was heated at 403 K for 3 days. After cooling to room temperature, the reaction solution was filtered to remove a small quantity of white precipitate. Slow evaporation of the filtrate at room temperature over three days produced X-ray quality colorless block-shaped single crystals.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene H atoms, and C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms. Atoms C17 and C18 are disordered over two distinct sites in a 77:23 ratio. The two components of this disorder were refined with restraints to make their geometries similar.

The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The molecular packing diagram for the crystal of (I).

 $Bis\{\mu-2-[3-carboxylatomethyl-4-(phenylsulfanyl)phenyl]propanoato- \ \kappa^4O, O':O'', O'''\} bis[(2,2'-bipyridine- \ \kappa^2N, N') cadmium]$

Crystal data	
$[Cd_2(C_{17}H_{14}O_4S)_2(C_{10}H_8N_2)_2]$	$\beta = 92.540 \ (3)^{\circ}$
$M_r = 1165.85$	$V = 2446.2 (10) \text{ Å}^3$
Monoclinic, $P2_1/c$	Z = 2
Hall symbol: -P 2ybc	F(000) = 1176
a = 13.567 (3) Å	$D_{\rm x} = 1.583 {\rm ~Mg} {\rm ~m}^{-3}$
b = 11.572 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 15.595 (4) Å	Cell parameters from 6794 reflections

 $\theta = 2.3-27.8^{\circ}$ $\mu = 1.02 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker SMART BREEZE CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.718, \ T_{\max} = 0.737$

Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.090$	neighbouring sites
S = 1.04	H-atom parameters constrained
5706 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0222P)^2 + 1.2239P]$
329 parameters	where $P = (F_o^2 + 2F_c^2)/3$
3 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.59 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Block, colorless

 $R_{\rm int} = 0.042$

 $h = -17 \rightarrow 18$ $k = -9 \rightarrow 15$ $l = -20 \rightarrow 20$

 $0.35 \times 0.34 \times 0.32 \text{ mm}$

14971 measured reflections 5706 independent reflections 4170 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 28.2^{\circ}, \ \theta_{\rm min} = 1.5^{\circ}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cd1	-0.076611 (16)	0.93279 (2)	0.764046 (13)	0.04782 (9)	
S1	0.27579 (6)	0.85650 (8)	0.73380 (5)	0.0515 (2)	
N1	-0.00382 (18)	0.8216 (2)	0.87232 (14)	0.0398 (6)	
N2	-0.14700 (19)	0.9786 (3)	0.89259 (15)	0.0453 (6)	
01	-0.17570 (19)	0.8271 (2)	0.67240 (15)	0.0656 (7)	
02	-0.22891 (18)	1.0016 (3)	0.69612 (15)	0.0637 (7)	
O3	0.06431 (16)	0.9391 (2)	0.68258 (14)	0.0507 (6)	
O4	0.03442 (16)	1.0841 (2)	0.76726 (15)	0.0525 (6)	
C1	0.0686 (2)	0.7475 (3)	0.8589 (2)	0.0514 (8)	
H1	0.0923	0.7415	0.8040	0.062*	
C2	0.1096 (3)	0.6798 (3)	0.9225 (3)	0.0648 (10)	
H2	0.1604	0.6288	0.9113	0.078*	
C3	0.0746 (3)	0.6885 (4)	1.0030 (3)	0.0728 (12)	

H3	0.1007	0.6422	1.0472	0.087*	
C4	0.0007 (3)	0.7660 (3)	1.0185 (2)	0.0603 (10)	
H4	-0.0235	0.7731	1.0731	0.072*	
C5	-0.0371(2)	0.8332 (3)	0.95146 (17)	0.0397 (7)	
C6	-0.1152 (2)	0.9199 (3)	0.96275 (17)	0.0403 (7)	
C7	-0.1544 (3)	0.9423 (3)	1.0416 (2)	0.0593 (10)	
H7	-0.1325	0.9013	1.0900	0.071*	
C8	-0.2256(3)	1.0254 (4)	1.0475 (2)	0.0762 (12)	
H8	-0.2527	1.0412	1.1000	0.091*	
C9	-0.2563(3)	1.0845 (4)	0.9761 (3)	0.0728 (11)	
H9	-0.3044	1.1414	0.9790	0.087*	
C10	-0.2157 (3)	1.0593 (3)	0.9002 (3)	0.0611 (9)	
H10	-0.2369	1.1003	0.8515	0.073*	
C11	-0.2382 (2)	0.9068 (4)	0.66121 (19)	0.0512 (9)	
C12	0.0872 (2)	1.0346 (3)	0.71384 (18)	0.0399 (7)	
C13	0.1804 (2)	1.0957 (3)	0.6894 (2)	0.0527 (8)	
H13A	0.1622	1.1721	0.6684	0.063*	
H13B	0.2218	1.1062	0.7411	0.063*	
C14	0.2415 (2)	1.0395 (3)	0.62373 (19)	0.0390 (7)	
C15	0.2532 (2)	1.0938 (3)	0.5439 (2)	0.0483 (8)	
H15	0.2175	1.1608	0.5313	0.058*	
C16	0.3151 (2)	1.0519 (3)	0.48389 (18)	0.0496 (9)	
C17	0.3342 (3)	1.1070 (4)	0.3955 (2)	0.0409 (10)	0.770 (6)
H17	0.3875	1.0645	0.3690	0.049*	0.770 (6)
C18	0.3637 (5)	1.2319 (5)	0.4048 (4)	0.0575 (15)	0.770 (6)
H18A	0.3749	1.2635	0.3492	0.086*	0.770 (6)
H18B	0.3118	1.2742	0.4306	0.086*	0.770 (6)
H18C	0.4231	1.2377	0.4404	0.086*	0.770 (6)
C17A	0.2979 (9)	1.1532 (9)	0.4175 (6)	0.0409 (10)	0.230 (6)
H17A	0.2655	1.2209	0.4413	0.049*	0.230 (6)
C18A	0.3971 (12)	1.176 (3)	0.3811 (13)	0.079 (8)	0.230 (6)
H18D	0.3915	1.2402	0.3425	0.119*	0.230 (6)
H18E	0.4437	1.1937	0.4273	0.119*	0.230 (6)
H18F	0.4193	1.1091	0.3508	0.119*	0.230 (6)
C19	0.3657 (2)	0.9531 (3)	0.50239 (19)	0.0538 (9)	
H19	0.4095	0.9246	0.4633	0.065*	
C20	0.3535 (2)	0.8944 (3)	0.57788 (19)	0.0470 (7)	
H20	0.3869	0.8252	0.5882	0.056*	
C21	0.2919 (2)	0.9377 (3)	0.63872 (17)	0.0351 (6)	
C22	0.3985 (2)	0.8454 (3)	0.77750 (18)	0.0465 (8)	
C23	0.4312 (3)	0.7405 (3)	0.8089 (2)	0.0577 (9)	
H23	0.3905	0.6758	0.8044	0.069*	
C24	0.5250 (3)	0.7317 (5)	0.8472 (3)	0.0826 (14)	
H24	0.5469	0.6608	0.8687	0.099*	
C25	0.5852 (3)	0.8251 (5)	0.8536 (3)	0.0920 (16)	
H25	0.6480	0.8182	0.8797	0.110*	
C26	0.5534 (4)	0.9301 (4)	0.8216 (3)	0.0930 (17)	
H26	0.5951	0.9939	0.8249	0.112*	

supporting information

C27	0.4590 (3)	0.9406 (4)	0.7844 (3)	0.0704 (12)
H27	0.4367	1.0120	0.7642	0.084*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cd1	0.04260 (13)	0.07524 (19)	0.02515 (11)	-0.00810 (12)	-0.00395 (8)	0.00632 (10)
S1	0.0472 (4)	0.0652 (6)	0.0417 (4)	-0.0015 (4)	-0.0019 (3)	0.0187 (4)
N1	0.0453 (14)	0.0434 (15)	0.0302 (11)	-0.0060 (12)	-0.0031 (10)	-0.0014 (11)
N2	0.0453 (14)	0.0576 (17)	0.0327 (12)	-0.0001 (13)	-0.0010 (10)	0.0031 (12)
01	0.0723 (17)	0.0725 (19)	0.0504 (13)	-0.0072 (15)	-0.0146 (12)	-0.0019 (13)
O2	0.0636 (16)	0.075 (2)	0.0510 (14)	-0.0048 (14)	-0.0140 (11)	0.0087 (14)
03	0.0473 (12)	0.0600 (16)	0.0452 (12)	-0.0121 (11)	0.0076 (9)	-0.0100 (11)
04	0.0461 (12)	0.0600 (16)	0.0519 (13)	0.0043 (11)	0.0093 (10)	-0.0064 (11)
C1	0.056 (2)	0.050 (2)	0.0483 (18)	-0.0058 (16)	0.0004 (15)	-0.0073 (15)
C2	0.062 (2)	0.057 (2)	0.075 (2)	0.0122 (19)	-0.0037 (19)	0.002 (2)
C3	0.078 (3)	0.076 (3)	0.064 (2)	0.009 (2)	-0.010 (2)	0.024 (2)
C4	0.067 (2)	0.079 (3)	0.0349 (16)	-0.001 (2)	-0.0035 (15)	0.0194 (17)
C5	0.0426 (16)	0.0471 (19)	0.0288 (13)	-0.0122 (14)	-0.0056 (11)	0.0016 (12)
C6	0.0414 (15)	0.052 (2)	0.0269 (13)	-0.0128 (14)	-0.0025 (11)	-0.0012 (12)
C7	0.073 (2)	0.073 (3)	0.0320 (15)	0.001 (2)	0.0021 (15)	-0.0047 (16)
C8	0.090 (3)	0.091 (3)	0.048 (2)	0.007 (3)	0.014 (2)	-0.025 (2)
C9	0.077 (3)	0.063 (3)	0.078 (3)	0.012 (2)	0.008 (2)	-0.015 (2)
C10	0.059 (2)	0.062 (3)	0.061 (2)	0.0068 (19)	0.0008 (17)	0.0065 (18)
C11	0.0492 (19)	0.074 (3)	0.0293 (14)	-0.0195 (18)	-0.0064 (13)	0.0211 (16)
C12	0.0363 (15)	0.0480 (19)	0.0350 (14)	0.0045 (13)	-0.0029 (12)	0.0031 (13)
C13	0.0452 (18)	0.046 (2)	0.067 (2)	0.0012 (15)	0.0081 (15)	-0.0095 (16)
C14	0.0284 (13)	0.0426 (18)	0.0454 (16)	-0.0034 (12)	-0.0034 (11)	-0.0021 (13)
C15	0.0338 (15)	0.049 (2)	0.061 (2)	-0.0029 (14)	-0.0176 (14)	0.0174 (16)
C16	0.0398 (16)	0.076 (3)	0.0318 (14)	-0.0213 (17)	-0.0106 (12)	0.0094 (15)
C17	0.031 (2)	0.062 (3)	0.0298 (18)	-0.0041 (19)	0.0038 (14)	0.0031 (18)
C18	0.063 (4)	0.063 (4)	0.046 (3)	-0.020 (3)	-0.003 (2)	0.005 (3)
C17A	0.031 (2)	0.062 (3)	0.0298 (18)	-0.0041 (19)	0.0038 (14)	0.0031 (18)
C18A	0.062 (13)	0.13 (2)	0.050 (12)	-0.021 (14)	-0.007 (9)	0.024 (13)
C19	0.0526 (19)	0.078 (3)	0.0308 (15)	-0.0067 (18)	0.0055 (13)	-0.0073 (16)
C20	0.0495 (18)	0.050 (2)	0.0414 (16)	0.0077 (15)	0.0030 (13)	-0.0021 (15)
C21	0.0359 (14)	0.0401 (17)	0.0290 (13)	0.0008 (13)	-0.0033 (10)	0.0023 (12)
C22	0.0513 (18)	0.057 (2)	0.0312 (14)	0.0008 (16)	-0.0028 (12)	0.0070 (14)
C23	0.062 (2)	0.056 (2)	0.054 (2)	0.0041 (18)	-0.0080 (16)	0.0128 (17)
C24	0.071 (3)	0.102 (4)	0.074 (3)	0.016 (3)	-0.010 (2)	0.037 (3)
C25	0.065 (3)	0.130 (5)	0.078 (3)	-0.007 (3)	-0.027 (2)	0.035 (3)
C26	0.085 (3)	0.105 (4)	0.086 (3)	-0.039 (3)	-0.037 (3)	0.033 (3)
C27	0.076 (3)	0.066 (3)	0.067 (2)	-0.010 (2)	-0.022 (2)	0.023 (2)

Geometric parameters (Å, °)

Cd1-01	2.275 (2)	С13—Н13А	0.9700
Cd1—O4	2.309 (2)	С13—Н13В	0.9700

supporting information

Cd1—N1	2.310 (2)	C14—C21	1.377 (4)
Cd1—N2	2.320 (3)	C14—C15	1.411 (4)
Cd1-03	2.343 (2)	C15—C16	1.373 (5)
Cd1—O2	2.415 (2)	C15—H15	0.9300
S1—C22	1.776 (3)	C16—C19	1.359 (5)
S1—C21	1.777 (3)	C16—C17	1.551 (5)
N1—C1	1.328 (4)	C16—C17A	1.574 (9)
N1—C5	1.340 (4)	C17—C18	1.505 (6)
N2-C10	1.329 (4)	C17—C11 ⁱ	1.550 (4)
N2-C6	1.342(4)	C17—H17	0.9800
01-C11	1260(4)	C18—H18A	0.9600
02-C11	1 228 (4)	C18—H18B	0.9600
03-C12	1.220(1) 1.242(4)	C18—H18C	0.9601
04 - C12	1.260(4)	C17A - C18A	1 506 (10)
C1 - C2	1.266(1) 1.364(5)	$C17A - C11^{i}$	1.500 (10)
C1—H1	0.9300	C17A—H17A	0.9800
$C^2 - C^3$	1 365 (5)	C184 - H18D	0.9600
С2—С5	0.9300	C184 - H18E	0.9600
$C_2 - C_4$	1 375 (6)	C18A - H18E	0.9600
C3 H3	0.0300	C_{10} C_{20}	1 375 (5)
C_{4}	1.384(4)	C19-H19	0.9300
C4 C5	0.9300	C_{20}	1 386 (4)
C5-C6	1.475(4)	C20 H20	0.9300
C6-C7	1.475(4) 1 385(4)	C^{22} C^{23}	1 375 (5)
C7 - C8	1.369 (6)	C22 = C23	1.376 (5)
С7—Н7	0.9300	C22 - C27 C23 - C24	1.376(5) 1.385(5)
C8-C9	1 356 (6)	C23_H23	0.9300
C8—H8	0.9300	$C_{23} = 1123$ $C_{24} = C_{25}$	1.357(7)
C9-C10	1 359 (6)	C24—H24	0.9300
С9—Н9	0.9300	$C_{24} = 1124$ $C_{25} = C_{26}$	1 377 (6)
C10_H10	0.9300	C25—H25	0.9300
$C11 - C17^{i}$	1 550 (4)	C26-C27	1 387 (6)
$C11 - C17 A^{i}$	1.599 (9)	C26—H26	0.9300
C12-C13	1.533(3)	C27—H27	0.9300
C13 - C14	1.913 (4)	027 1127	0.9500
015 014	(ד) דעד.1		
01—Cd1—O4	142 02 (9)	C12—C13—H13A	107 9
01 - Cd1 - N1	112.02 (9)	C14— $C13$ — $H13B$	107.9
O4-Cd1-N1	98 58 (8)	C12— $C13$ — $H13B$	107.9
01 - Cd1 - N2	114 29 (10)	H13A—C13—H13B	107.2
O4-Cd1-N2	95 81 (9)	$C^{21}-C^{14}-C^{15}$	117.2 (3)
N1-Cd1-N2	71 01 (9)	$C_{21} - C_{14} - C_{13}$	122.9(3)
01-Cd1-03	98 61 (9)	C15-C14-C13	1122.9(3)
04 - Cd1 - 03	56 01 (8)	C16-C15-C14	122.7(3)
N1-Cd1-O3	94 65 (9)	C16—C15—H15	118 7
N2-Cd1-O3	146.99 (8)	C14—C15—H15	118.7
01-Cd1-02	55.34 (10)	C19-C16-C15	118.2 (3)
04 - Cd1 - 02	107 72 (9)	C19 - C16 - C17	115.2(3)
	1011/2011		110.0(0)

N1—Cd1—O2	146.53 (9)	C15—C16—C17	126.3 (3)
N2—Cd1—O2	85.80 (9)	C19—C16—C17A	145.6 (6)
O3—Cd1—O2	117.05 (8)	C15—C16—C17A	96.2 (6)
C22—S1—C21	102.15 (14)	C18—C17—C11 ⁱ	111.5 (4)
C1—N1—C5	119.5 (3)	C18—C17—C16	111.3 (4)
C1—N1—Cd1	122.7 (2)	C11 ⁱ —C17—C16	107.2 (3)
C5—N1—Cd1	117.8 (2)	C18—C17—H17	109.0
C10—N2—C6	118.9 (3)	C11 ⁱ —C17—H17	108.9
C10—N2—Cd1	123.7 (2)	С16—С17—Н17	108.9
C6-N2-Cd1	1173(2)	C17—C18—H18A	109.3
$C_{11} - C_{11}$	93.9(2)	C17—C18—H18B	109.5
$C_{11} = 0^2 = C_{11}$	88 2 (2)	H18A - C18 - H18B	109.5
$C_{12} = 0_{3} = C_{41}$	90.61 (18)	C17 - C18 - H18C	109.5
$C_{12} = 05 = C_{11}$	90.01(18)	$H_{18A} = C_{18} = H_{18C}$	109.0
$N_1 = C_1 = C_2$	$\frac{91.7(2)}{1224(2)}$	$\frac{110}{10} = \frac{10}{10} = \frac{110}{100}$	109.5
N1 - C1 - U1	122.4 (5)	$\begin{array}{c} \text{II} \text{B} \text{D} \text{C} \text{I} \text{O} \text{H} \text{I} \text{O} \text{C} \\ \text{C} \text{I} \text{P} \text{A} \text{C} \text{I} \text{O} \text{C} \text{I} \text{O} \\ \text{C} \text{I} \text{P} \text{A} \text{C} \text{I} \text{O} \text{C} \text{I} \text{O} \\ \text{C} \text{I} \text{O} \{O} \{O} \\ \text{C} \text{I} \text{O} \{O} \{O} \{O} \{O} \{O} \{O} \{O} \$	109.3
	110.0	$C_{10}A = C_{17}A = C_{10}$	103.0(13)
	118.8		102.5 (12)
C1 = C2 = C3	118.7 (4)		103.7 (6)
C1—C2—H2	120.6		115.3
C3—C2—H2	120.6	С16—С1/А—Н1/А	113.8
C2—C3—C4	119.6 (3)	C11 ¹ —C17A—H17A	114.6
С2—С3—Н3	120.2	C17A—C18A—H18E	108.9
С4—С3—Н3	120.2	H18D—C18A—H18E	109.5
C3—C4—C5	119.0 (3)	C17A—C18A—H18F	110.6
C3—C4—H4	120.5	H18D—C18A—H18F	109.5
C5—C4—H4	120.5	H18E—C18A—H18F	109.5
N1—C5—C4	120.7 (3)	C16—C19—C20	121.2 (3)
N1—C5—C6	116.9 (2)	C16—C19—H19	119.4
C4—C5—C6	122.5 (3)	С20—С19—Н19	119.4
N2—C6—C7	120.5 (3)	C19—C20—C21	120.5 (3)
N2—C6—C5	116.9 (3)	C19—C20—H20	119.8
C7—C6—C5	122.6 (3)	С21—С20—Н20	119.8
C8—C7—C6	119.4 (3)	C14—C21—C20	120.2 (3)
С8—С7—Н7	120.3	C14—C21—S1	121.0 (2)
С6—С7—Н7	120.3	C20—C21—S1	118.7 (2)
C9—C8—C7	119.4 (4)	C_{23} C_{22} C_{27}	119.8 (3)
C9—C8—H8	120.3	C_{23} C_{22} S_{1}	1189(3)
C7-C8-H8	120.3	C_{27} C_{22} S_{1}	121.2(3)
C_{8} C_{9} C_{10}	119.0 (4)	C^{22} C^{23} C^{24}	121.2(3) 1196(4)
	120.5	$C_{22} = C_{23} = H_{23}$	120.2
C_{10} C_{0} H_{0}	120.5	$C_{22} = C_{23} = H_{23}$	120.2
$N_{2} = C_{10} = C_{9}$	120.3 122.8(A)	$C_{24} = C_{23} = H_{23}$	120.2 120.0(4)
$N_2 = C_{10} = C_{7}$	122.0 (4)	$C_{25} = C_{24} = C_{25}$	120.9 (4)
$N_2 = C_{10} = H_{10}$	110.0	$C_{23} = C_{24} = H_{24}$	119.0
$C_{2} = C_{10} = \overline{C_{10}}$	110.0	$C_{23} = C_{24} = \Pi_{24}$	119.0
02 - 01 - 01	122.3(3)	$C_{24} = C_{25} = C_{26}$	119.9 (4)
02-C11-C17	114.4 (4)	C24—C25—H25	120.1
	123.1 (4)	C26—C25—H25	120.1
O2-C11-C17A ⁱ	140.1 (5)	C25—C26—C27	119.9 (4)

01—C11—C17A ⁱ	95.9 (5)	C25—C26—H26	120.1
O3—C12—O4	121.6 (3)	С27—С26—Н26	120.1
O3—C12—C13	121.0 (3)	C22—C27—C26	120.0 (4)
O4—C12—C13	117.4 (3)	C22—C27—H27	120.0
C14—C13—C12	117.7 (3)	C26—C27—H27	120.0
C14—C13—H13A	107.9		
O1—Cd1—N1—C1	72.7 (3)	C5—C6—C7—C8	178.9 (3)
O4—Cd1—N1—C1	-84.9 (2)	C6—C7—C8—C9	-0.2 (6)
N2—Cd1—N1—C1	-178.1 (3)	C7—C8—C9—C10	0.2 (7)
O3—Cd1—N1—C1	-28.6(2)	C6—N2—C10—C9	-0.8 (6)
O2—Cd1—N1—C1	133.3 (2)	Cd1—N2—C10—C9	179.7 (3)
O1—Cd1—N1—C5	-107.1 (2)	C8—C9—C10—N2	0.2 (7)
O4—Cd1—N1—C5	95.3 (2)	Cd1-02-C11-01	-0.5(3)
N2—Cd1—N1—C5	2.0 (2)	Cd1-02-C11-C17 ⁱ	178.0 (2)
O3—Cd1—N1—C5	151.6 (2)	Cd1—O2—C11—C17A ⁱ	-162.3(8)
O2—Cd1—N1—C5	-46.6 (3)	Cd1-01-C11-02	0.5 (3)
O1— $Cd1$ — $N2$ — $C10$	-75.4 (3)	$Cd1-O1-C11-C17^{i}$	-177.9(3)
O4-Cd1-N2-C10	80.8 (3)	$Cd1-O1-C11-C17A^{i}$	168.9 (4)
N1—Cd1— $N2$ —C10	177.9 (3)	Cd1-03-C12-04	-0.9(3)
O_3 —Cd1—N2—C10	109.8 (3)	Cd1 - O3 - C12 - C13	178.7 (3)
Ω^2 —Cd1—N2—C10	-26.6(3)	Cd1-04-C12-03	0.9 (3)
O1— $Cd1$ — $N2$ — $C6$	105.1 (2)	Cd1 - O4 - C12 - C13	-178.7(2)
O4— $Cd1$ — $N2$ — $C6$	-98.7 (2)	O3-C12-C13-C14	2.5 (5)
N1—Cd1— $N2$ —C6	-1.6(2)	04-C12-C13-C14	-177.9(3)
O3—Cd1—N2—C6	-69.7 (3)	C12-C13-C14-C21	-67.9(4)
O2—Cd1—N2—C6	153.9 (2)	C12-C13-C14-C15	115.3 (3)
O4—Cd1—O1—C11	-73.7 (2)	C21—C14—C15—C16	-2.9(4)
N1—Cd1—O1—C11	144.02 (19)	C13—C14—C15—C16	174.2 (3)
N2—Cd1—O1—C11	65.6 (2)	C14—C15—C16—C19	0.9 (5)
O3—Cd1—O1—C11	-117.3 (2)	C14—C15—C16—C17	-178.6(3)
O2—Cd1—O1—C11	-0.26 (18)	C14—C15—C16—C17A	-176.7(4)
O1—Cd1—O2—C11	0.27 (18)	C19—C16—C17—C18	-126.6(4)
O4—Cd1—O2—C11	141.99 (19)	C15—C16—C17—C18	53.0 (5)
N1—Cd1—O2—C11	-77.9 (2)	C17A—C16—C17—C18	49.1 (8)
N2—Cd1—O2—C11	-123.2 (2)	C19—C16—C17—C11 ⁱ	111.2 (4)
O3—Cd1—O2—C11	81.7 (2)	C15—C16—C17—C11 ⁱ	-69.2(5)
O1—Cd1—O3—C12	149.75 (18)	C17A—C16—C17—C11 ⁱ	-73.1 (7)
O4—Cd1—O3—C12	0.51 (16)	C19—C16—C17A—C18A	-34.7 (15)
N1—Cd1—O3—C12	-96.72 (18)	C15—C16—C17A—C18A	141.6 (12)
N2—Cd1—O3—C12	-35.0 (3)	C17—C16—C17A—C18A	-41.6 (13)
O2—Cd1—O3—C12	94.40 (18)	C19—C16—C17A—C11 ⁱ	72.7 (10)
O1—Cd1—O4—C12	-55.7 (2)	C15—C16—C17A—C11 ⁱ	-111.0 (6)
N1—Cd1—O4—C12	89.33 (18)	C17—C16—C17A—C11 ⁱ	65.8 (6)
N2—Cd1—O4—C12	160.94 (18)	C15—C16—C19—C20	1.9 (5)
O3—Cd1—O4—C12	-0.50 (16)	C17—C16—C19—C20	-178.5 (3)
O2—Cd1—O4—C12	-111.62 (18)	C17A—C16—C19—C20	177.7 (7)
C5—N1—C1—C2	1.6 (5)	C16—C19—C20—C21	-2.7 (5)

Cd1—N1—C1—C2	-178.2(3)	C15—C14—C21—C20	2.0(4)
C1-C2-C3-C4	-1.1 (6)	C15-C14-C21-S1	-175.4(2)
C2—C3—C4—C5	0.4 (6)	C13—C14—C21—S1	7.6 (4)
C1—N1—C5—C4	-2.4 (4)	C19—C20—C21—C14	0.6 (5)
Cd1—N1—C5—C4	177.5 (2)	C19—C20—C21—S1	178.1 (2)
C1—N1—C5—C6	177.9 (3)	C22—S1—C21—C14	-124.0 (2)
Cd1—N1—C5—C6	-2.3 (3)	C22—S1—C21—C20	58.5 (3)
C3—C4—C5—N1	1.4 (5)	C21—S1—C22—C23	-135.7 (3)
C3—C4—C5—C6	-178.9 (3)	C21—S1—C22—C27	47.8 (3)
C10—N2—C6—C7	0.8 (5)	C27—C22—C23—C24	-0.1 (6)
Cd1—N2—C6—C7	-179.6 (2)	S1—C22—C23—C24	-176.7 (3)
C10—N2—C6—C5	-178.5 (3)	C22—C23—C24—C25	-0.4 (7)
Cd1—N2—C6—C5	1.0 (3)	C23—C24—C25—C26	-0.2 (8)
N1-C5-C6-N2	0.8 (4)	C24—C25—C26—C27	1.3 (8)
C4—C5—C6—N2	-179.0 (3)	C23—C22—C27—C26	1.2 (6)
N1-C5-C6-C7	-178.5 (3)	S1—C22—C27—C26	177.7 (4)
C4—C5—C6—C7	1.7 (5)	C25—C26—C27—C22	-1.8 (8)
N2—C6—C7—C8	-0.4 (5)		

Symmetry code: (i) -x, -y+2, -z+1.