Structure Reports

Online
ISSN 1600-5368

Tetrakis(dimethylammonium) trans-di-chloridobis[5,5'-(pyrazine-2,3-diyl)-bis(1H-tetrazol-1-ido-к N^{1})]copper(II)

Ju-Hsiou Liao* and Pei-Shan Shi

Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chia-Yi, Taiwan
Correspondence e-mail: chejh!@ccu.edu.tw
Received 7 August 2012; accepted 27 August 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.030 ; w R$ factor $=0.085$; data-to-parameter ratio $=17.3$.

The title compound, $\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}\right)_{4}\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{10}\right)_{2} \mathrm{Cl}_{2}\right]$, consists of an anionic complex which is composed of a $\mathrm{Cu}^{\mathrm{II}}$ ion surrounded by four N atoms from two pyrazine-2,3diylbis(1 H -tetrazol-1-ide) ligands, and two Cl^{-}atoms in a trans $-\mathrm{Cl}_{2} \mathrm{~N}_{4}$ coordination geometry; the $\mathrm{Cu}^{\mathrm{II}}$ atom lies on a site of symmetry $2 / \mathrm{m}$. The $\mathrm{Cu}-\mathrm{Cl}$ distance of 2.8719 (5) \AA is long due to the Jahn-Teller distortion of the d^{9} electron configuration of $\mathrm{Cu}^{\mathrm{II}}$ ion. The tetrazole and pyrazine rings make an $\mathrm{N}-$ $\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angle of $38.25(17)^{\circ}$. The charge of the anionic complex is balanced by four dimethylammonium cations, which interact with the anionic complexes via N $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Related literature

For the coordination compound of 2,3-di-1H-tetrazol-5-ylpyrazine, see: Li et al. (2008). For related structure, see Tao et al. (2010).

Experimental

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}\right)_{4}\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{10}\right)_{2} \mathrm{Cl}_{2}\right]$

$$
M_{r}=747.17
$$

Orthorhombic, Cmca
$a=20.613$ (2) A
$Z=4$
$b=10.5671(9) \AA$
Mo $K \alpha$ radiation
$c=15.0687(12) \AA$
$\mu=0.89 \mathrm{~mm}^{-1}$
$V=3282.3(5) \AA^{3}$
$T=293 \mathrm{~K}$
$0.06 \times 0.06 \times 0.05 \mathrm{~mm}$

Data collection
Bruker SMART APEX diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.947, T_{\text {max }}=0.959$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.085 \quad$ independent and constrained
$S=1.08$
2079 reflections
120 parameters

18389 measured reflections 2079 independent reflections 1888 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cu} 1-\mathrm{N} 1$	$2.0029(10)$	$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.8719(5)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 6-\mathrm{H} 6 B \cdots \mathrm{Cl1} 1^{\mathrm{i}}$	$0.88(2)$	$2.32(2)$	$3.1731(13)$	$162.7(18)$
$\mathrm{N} 6-\mathrm{H} 6 A \cdots \mathrm{~N} 4^{\mathrm{ii}}$	$0.93(2)$	$1.91(2)$	$2.8381(17)$	$175(2)$

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.
Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

The authors thank the National Science Council of Taiwan for financial support.

Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: PK2440).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Li, J.-R., Tao, Y., Yu, Q., Bu, X.-H., Sakamoto, H. \& Kitagawa, S. (2008). Chem. Eur. J. 14, 2771-2776.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Tao, Y., Li, J.-R., Chang, Z. \& Bu, X.-H. (2010). Cryst. Growth Des. 10, $564-$ 574.

supporting information

Acta Cryst. (2012). E68, m1234 [https://doi.org/10.1107/S1600536812036896]

Tetrakis(dimethylammonium) trans-dichloridobis[5,5'-(pyrazine-2,3-diyl)bis(1H-tetrazol-1-ido- κN^{1})]copper(II)

Ju-Hsiou Liao and Pei-Shan Shi

S1. Comment

Multifunctional tetrazolate ligands have recently been of great interest for the formation of metal-organic frameworks (MOFs). Thus far, the di-topic tetrazolate-based ligand, 2,3-di-1H-tetrazol-5-ylpyrazine $\left(\mathrm{H}_{2} \mathrm{dtp}\right)$ has only been found in a chiral, porous and thermally robust $\mathrm{MOF}, \mathrm{Zn}(\mathrm{dtp})(\mathrm{Li}, 2008)$. In our laboratory, the reaction of $\mathrm{H}_{2} \mathrm{dtp}$ and CuCl_{2} in dimethylformamide (DMF) under acidic conditions afforded the title compound (I).
In the title complex anion, the $\mathrm{Cu}^{\text {II }}$ ion is six-coordinated in a distorted octahedral environment, surrounded by two Cl^{-} anions and four N -atoms from two chelating (dtp) ${ }^{2-}$ anionic ligands, forming a trans $-\mathrm{Cl}_{2} \mathrm{~N}_{4}$ coordination geometry (Fig. 1). The bonding mode is quite different from that observed in $\mathrm{Zn}(\mathrm{dtp})$. The asymmetric unit of the $\left[\mathrm{CuCl}_{2}(\mathrm{dtp})_{2}\right]^{4-}$ anion contains one quarter of the complex, with the $\mathrm{Cu}^{\mathrm{II}}$ ion located at a site of $2 / \mathrm{m}$ symmetry, and the two Cl^{-}anions lie in a mirror plane. The $\mathrm{Cu}-\mathrm{Cl}$ bond length, 2.8719 (5) \AA, is unusually long due to Jahn-Teller distortion of the d^{9} electron configuration of $\mathrm{Cu}^{\mathrm{II}}$ ion, while the $\mathrm{Cu}-\mathrm{N}$ distance is normal at 2.0029 (10) \AA. The tetrazolyl and pyrazinyl rings are not coplanar, with a torsion angle of $38.25(17)^{\circ}$, in accord with the single-bond character of $\mathrm{C} 1-\mathrm{C} 2$ bond, 1.4678 (17) \AA. In the aromatic $\mathrm{CN}_{4}{ }^{-}$tetrazolate ring, the $\mathrm{N} 2-\mathrm{N} 3$ bond, 1.3071 (16) \AA, has slightly more double bond character than those of N1—N2 and N3-N4 bonds, 1.3455 (15) \AA and 1.3450 (17) \AA.

Four equivalents of $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]^{+}$cations are present to balance the charge, as shown in the packing diagram (Fig. 2). Slabs parallel to the $b c$-plane are formed by hydrogen bonding networks, which are constructed by the $\mathrm{N}-\mathrm{H}$ bonds of $\left[\mathrm{NH}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right]^{+}$cations interacting with the Cl^{-}atoms and tetrazolate- N atoms of anionic complexes. Such slabs are stacked along the a-axis through van der Waals interactions among the methyl groups of the dimethylammonium cations.

S2. Experimental

$4.3-\mathrm{mg}(0.025 \mathrm{mmol}) \mathrm{CuCl}_{2} 2 \mathrm{H}_{2} \mathrm{O}$ and $10.5-\mathrm{mg}(0.05 \mathrm{mmol}) \mathrm{H}_{2} \mathrm{dtp}$ were dissolved in 1-ml dimethylformamide (DMF) respectively. The solutions were mixed in a reaction vial, adding $50-\mathrm{ml} 3 \mathrm{M} \mathrm{HCl}$ to adjust the pH value to ~ 1.5. The mixture was ultrasonicated to form a homogeneous yellowish green solution, and was kept at $120^{\circ} \mathrm{C}$ for three days. The product was washed with a small amount of DMF and acetone, and then dried in air. 18.2 mg of blue plate-like crystals were collected in 97.7% yield, based on Cu .

S3. Refinement

H atoms, except for H6A and H6B, were positioned geometrically and allowed to ride on their respective parent atoms with $\mathrm{C}-\mathrm{H}=0.96 \AA[$ methyl, $\operatorname{Uiso}(\mathrm{H})=1.5 \operatorname{Ueq}(\mathrm{C})]$ and $\mathrm{C}-\mathrm{H}=0.93 \AA[\operatorname{aromatic}, \operatorname{Uiso}(\mathrm{H})=1.2 U \mathrm{eq}(\mathrm{C})]$. H6A and H6B, which are involved in hydrogen bonds, were located in difference Fourier map and are refined freely. The highest peak $\left(0.740 \mathrm{e}^{-3}\right)$ and the deepest hole $\left(-0.257 \mathrm{e}^{-3}\right)$ in the difference Fourier map are located $0.79 \AA$ and $1.19 \AA$ from the atoms C2 and C3, respectively.

Figure 1
The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms. Unlabelled atoms are related to the reference atoms by the symmetry operations (1-x,-y,1-z),(x,-y,1-z) and (1-x,y, $z)$.

Figure 2
A packing diagram of the title compound. All H -atoms except for those involved in hydrogen bonds are omitted for clarity. Hydrogen-bonding interactions are drawn with dashed lines.

Tetrakis(dimethylammonium) trans-dichloridobis[5,5'-(pyrazine-2,3-diyl)bis(1H-tetrazol- 1-ido- $\left.\left.\kappa N^{1}\right)\right] \operatorname{copper}(\mathrm{II})$

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}\right)_{4}\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{10}\right)_{2} \mathrm{Cl}_{2}\right]$
$M_{r}=747.17$
Orthorhombic, Cmca
Hall symbol: -C 2bc 2
$a=20.613$ (2) \AA
$b=10.5671$ (9) \AA
$c=15.0687(12) \AA$
$V=3282.3(5) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\varphi-\omega$ scan
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\min }=0.947, T_{\text {max }}=0.959$
$F(000)=1548$
$D_{\mathrm{x}}=1.512 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 999 reflections
$\theta=5-23.5^{\circ}$
$\mu=0.89 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Hexagonal, blue
$0.06 \times 0.06 \times 0.05 \mathrm{~mm}$

18389 measured reflections
2079 independent reflections
1888 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-27 \rightarrow 26$
$k=-14 \rightarrow 14$
$l=-19 \rightarrow 20$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.085$
$S=1.08$
2079 reflections
120 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0517 P)^{2}+1.6198 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\text {max }}=0.001$
> $\Delta \rho_{\max }=0.74 \mathrm{e}^{-3}$
> $\Delta \rho_{\text {min }}=-0.26$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Cu1	0.5000	0.0000	0.5000	$0.02900(12)$
C11	0.5000	$-0.23652(5)$	$0.59389(3)$	$0.03605(14)$
C1	$0.42546(6)$	$0.07284(12)$	$0.66989(8)$	$0.0248(3)$
C2	$0.46598(6)$	$0.00989(11)$	$0.73673(8)$	$0.0253(3)$
C3	$0.46657(8)$	$-0.09929(14)$	$0.86700(10)$	$0.0391(3)$
H3	0.4447	-0.1387	0.9134	0.047^{*}
C4	$0.32397(9)$	$0.36802(17)$	$0.42405(12)$	$0.0474(4)$
H4A	0.3170	0.3341	0.4824	0.071^{*}
H4B	0.2836	0.3985	0.4006	0.071^{*}
H4C	0.3545	0.4366	0.4273	0.071^{*}
C5	$0.30596(8)$	$0.15966(16)$	$0.35528(11)$	$0.0442(4)$
H5A	0.3052	0.1116	0.4093	0.066^{*}
H5B	0.3210	0.1070	0.3076	0.066^{*}
H5C	0.2630	0.1894	0.3421	0.066^{*}
N1	$0.43237(5)$	$0.07041(10)$	$0.58166(7)$	$0.0266(2)$
N2	$0.38148(6)$	$0.13511(11)$	$0.54897(7)$	$0.0323(3)$
N3	$0.34593(6)$	$0.17510(12)$	$0.61510(8)$	$0.0342(3)$
N4	$0.37226(6)$	$0.13670(11)$	$0.69221(8)$	$0.0312(3)$
N5	$0.43235(6)$	$-0.04459(12)$	$0.80258(8)$	$0.0349(3)$
N6	$0.34981(6)$	$0.26828(14)$	$0.36567(9)$	$0.0364(3)$
H6A	$0.3595(11)$	$0.3006(19)$	$0.3099(15)$	$0.059(6)^{*}$
H6B	$0.3887(12)$	$0.2447(19)$	$0.3834(13)$	$0.053(6)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu 1	$0.01762(17)$	$0.0475(2)$	$0.02182(18)$	0.000	0.000	$-0.01293(12)$
C 11	$0.0268(2)$	$0.0411(3)$	$0.0402(3)$	0.000	0.000	$0.0032(2)$
C 1	$0.0213(6)$	$0.0300(6)$	$0.0231(6)$	$-0.0018(4)$	$0.0021(4)$	$-0.0041(5)$
C 2	$0.0256(7)$	$0.0273(6)$	$0.0231(6)$	$-0.0004(5)$	$0.0013(5)$	$-0.0038(4)$
C 3	$0.0442(8)$	$0.0416(8)$	$0.0316(7)$	$-0.0034(7)$	$0.0052(6)$	$0.0105(6)$
C 4	$0.0503(10)$	$0.0485(9)$	$0.0433(9)$	$0.0003(7)$	$0.0054(8)$	$0.0000(7)$
C 5	$0.0405(8)$	$0.0494(9)$	$0.0428(8)$	$0.0033(7)$	$-0.0050(7)$	$-0.0014(7)$
N 1	$0.0206(5)$	$0.0374(6)$	$0.0219(5)$	$0.0022(4)$	$-0.0014(4)$	$-0.0042(4)$
N 2	$0.0238(5)$	$0.0458(7)$	$0.0274(6)$	$0.0061(5)$	$-0.0025(4)$	$-0.0016(5)$
N 3	$0.0257(6)$	$0.0451(7)$	$0.0319(6)$	$0.0078(5)$	$0.0006(4)$	$-0.0013(5)$
N 4	$0.0270(6)$	$0.0386(6)$	$0.0279(5)$	$0.0055(4)$	$0.0045(4)$	$-0.0020(5)$
N 5	$0.0324(6)$	$0.0413(6)$	$0.0309(6)$	$-0.0036(5)$	$0.0041(5)$	$0.0050(5)$
N 6	$0.0244(6)$	$0.0565(8)$	$0.0282(6)$	$0.0034(5)$	$0.0017(5)$	$0.0067(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cu} 1-\mathrm{N} 1^{1}$	2.0029 (10)	C4-H4A	0.9600
$\mathrm{Cu} 1-\mathrm{N} 1^{\text {ii }}$	2.0029 (10)	C4-H4B	0.9600
$\mathrm{Cu} 1-\mathrm{N} 1$	2.0029 (10)	C4- H 4 C	0.9600
$\mathrm{Cu} 1-\mathrm{N} 1^{\text {iii }}$	2.0029 (10)	C5-N6	1.469 (2)
$\mathrm{Cu} 1-\mathrm{Cl} 1$	2.8719 (5)	C5-H5A	0.9600
C1-N4	1.3309 (16)	C5-H5B	0.9600
C1-N1	1.3374 (15)	C5-H5C	0.9600
C1-C2	1.4678 (17)	N1-N2	1.3455 (15)
C2-N5	1.3405 (17)	N1-N2	1.3455 (15)
$\mathrm{C} 2-\mathrm{C} 2{ }^{\text {ii }}$	1.402 (3)	N2-N3	1.3071 (16)
C3-N5	1.3319 (19)	N3-N2	1.3071 (16)
$\mathrm{C} 3-\mathrm{C} 3{ }^{\text {ii }}$	1.378 (3)	N3-N4	1.3450 (17)
C3-H3	0.9300	N6-H6A	0.93 (2)
C4-N6	1.473 (2)	N6-H6B	0.88 (2)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Cul}-\mathrm{N} 1^{\text {ii }}$	180.0	H4B-C4-H4C	109.5
N1-Cu1-N1	91.77 (6)	N6-C5-H5A	109.5
$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{N} 1$	88.23 (6)	N6-C5-H5B	109.5
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1^{\text {iii }}$	88.23 (6)	H5A-C5-H5B	109.5
$\mathrm{N} 1{ }^{\text {iii }}$ - $\mathrm{Cu} 1-\mathrm{N} 1{ }^{\text {iii }}$	91.77 (6)	N6-C5-H5C	109.5
N1-Cu1-N1 $1^{\text {iii }}$	180.0	H5A-C5-H5C	109.5
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{Cl} 1$	88.82 (3)	H5B-C5-H5C	109.5
N1i- ${ }^{\text {iii }}$ - $1-\mathrm{Cl1}$	91.18 (3)	C1-N1-N2	105.74 (10)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	91.18 (3)	C1-N1-N2	105.74 (10)
N1 ${ }^{\text {iii- }}$ - $\mathrm{Cu} 1-\mathrm{Cl1}$	88.82 (3)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	133.78 (9)
N4- $\mathrm{C} 1-\mathrm{N} 1$	110.40 (11)	N2-N1-Cu1	120.43 (8)
N4-C1-C2	121.69 (11)	N2-N1-Cu1	120.43 (8)
N1-C1-C2	127.80 (11)	N3-N2-N1	108.79 (10)
N5-C2-C2 ${ }^{\text {ii }}$	121.15 (8)	N2-N3-N4	109.56 (11)

$\mathrm{N} 5-\mathrm{C} 2-\mathrm{C} 1$	$114.09(11)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{N} 4$	$109.56(11)$
$\mathrm{C} 2^{\mathrm{ii}}-\mathrm{C} 2-\mathrm{C} 1$	$124.68(7)$	$\mathrm{C} 1-\mathrm{N} 4-\mathrm{N} 3$	$105.50(10)$
$\mathrm{N} 5-\mathrm{C} 3-\mathrm{C} 3^{\mathrm{ii}}$	$121.98(8)$	$\mathrm{C} 3-\mathrm{N} 5-\mathrm{C} 2$	$116.86(13)$
$\mathrm{N} 5-\mathrm{C} 3-\mathrm{H} 3$	119.0	$\mathrm{C} 5-\mathrm{N} 6-\mathrm{C} 4$	$113.59(13)$
$\mathrm{C} 3{ }^{\mathrm{ii}}-\mathrm{C} 3-\mathrm{H} 3$	119.0	$\mathrm{C} 5-\mathrm{N} 6-\mathrm{H} 6 \mathrm{~A}$	$108.9(13)$
$\mathrm{N} 6-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5	$\mathrm{C} 4-\mathrm{N} 6-\mathrm{H} 6 \mathrm{~A}$	$110.8(13)$
$\mathrm{N} 6-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5	$\mathrm{C} 5-\mathrm{N} 6-\mathrm{H} 6 \mathrm{~B}$	$111.8(13)$
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5	$\mathrm{C} 4-\mathrm{N} 6-\mathrm{H} 6 \mathrm{~B}$	$110.5(13)$
$\mathrm{N} 6-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5	$\mathrm{H} 6 \mathrm{~A}-\mathrm{N} 6-\mathrm{H} 6 \mathrm{~B}$	$100.5(18)$
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5		
$\mathrm{~N} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 5$			

Symmetry codes: (i) $x,-y,-z+1$; (ii) $-x+1, y, z$; (iii) $-x+1,-y,-z+1$.

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 6 — \mathrm{H} 6 B \cdots \mathrm{Cl1}{ }^{\text {iii }}$	$0.88(2)$	$2.32(2)$	$3.1731(13)$	$162.7(18)$
$\mathrm{N} 6 — \mathrm{H} 6 A \cdots \mathrm{~N} 4^{\text {iv }}$	$0.93(2)$	$1.91(2)$	$2.8381(17)$	$175(2)$

Symmetry codes: (iii) $-x+1,-y,-z+1$; (iv) $x,-y+1 / 2, z-1 / 2$.

