Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Nitro-1-[(trimethylsilyl)ethynyl]benzene: low-temperature polymorph at 100 K^1

Jasmine N. Millican, Frank R. Fronczek* and Steve F. Watkins

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: ffroncz@lsu.edu

Received 27 July 2012; accepted 30 July 2012

Key indicators: single-crystal X-ray study; T = 100 K, P = 0.0 kPa; mean σ (C–C) = 0.002 Å; R factor = 0.051; wR factor = 0.123; data-to-parameter ratio = 33.7.

The title compound, $C_{11}H_{13}NO_2Si$, is a low-temperature form of the previously reported room-temperature structure [Garcia et al. (1998). Acta Cryst. C54, 489-491]. At 298 K, the material crystallizes in the space group Pnma and occupies a crystallographic mirror plane, but at 100 K the space group changes to $P2_12_12_1$, the volume decreases by 5% and the molecule distorts. The greatest molecular distortions from C_s symmetry are rotations of the trimethylsilyl and nitro groups by 10.56 (8) and 11.47 (9) $^{\circ}$, respectively, to the benzene mean plane. At low temperature, the crystal also becomes an inversion twin, the refined ratio of the twin components being 0.35 (15):0.65 (15).

Related literature

For the synthesis of the title compound, see: Takahashi et al. (1980). For the crystal structure of the room temperature form of the title compound, see: Garcia et al. (1998). For a description of the Cambridge Structural Database, see: Allen (2002). For Hooft analysis of Bijvoet pairs, see: Hooft et al. (2008).

Experimental

Crystal data

C11H13NO2Si $M_r = 219.31$ Orthorhombic, $P2_12_12_1$ a = 10.222 (2) Å b = 7.128 (2) Å c = 16.537 (4) Å

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.966, \ T_{\max} = 0.979$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$
$wR(F^2) = 0.123$
S = 1.02
4690 reflections
139 parameters
H-atom parameters constrained

V = 1204.9 (5) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.18 \text{ mm}^-$ T = 100 K $0.20 \times 0.15 \times 0.12 \text{ mm}$

17805 measured reflections 4690 independent reflections 3538 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.032$

 $\Delta \rho_{\rm max} = 0.36 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1953 Bijvoet pairs Flack parameter: 0.35 (15)

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Purchase of the diffractometer was made possible by grant No. LEQSF(1999-2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2491).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Garcia, J. G., Asfaw, B., Rodriguez, A. & Fronczek, F. R. (1998). Acta Cryst. C54. 489-491.
- Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Takahashi, S., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, 8, 627-630.

supporting information

Acta Cryst. (2012). E68, o2652 [doi:10.1107/S1600536812034034]

4-Nitro-1-[(trimethylsilyl)ethynyl]benzene: low-temperature polymorph at 100 K

Jasmine N. Millican, Frank R. Fronczek and Steve F. Watkins

S1. Comment

At 298 K title molecule has C_s symmetry (Garcia *et al.*, 1998; CSD refcode NILWIO; Allen, 2002), with all but two methyl groups lying in the mirror plane. When the temperature is reduced to 100 K, the inversion center vanishes and the space group changes from *Pnma* to *P*2₁2₁2₁, the unit cell volume is reduced from 1261.8 (3) to 1204.9 (5) Å³, and the molecular symmetry is reduced to C₁. The mean plane of the six benzene C atoms, (mean deviation $\delta_{r.m.s.} = 0.004$ Å), is normal to the *b* axis at 298 K but inclines +4.51 (8)° from normal at 100 K, while the C1—Si1—C9 plane is rotated off-normal by -6.05 (8)° and the NO₂ group is rotated off-normal by +15.78 (9)°.

Other geometrical parameters in the two polymorphs are similar, for example [those at 298 K are in parentheses] : $C1 \equiv C2 = 1.209$ (2) [1.199 (4)] Å, Si1—C1 = 1.845 (2) [1.839 (3)] Å, Si1—C9 = 1.856 (2) [1.831 (4)] Å, Si1—C10 = 1.853 (2) [1.838 (3)] Å, Si1—C10B = 1.856 (2)[1.838 (3)] Å, N1—O1 = 1.219 (2) [1.201 (4)] Å, N1—O2 = 1.221 (2) [1.175 (4)] Å, Si1—C1 \equiv C2 = 176.1 (2) [177.9 (3)]°, C1 \equiv C2—C3 = 175.9 (2) [178.0 (3)]°, O1—N1—O2 = 123.5 (2) [122.9 (3)]°.

S2. Experimental

The compound was prepared by palladium(II) coupling of trimethylsilylacetylene with 4-nitroiodobenzene as described by (Takahashi *et al.*, 1980).

S3. Refinement

Analysis of 1953 Bijvoet pairs yields a Hooft (Hooft *et al.*, 2008) parameter y = 0.42 (6) and P3(rac-twin) = 1.000. The model was therefore refined as an inversion twin (*SHELXL* commands TWIN and BASF) giving the refined ratio 0.35 (15):0.65 (15) for the twin components. The C-bound H atoms were placed in calculated positions, guided by difference maps, and treated as riding atoms: C—H = 0.95 and 0.98 Å for CH(aromatic) and CH₃ H atoms, respectively, with $U_{iso} = k \times U_{eq}(C)$, where k = 1.5 for CH₃ H atoms and = 1.2 for other H atoms. A torsional parameter was refined for each methyl group.

Figure 1

View of the molecular structure of the title compound, with atom numbering. The displacement ellipsoids are drawn at the 50% probability level.

4-Nitro-1-[(trimethylsilyl)ethynyl]benzene

Crystal data

C₁₁H₁₃NO₂Si $M_r = 219.31$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 10.222 (2) Å b = 7.128 (2) Å c = 16.537 (4) Å V = 1204.9 (5) Å³ Z = 4

Data collection

Nonius KappaCCD
diffractometer
Radiation source: sealed tube
Horizonally mounted graphite crystal
monochromator
Detector resolution: 9 pixels mm ⁻¹
ω and φ scans
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.123$ S = 1.024690 reflections 139 parameters 0 restraints 0 constraints Primary atom site location: structure-invariant direct methods F(000) = 464 $D_x = 1.209 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2709 reflections $\theta = 2.5-34.3^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 100 KNeedle fragment, yellow $0.20 \times 0.15 \times 0.12 \text{ mm}$

 $T_{\min} = 0.966, T_{\max} = 0.979$ 17805 measured reflections
4690 independent reflections
3538 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{\max} = 33.8^{\circ}, \theta_{\min} = 3.1^{\circ}$ $h = -15 \rightarrow 15$ $k = -11 \rightarrow 11$ $l = -25 \rightarrow 25$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.046P)^2 + 0.4973P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.36$ e Å⁻³ $\Delta\rho_{min} = -0.32$ e Å⁻³

Absolute structure: Flack (1983), 1953 Bijvoet pairs

Absolute structure parameter: 0.35 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.67962 (16)	0.2773 (3)	0.66604 (9)	0.0270 (3)
C2	0.77829 (16)	0.2789 (3)	0.70632 (9)	0.0252 (3)
C3	0.89002 (14)	0.2769 (3)	0.75911 (9)	0.0218 (3)
C4	1.01780 (16)	0.2851 (3)	0.72849 (9)	0.0262 (3)
H4	1.0316	0.2956	0.6719	0.031*
C5	1.12430 (15)	0.2779 (3)	0.78050 (10)	0.0265 (3)
Н5	1.2111	0.2842	0.7602	0.032*
C6	1.10107 (14)	0.2614 (3)	0.86239 (9)	0.0234 (3)
C7	0.97590 (14)	0.2541 (3)	0.89480 (9)	0.0242 (3)
H7	0.9629	0.2433	0.9515	0.029*
C8	0.87080 (14)	0.2629 (3)	0.84253 (9)	0.0225 (3)
H8	0.7843	0.2594	0.8635	0.027*
C9	0.5612 (2)	0.2384 (5)	0.50094 (10)	0.0415 (5)
H9A	0.6112	0.1226	0.4926	0.062*
H9B	0.6129	0.3459	0.4825	0.062*
H9C	0.4794	0.2322	0.4702	0.062*
C10	0.4263 (2)	0.0658 (3)	0.64911 (14)	0.0376 (5)
H10A	0.4097	0.0836	0.707	0.056*
H10B	0.475	-0.0512	0.6409	0.056*
H10C	0.3429	0.0593	0.6201	0.056*
C10B	0.4280 (2)	0.4829 (3)	0.62787 (15)	0.0394 (5)
H10D	0.477	0.5912	0.6075	0.059*
H10E	0.4124	0.4982	0.686	0.059*
H10F	0.3439	0.4742	0.5996	0.059*
N1	1.21298 (13)	0.2499 (3)	0.91772 (9)	0.0345 (3)
01	1.32160 (13)	0.2830 (3)	0.89090 (11)	0.0531 (4)
O2	1.19270 (16)	0.2043 (4)	0.98780 (9)	0.0670 (7)
Sil	0.52365 (4)	0.26554 (7)	0.61012 (3)	0.02349 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0248 (7)	0.0341 (10)	0.0221 (7)	0.0007 (8)	-0.0007 (6)	-0.0014 (7)
C2	0.0248 (7)	0.0291 (9)	0.0219 (6)	0.0008 (7)	-0.0009 (5)	-0.0006 (7)
C3	0.0208 (6)	0.0240 (8)	0.0207 (6)	0.0008 (7)	-0.0020 (5)	0.0005 (6)
C4	0.0247 (7)	0.0345 (9)	0.0194 (6)	0.0007 (8)	0.0022 (6)	0.0026 (6)
C5	0.0189 (6)	0.0334 (10)	0.0270 (7)	-0.0001 (7)	0.0027 (5)	0.0008 (8)

supporting information

C6	0.0183 (6)	0.0274 (9)	0.0245 (6)	0.0001 (8)	-0.0048 (5)	-0.0022 (8)
C7	0.0223 (6)	0.0311 (8)	0.0192 (5)	0.0013 (8)	-0.0001 (5)	-0.0013 (7)
C8	0.0177 (6)	0.0285 (9)	0.0212 (6)	-0.0005 (7)	0.0001 (5)	-0.0016 (7)
C9	0.0392 (9)	0.0626 (15)	0.0228 (7)	-0.0031 (12)	-0.0018 (7)	-0.0023 (10)
C10	0.0296 (10)	0.0364 (12)	0.0467 (12)	0.0002 (8)	0.0011 (9)	0.0090 (9)
C10B	0.0310 (10)	0.0343 (11)	0.0530 (13)	0.0074 (8)	-0.0112 (10)	-0.0091 (9)
N1	0.0235 (6)	0.0442 (10)	0.0357 (7)	0.0034 (8)	-0.0094 (6)	-0.0075 (9)
O1	0.0217 (6)	0.0733 (12)	0.0641 (10)	-0.0078 (7)	-0.0111 (7)	0.0065 (11)
O2	0.0388 (8)	0.136 (2)	0.0264 (7)	0.0166 (12)	-0.0122 (6)	-0.0023 (10)
Sil	0.02129 (18)	0.0293 (2)	0.01984 (18)	0.00030 (19)	-0.00383 (15)	-0.00043 (19)

Geometric parameters (Å, °)

C1—C2	1.209 (2)	C9—Sil	1.8560 (18)
C1—Si1	1.8450 (17)	С9—Н9А	0.98
C2—C3	1.438 (2)	С9—Н9В	0.98
C3—C8	1.397 (2)	С9—Н9С	0.98
C3—C4	1.402 (2)	C10—Si1	1.853 (2)
C4—C5	1.388 (2)	C10—H10A	0.98
C4—H4	0.95	C10—H10B	0.98
C5—C6	1.380 (2)	C10—H10C	0.98
С5—Н5	0.95	C10B—Si1	1.856 (2)
С6—С7	1.388 (2)	C10B—H10D	0.98
C6—N1	1.4671 (19)	C10B—H10E	0.98
C7—C8	1.380 (2)	C10B—H10F	0.98
С7—Н7	0.95	N1O1	1.219 (2)
С8—Н8	0.95	N1—O2	1.221 (2)
C2—C1—Si1	176.09 (16)	Н9А—С9—Н9С	109.5
C1—C2—C3	175.90 (18)	H9B—C9—H9C	109.5
C8—C3—C4	119.38 (13)	Si1-C10-H10A	109.5
C8—C3—C2	119.25 (14)	Si1—C10—H10B	109.5
C4—C3—C2	121.36 (14)	H10A—C10—H10B	109.5
C5—C4—C3	120.35 (14)	Si1-C10-H10C	109.5
C5—C4—H4	119.8	H10A—C10—H10C	109.5
C3—C4—H4	119.8	H10B—C10—H10C	109.5
C6—C5—C4	118.44 (14)	Si1—C10B—H10D	109.5
С6—С5—Н5	120.8	Si1-C10B-H10E	109.5
C4—C5—H5	120.8	H10D-C10B-H10E	109.5
C5—C6—C7	122.73 (14)	Si1—C10B—H10F	109.5
C5—C6—N1	118.86 (13)	H10D-C10B-H10F	109.5
C7—C6—N1	118.42 (14)	H10E-C10B-H10F	109.5
C8—C7—C6	118.29 (13)	O1—N1—O2	123.47 (16)
С8—С7—Н7	120.9	O1—N1—C6	118.21 (16)
С6—С7—Н7	120.9	O2—N1—C6	118.31 (15)
C7—C8—C3	120.81 (13)	C1—Si1—C10	108.92 (10)
С7—С8—Н8	119.6	C1—Si1—C10B	109.77 (10)
С3—С8—Н8	119.6	C10—Si1—C10B	107.68 (10)

Si1—C9—H9A	109.5	C1—Si1—C9	108.27 (8)
Sil—C9—H9B	109.5	C10—Si1—C9	111.68 (12)
Н9А—С9—Н9В	109.5	C10B—Si1—C9	110.51 (12)
Si1—C9—H9C	109.5		
C8—C3—C4—C5	0.5 (3)	C6—C7—C8—C3	0.6 (3)
C2—C3—C4—C5	-178.28 (19)	C4—C3—C8—C7	-1.0 (3)
C3—C4—C5—C6	0.4 (3)	C2—C3—C8—C7	177.76 (18)
C4—C5—C6—C7	-0.9 (3)	C5-C6-N1-O1	10.6 (3)
C4—C5—C6—N1	178.80 (18)	C7—C6—N1—O1	-169.7 (2)
C5—C6—C7—C8	0.3 (3)	C5—C6—N1—O2	-168.0 (2)
N1—C6—C7—C8	-179.33 (18)	C7—C6—N1—O2	11.7 (3)