metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetrakis(5,7-dimethylguinolin-8-olato- $\kappa^2 N.O$)zirconium(IV) dimethylformamide disolvate

Maryke Stevn,* Hendrik G. Visser and Andreas Roodt

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300 South Africa Correspondence e-mail: steynm@ufs.ac.za

Received 20 September 2012; accepted 8 October 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.041; wR factor = 0.099; data-toparameter ratio = 16.6.

In the title compound, $[Zr(C_{11}H_{10}NO)_4] \cdot 2C_3H_7NO$, the Zr^{IV} ion is coordinated by four bidentate 5,7-dimethylquinolin-8olate ligands in a slightly distorted square-antiprismatic coordination environment. The asymmetric unit also contains two N,N'-dimethylformamide (DMF) solvent molecules. In the crystal, a weak $C-H\cdots O$ hydrogen bond links the complex molecule to a solvent molecule and weak $\pi - \pi$ [centroid-centroid stacking interactions distance 3.671 (3) Å] also occur. One of the DMF solvent molecules was refined as disordered over three sets of sites, with refined occupancies in the ratio of 0.391 (9):0.342 (10):0.267 (7).

Related literature

For N,O- and O,O'-bidentate ligand complexes of zirconium and hafnium, see: Calderazzo et al. (1998); Demakopoulos et al. (1995); Steyn et al. (2008, 2011); Viljoen et al. (2008, 2009a.b: 2010a.b): Zherikova et al. (2005, 2006, 2008). For our ongoing research of structure reactivity relationships in catalysis, separation chemistry and other industrial reaction mechanisms, see: Roodt et al. (2011); Schutte et al. (2011); Brink et al. (2010); Ferreira et al. (2007); Haumann et al. (2004).

 $V = 4618 (2) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 0.29 \text{ mm}^-$

 $0.26 \times 0.14 \times 0.13 \text{ mm}$

61276 measured reflections

11142 independent reflections

8497 reflections with $I > 2\sigma(I)$

Z = 4

T = 100 K

 $R_{\rm int}=0.064$

Experimental

Crystal data

[Zr(C11H10NO)4]·2C3H7NO $M_r = 926.21$ Orthorhombic, Pna21 a = 15.572 (5) Åb = 18.706(5) Å c = 15.853 (5) Å

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.928, \ T_{\max} = 0.963$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.099$	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm A}^{-3}_{\circ}$
S = 1.02	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm A}^{-3}$
11142 reflections	Absolute structure: Flack (1983),
671 parameters	5375 Friedel pairs
299 restraints	Flack parameter: -0.01 (3)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C14A - H14E \cdots O201^{i}$	0.96	2.43	3.358 (7)	161

Symmetry code: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from the Advanced Metals Initiative (AMI) and the Department of Science and Technology (DST) of South Africa, as well as the New Metals Development Network (NMDN) and the South African Nuclear Energy Corporation Limited (Necsa), is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5537).

References

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brink, A., Roodt, A., Steyl, G. & Visser, H. G. (2010). Dalton Trans. 39, 5572– 5578.
- Bruker (2004). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Calderazzo, F., Englert, U., Maichle-Mossmer, C., Marchetti, F., Pampaloni, G., Petroni, D., Pinzino, C., Strähle, J. & Tripepi, G. (1998). *Inorg. Chim. Acta*, **270**, 177–188.
- Demakopoulos, I., Klouras, N., Raptopoulou, C. P. & Terzis, A. (1995). Z. Anorg. Allg. Chem. 621, 1761–1766.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ferreira, A. C., Crous, R., Bennie, L., Meij, A. M. M., Blann, K., Bezuidenhoudt, B. C. B., Young, D. A., Green, M. J. & Roodt, A. (2007). *Angew. Chem. Int. Ed.* 46, 2273–2275.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Haumann, M., Meijboom, R., Moss, J. R. & Roodt, A. (2004). *Dalton Trans.* pp. 1679–1686.
- Roodt, A., Visser, H. G. & Brink, A. (2011). Crystallogr. Rev. 17, 241-280.
- Schutte, M., Kemp, G., Visser, H. G. & Roodt, A. (2011). Inorg. Chem. 50, 12486–12498.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.
- Steyn, M., Visser, H. G., Roodt, A. & Muller, T. J. (2011). Acta Cryst. E67, m1240-m1241.
- Viljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst. E64, m838-m839.
- Viljoen, J. A., Visser, H. G. & Roodt, A. (2010a). Acta Cryst. E66, m603-m604. Viljoen, J. A., Visser, H. G. & Roodt, A. (2010b). Acta Cryst. E66, m1053-
- m1054.
- Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009a). Acta Cryst. E65, m1514–m1515.
- Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009b). Acta Cryst. E65, m1367–m1368.
- Zherikova, K. V., Baidina, I. A., Morozova, N. B., Kurateva, N. V. & Igumenov, I. K. (2008). J. Struct. Chem. 49, 1098–1103.
- Zherikova, K. V., Morozova, N. B., Baidina, I. A., Peresypkina, E. V. & Igumenov, I. K. (2006). J. Struct. Chem. 47, 570–574.
- Zherikova, K. V., Morozova, N. B., Kurateva, N. V., Baidina, I. A., Stabnikov, P. A. & Igumenov, I. K. (2005). J. Struct. Chem. 46, 1039–1046.

supporting information

Acta Cryst. (2012). E68, m1344-m1345 [doi:10.1107/S1600536812042092]

Tetrakis(5,7-dimethylquinolin-8-olato- $\kappa^2 N$,*O*)zirconium(IV) dimethylformamide disolvate

Maryke Steyn, Hendrik G. Visser and Andreas Roodt

S1. Comment

This study forms part of our ongoing research of structure reactivity relationships in catalysis, separation chemistry and other industrial reaction mechanisms including radio pharmacy (Roodt *et al.* 2011; Schutte *et al.* 2011; Brink *et al.* 2010; Ferreira *et al.* 2007; Haumann *et al.* 2004; Steyn *et al.* 2008, 2011; Viljoen *et al.* 2008, 2009*a*,*b*, 2010*a*,*b*).

The asymmetric unit of the title compound, $[Zr(C_{10}H_{11}NO)_4].2C_3H_7NO$, with $C_{10}H_{11}NO$ (diMeOx) = 5,7-Dimethyl-8quinolinol, consists of a Zr^{IV} ion coordinated to four bidentate ligands (diMeOx), as well as two *N*,*N*'-dimethylformamide (DMF) solvent molecules. In the complex molecule (Fig. 1) the Zr^{IV} ion lies at the centre of an approximate square antiprismatic coordination polyhedron of the N,*O*-coordination ligand atoms, with a small distortion towards dodecahedral geometry. The Zr—N and Zr—O bond distances range from 2.094 (2) to 2.117 (2) Å and 2.398 (2) to 2.438 (2) Å, respectively. The N—Zr—O bite angles range from 69.70 (8)° to 70.55 (8)°.

In the crystal, a weak C—H···O hydrogen bond connects the complex molecule to a solvent molecule (Table 1). In addition, weak π - π interactions exist between the pyridine rings of the diMeOx ligand and symmetry related molecules (1 - *x*, 1 - *y*, 1/2 + z), with interplanar and centroid-to-centroid distances of 3.433 (4) Å and 3.671 (3) Å, respectively (Figure 2).

S2. Experimental

Chemicals were purchased from Sigma-Aldrich and used as received. ZrCl₄ (101.3 mg, 0.435 mmol) and 5,7-Dimethyl-8quinolinol (diMeOxH) (228.2 mg, 1.317 mmol) was separately dissolved in DMF (2.5 ml ea) and heated to 60°C. The diMeOxH solution as added drop-wise to the zirconium solution and stirred at 333 K for 30 minutes. The reaction solution was removed from heating, covered and left to stand. Red cuboid crystals, suitable for single X-Ray diffraction, formed after 10 days. (Yield: 203 mg, 79%).

S3. Refinement

H atoms were placed inidealized positions (C—H = 0.93–0.96Å) and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The highest residual electron density was located 0.95 Å from O102. One of the DMF solvent molecules was refined as disordered over three sets of sites with refined occupancies in a ratio of 0.391 (9):0.342 (10):0.267 (7).

Figure 1

The molecular structre of the Zr complex of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms and the solvent molecules are omitted for clarity.

Figure 2

Part of the crystal structure with weak π - π interactions shown as dashed lines.

Tetrakis(5,7-dimethylquinolin-8-olato- $\kappa^2 N$,O)zirconium(IV) dimethylformamide disolvate

Crystal data

 $[Zr(C_{11}H_{10}NO)_4] \cdot 2C_3H_7NO$ $M_r = 926.21$ Orthorhombic, $Pna2_1$ Hall symbol: P 2c -2n a = 15.572 (5) Å b = 18.706 (5) Å c = 15.853 (5) Å V = 4618 (2) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.928, T_{\max} = 0.963$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.099$ S = 1.0211142 reflections F(000) = 1936 $D_x = 1.332 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9914 reflections $\theta = 2.6-24.6^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 100 KCuboid, red $0.26 \times 0.14 \times 0.13 \text{ mm}$

61276 measured reflections 11142 independent reflections 8497 reflections with $I > 2\sigma(I)$ $R_{int} = 0.064$ $\theta_{max} = 28^\circ, \theta_{min} = 2.1^\circ$ $h = -20 \rightarrow 20$ $k = -22 \rightarrow 24$ $l = -20 \rightarrow 20$

671 parameters299 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0485P)^2 + 0.3005P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$

Special details

 $\Delta \rho_{\text{max}} = 0.42 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.39 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 5375 Friedel pairs Absolute structure parameter: -0.01 (3)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Zr01	0.966490 (14)	0.144904 (13)	0.35471 (2)	0.02304 (7)	
N102	0.96042 (15)	0.03648 (14)	0.43981 (17)	0.0262 (6)	
O101	0.89103 (13)	0.17184 (11)	0.46024 (13)	0.0297 (5)	
O104	1.02836 (11)	0.19244 (11)	0.24980 (13)	0.0271 (5)	
N104	0.87759 (15)	0.23775 (13)	0.29748 (17)	0.0262 (6)	
O103	0.85773 (12)	0.09319 (11)	0.30675 (14)	0.0279 (5)	
N101	1.01720 (16)	0.25663 (13)	0.41574 (17)	0.0294 (6)	
N103	1.01035 (15)	0.04558 (13)	0.26899 (16)	0.0251 (6)	
O102	1.08748 (12)	0.12297 (11)	0.40715 (14)	0.0271 (5)	
C116	1.1890 (2)	0.04673 (17)	0.4780 (2)	0.0326 (7)	
C128	0.79960 (18)	0.25709 (16)	0.3227 (2)	0.0295 (7)	
H128	0.7761	0.2349	0.3698	0.035*	
C110	0.8931 (2)	-0.00201 (18)	0.4599 (2)	0.0339 (8)	
H110	0.8392	0.0135	0.4427	0.041*	
C122	0.95422 (19)	-0.05997 (17)	0.1978 (2)	0.0260 (7)	
C107	0.8621 (2)	0.23826 (18)	0.5857 (2)	0.0352 (8)	
C125	0.79013 (19)	-0.00990 (18)	0.2458 (2)	0.0363 (8)	
C121	1.03962 (19)	-0.07799 (19)	0.1757 (2)	0.0320 (8)	
H121	1.0504	-0.1193	0.1448	0.038*	
C118	1.03964 (18)	0.01552 (17)	0.46759 (19)	0.0247 (6)	
C111	0.8992 (2)	-0.0659 (2)	0.5063 (2)	0.0423 (9)	
H111	0.8502	-0.0922	0.519	0.051*	
C109	0.97617 (19)	0.27293 (17)	0.4900 (2)	0.0291 (7)	
C120	1.1060 (2)	-0.03520 (18)	0.1995 (2)	0.0352 (8)	
H120	1.1621	-0.0464	0.1841	0.042*	
C114	1.1373 (2)	-0.06654 (18)	0.5408 (2)	0.0332 (8)	
C117	1.10771 (19)	0.06285 (17)	0.4490 (2)	0.0278 (7)	
C129	0.75120 (19)	0.30983 (17)	0.2808 (2)	0.0348 (8)	
H129	0.6965	0.3216	0.2997	0.042*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C119	1.0886 (2)	0.02635 (18)	0.2479 (2)	0.0307 (7)
H119	1.1344	0.0545	0.2657	0.037*
C134	1.03493 (19)	0.27832 (19)	0.1369 (2)	0.0355 (8)
C127	0.94307 (19)	0.00394 (16)	0.2438 (2)	0.0251 (7)
C135	0.9944 (2)	0.24636 (17)	0.2046 (2)	0.0270 (7)
C131	0.8681 (2)	0.32476 (19)	0.1829 (2)	0.0343 (7)
C112	0.9788 (2)	-0.0889(2)	0.5328 (2)	0.0389 (9)
H112	0.9837	-0.1313	0.563	0.047*
C115	1,2008 (2)	-0.01833(18)	0.5218 (2)	0.0381 (8)
H115	1.2562	-0.0294	0.5391	0.046*
C101	1.0838(2)	0.29617(16)	0.3917(2)	0.0341 (8)
H101	1 1107	0.2859	0.3407	0.041*
C113	1.0527(2)	-0.04862(17)	0.5143(2)	0.0296 (7)
C102	1.0327(2) 1 1149(2)	0.04002(17) 0.35297(18)	0.3143(2) 0.4411(3)	0.0290(7) 0.0429(9)
H102	1.1149 (2)	0.3794	0.4731	0.0429(9)
C104	1.1021 1.0026(2)	0.3794 0.32012 (10)	0.4251 0.5431(3)	0.031
C104	1.0020(2)	0.32912(19) 0.27068(17)	0.3431(3) 0.2282(2)	0.0400(9)
C130	1.1225(2)	0.27008(17) 0.2566(2)	0.2282(2) 0.1106(2)	0.0294(7)
	1.1255 (2)	0.2300 (2)	0.1100(2)	0.0412(9)
ПI4А UI4D	1.103	0.2818	0.1441	0.062*
HI4B	1.1318	0.208	0.0521	0.062*
HI4C	1.1304	0.2001	0.118/	0.062^{*}
C133	0.9898 (3)	0.3325 (2)	0.0928 (3)	0.0465 (10)
H133	1.0169	0.3534	0.0467	0.056*
C126	0.86090 (18)	0.03010 (16)	0.2668 (2)	0.0272(7)
C12A	1.1540 (2)	-0.13471 (18)	0.5890 (2)	0.0427 (9)
H12A	1.2146	-0.1402	0.5978	0.064*
H12B	1.1327	-0.1747	0.5572	0.064*
H12C	1.1252	-0.1327	0.6425	0.064*
C124	0.8028 (2)	-0.07534 (18)	0.2024 (2)	0.0428 (9)
H124	0.7545	-0.1024	0.1897	0.051*
C108	0.9078 (2)	0.22615 (17)	0.5113 (2)	0.0302 (7)
C103	1.0751 (2)	0.36913 (19)	0.5161 (3)	0.0460 (10)
H103	1.0957	0.4064	0.5492	0.055*
C13A	0.8899 (2)	-0.17105 (18)	0.1312 (3)	0.0425 (9)
H13A	0.8342	-0.1914	0.1216	0.064*
H13B	0.924	-0.2035	0.164	0.064*
H13C	0.9176	-0.1625	0.078	0.064*
C106	0.8905 (2)	0.2956 (2)	0.6375 (2)	0.0469 (10)
H106	0.8612	0.303	0.6878	0.056*
C11B	0.7879 (2)	0.1918 (2)	0.6073 (2)	0.0416 (9)
H11A	0.7388	0.206	0.5747	0.062*
H11B	0.775	0.1966	0.6663	0.062*
H11C	0.8018	0.143	0.595	0.062*
C105	0.9568 (3)	0.3407 (2)	0.6200 (3)	0.0506 (12)
C13B	0.7013 (2)	0.0169 (2)	0.2666 (3)	0.0574 (12)
H13D	0.6854	0.001	0.322	0.086*
H13E	0.6611	-0.0014	0.2261	0.086*
H13F	0.7008	0.0682	0.2649	0.086*

C12B	1.2621 (2)	0.09893 (19)	0.4674 (3)	0.0428 (9)	
H12D	1.2882	0.092	0.4131	0.064*	
H12E	1.304	0.091	0.5108	0.064*	
H12F	1.2406	0.1469	0.4714	0.064*	
C14A	0.8651 (3)	0.4165 (3)	0.0639 (3)	0.0684 (14)	
H14D	0.9045	0.4356	0.0231	0.103*	
H14E	0.848	0.4536	0.1022	0.103*	
H14F	0.8154	0.398	0.0356	0.103*	
C130	0.7850 (2)	0.34339 (18)	0.2126 (2)	0.0377 (8)	
H130	0.7536	0.3787	0.1852	0.045*	
C123	0.8805 (2)	-0.10150 (17)	0.1781 (2)	0.0328 (8)	
C132	0.9089 (3)	0.3563 (2)	0.1132 (3)	0.0496 (10)	
C11A	0.9852 (3)	0.3981 (3)	0.6804 (3)	0.0790 (17)	
H11D	0.976	0.4442	0.6553	0.119*	
H11E	1.0451	0.3922	0.6929	0.119*	
H11F	0.9525	0.3946	0.7316	0.119*	
N201	0.5982 (2)	0.0128 (2)	0.8446 (3)	0.0738 (11)	
C202	0.5442 (3)	-0.0454 (3)	0.8137 (3)	0.0685 (13)	
H20A	0.5562	-0.0537	0.7551	0.103*	
H20B	0.4848	-0.0326	0.8202	0.103*	
H20C	0.5559	-0.088	0.8453	0.103*	
C203	0.5743 (5)	0.0405 (5)	0.9247 (5)	0.144 (3)	
H20D	0.6092	0.0813	0.9377	0.216*	
H20E	0.5824	0.0045	0.9671	0.216*	
H20F	0.515	0.0545	0.9235	0.216*	
C201	0.6631 (3)	0.0338 (3)	0.7986 (5)	0.0925 (18)	
H201	0.696	0.0695	0.8237	0.111*	
O201	0.6878 (2)	0.0165 (2)	0.7320 (3)	0.0958 (13)	
N31	0.372 (2)	0.2574 (12)	0.8644 (9)	0.142 (6)	0.342 (10)
C31A	0.464 (2)	0.2579 (16)	0.8591 (10)	0.141 (8)	0.342 (10)
H31A	0.485	0.2097	0.8564	0.211*	0.342 (10)
H31B	0.4875	0.2811	0.908	0.211*	0.342 (10)
H31C	0.4815	0.2833	0.8093	0.211*	0.342 (10)
C31B	0.331 (2)	0.3202 (14)	0.8686 (13)	0.158 (9)	0.342 (10)
H31D	0.3721	0.3585	0.8649	0.237*	0.342 (10)
H31E	0.3009	0.3234	0.9212	0.237*	0.342 (10)
H31F	0.2911	0.3237	0.8228	0.237*	0.342 (10)
C31C	0.3383 (19)	0.1890 (12)	0.8670 (13)	0.151 (6)	0.342 (10)
H31J	0.2808	0.1767	0.874	0.181*	0.342 (10)
O31	0.4022 (14)	0.1459 (8)	0.8578 (11)	0.169 (7)	0.342 (10)
N32	0.5527 (18)	0.2747 (12)	0.8555 (18)	0.163 (8)	0.267 (7)
C32B	0.476 (2)	0.3148 (16)	0.848 (3)	0.171 (10)	0.267 (7)
H32A	0.489	0.3627	0.8307	0.257*	0.267 (7)
H32B	0.4464	0.3157	0.9011	0.257*	0.267 (7)
H32C	0.4392	0.2929	0.8062	0.257*	0.267 (7)
C32C	0.546 (2)	0.2060 (11)	0.8783 (12)	0.169 (10)	0.267 (7)
H32D	0.4869	0.1931	0.8826	0.253*	0.267 (7)
H32E	0.5738	0.1992	0.932	0.253*	0.267 (7)

H32F	0.5738	0.1765	0.8368	0.253*	0.267 (7)
C32A	0.6322 (19)	0.3019 (16)	0.841 (2)	0.198 (11)	0.267 (7)
H32J	0.6379	0.3497	0.8257	0.238*	0.267 (7)
O32	0.6989 (19)	0.2633 (15)	0.8475 (15)	0.237 (12)	0.267 (7)
N33	0.3685 (14)	0.2750 (9)	0.8788 (12)	0.127 (5)	0.391 (9)
C33A	0.4579 (15)	0.2793 (11)	0.8624 (16)	0.112 (6)	0.391 (9)
H33A	0.4857	0.2372	0.8836	0.167*	0.391 (9)
H33B	0.4811	0.3207	0.8899	0.167*	0.391 (9)
H33C	0.4672	0.2829	0.8027	0.167*	0.391 (9)
C33C	0.3514 (15)	0.2052 (7)	0.9044 (9)	0.122 (6)	0.391 (9)
H33D	0.4044	0.1812	0.9166	0.183*	0.391 (9)
H33E	0.3217	0.1803	0.8603	0.183*	0.391 (9)
H33F	0.3163	0.2061	0.9542	0.183*	0.391 (9)
C33B	0.3106 (17)	0.3250 (11)	0.8571 (17)	0.130 (6)	0.391 (9)
H33J	0.3285	0.3643	0.8258	0.156*	0.391 (9)
033	0.2314 (12)	0.3201 (7)	0.8785 (8)	0.142 (6)	0.391 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zr01	0.01669 (11)	0.02212 (12)	0.03031 (13)	0.00031 (10)	-0.00125 (16)	-0.00248 (17)
N102	0.0214 (13)	0.0287 (15)	0.0285 (15)	0.0003 (11)	0.0024 (11)	-0.0051 (12)
O101	0.0275 (11)	0.0256 (11)	0.0360 (13)	0.0039 (9)	0.0014 (9)	-0.0050 (10)
O104	0.0177 (10)	0.0272 (11)	0.0365 (12)	-0.0001 (8)	-0.0009 (9)	-0.0015 (10)
N104	0.0174 (11)	0.0264 (13)	0.0347 (15)	0.0011 (10)	-0.0020 (10)	-0.0047 (12)
O103	0.0164 (9)	0.0280 (11)	0.0393 (12)	0.0005 (8)	-0.0008 (9)	-0.0068 (10)
N101	0.0253 (13)	0.0243 (13)	0.0387 (16)	0.0033 (10)	-0.0082 (11)	-0.0033 (12)
N103	0.0167 (12)	0.0252 (14)	0.0335 (15)	0.0006 (10)	0.0018 (11)	-0.0004 (12)
O102	0.0196 (10)	0.0249 (11)	0.0370 (12)	0.0015 (8)	-0.0035 (9)	-0.0004 (10)
C116	0.0258 (16)	0.0304 (18)	0.0415 (19)	0.0009 (13)	-0.0038 (14)	0.0018 (15)
C128	0.0205 (14)	0.0276 (16)	0.0403 (17)	0.0005 (12)	0.0012 (12)	-0.0038 (13)
C110	0.0227 (16)	0.042 (2)	0.0371 (19)	0.0007 (14)	0.0033 (14)	0.0016 (16)
C122	0.0219 (15)	0.0226 (16)	0.0334 (17)	0.0000 (12)	-0.0004 (13)	-0.0030 (14)
C107	0.0315 (17)	0.041 (2)	0.0326 (18)	0.0204 (15)	-0.0063 (14)	-0.0057 (16)
C125	0.0208 (15)	0.0357 (19)	0.052 (2)	-0.0039 (13)	0.0038 (14)	-0.0126 (17)
C121	0.0267 (17)	0.032 (2)	0.037 (2)	0.0015 (14)	0.0043 (14)	-0.0106 (16)
C118	0.0213 (15)	0.0269 (16)	0.0258 (16)	0.0031 (12)	0.0046 (13)	-0.0007 (13)
C111	0.0301 (18)	0.044 (2)	0.053 (2)	-0.0066 (16)	0.0078 (17)	0.0118 (19)
C109	0.0299 (17)	0.0240 (17)	0.0334 (18)	0.0102 (13)	-0.0109 (14)	-0.0072 (14)
C120	0.0206 (15)	0.040 (2)	0.045 (2)	0.0000 (14)	0.0039 (14)	-0.0122 (17)
C114	0.0279 (16)	0.0340 (19)	0.0377 (19)	0.0061 (14)	-0.0001 (14)	0.0048 (16)
C117	0.0276 (15)	0.0256 (17)	0.0300 (16)	0.0041 (13)	0.0012 (13)	-0.0007 (14)
C129	0.0192 (15)	0.0328 (18)	0.053 (2)	0.0029 (13)	-0.0028 (15)	-0.0011 (17)
C119	0.0221 (15)	0.0333 (19)	0.0368 (19)	-0.0022 (13)	0.0018 (14)	-0.0028 (15)
C134	0.0251 (16)	0.044 (2)	0.0375 (18)	-0.0005 (15)	-0.0014 (14)	0.0034 (16)
C127	0.0203 (14)	0.0277 (17)	0.0274 (17)	-0.0025 (13)	0.0007 (12)	-0.0033 (14)
C135	0.0213 (14)	0.0269 (18)	0.0328 (17)	0.0000 (13)	-0.0055 (13)	-0.0013 (14)
C131	0.0293 (16)	0.0392 (19)	0.0346 (19)	0.0025 (14)	-0.0048 (14)	0.0047 (16)

C112	0.0347 (19)	0.034 (2)	0.048 (2)	0.0044 (15)	0.0082 (16)	0.0074 (17)
C115	0.0284 (16)	0.038 (2)	0.048 (2)	0.0093 (15)	-0.0040 (15)	0.0039 (17)
C101	0.0267 (16)	0.0250 (16)	0.050 (2)	0.0008 (13)	-0.0088 (14)	-0.0022 (15)
C113	0.0319 (17)	0.0268 (18)	0.0302 (18)	0.0027 (14)	0.0051 (14)	-0.0002 (15)
C102	0.0318 (17)	0.0267 (18)	0.070 (3)	0.0012 (14)	-0.0184 (18)	-0.0057 (18)
C104	0.0320 (17)	0.0313 (18)	0.057 (2)	0.0131 (16)	-0.0177 (17)	-0.0137 (18)
C136	0.0231 (15)	0.0304 (18)	0.0346 (18)	-0.0037 (13)	-0.0023 (13)	-0.0026 (15)
C14B	0.0279 (16)	0.052 (2)	0.043 (2)	0.0004 (15)	0.0011 (15)	0.0115 (18)
C133	0.041 (2)	0.060 (3)	0.039 (2)	0.008 (2)	0.0059 (19)	0.019 (2)
C126	0.0219 (14)	0.0234 (16)	0.0363 (18)	-0.0006 (12)	0.0017 (13)	-0.0039 (14)
C12A	0.0377 (19)	0.039 (2)	0.052 (2)	0.0090 (16)	-0.0012 (17)	0.0084 (18)
C124	0.0273 (17)	0.038 (2)	0.063 (2)	-0.0136 (15)	-0.0015 (16)	-0.0142 (19)
C108	0.0289 (16)	0.0291 (17)	0.0324 (17)	0.0119 (13)	-0.0084 (14)	-0.0044 (15)
C103	0.0329 (19)	0.034 (2)	0.071 (3)	0.0071 (15)	-0.0234 (19)	-0.0204 (19)
C13A	0.0358 (19)	0.0308 (18)	0.061 (2)	-0.0058 (15)	-0.0002 (17)	-0.0134 (18)
C106	0.041 (2)	0.062 (3)	0.037 (2)	0.029 (2)	-0.0102 (16)	-0.0189 (19)
C11B	0.0334 (18)	0.056 (2)	0.0352 (19)	0.0199 (17)	-0.0002 (15)	-0.0069 (18)
C105	0.044 (2)	0.054 (3)	0.054 (3)	0.0193 (19)	-0.020 (2)	-0.031 (2)
C13B	0.0236 (17)	0.056 (2)	0.093 (3)	-0.0054 (16)	-0.0032 (19)	-0.030 (2)
C12B	0.0256 (16)	0.043 (2)	0.060 (2)	-0.0029 (15)	-0.0115 (16)	0.0133 (19)
C14A	0.056 (3)	0.089 (4)	0.061 (3)	0.032 (2)	0.006 (2)	0.033 (3)
C130	0.0277 (16)	0.040 (2)	0.045 (2)	0.0102 (14)	-0.0068 (15)	0.0014 (17)
C123	0.0296 (16)	0.0275 (18)	0.041 (2)	-0.0038 (14)	0.0031 (14)	-0.0047 (15)
C132	0.041 (2)	0.062 (3)	0.046 (2)	0.0135 (19)	0.0007 (18)	0.017 (2)
C11A	0.056 (3)	0.092 (4)	0.089 (4)	0.020 (3)	-0.021 (3)	-0.064 (3)
N201	0.0424 (18)	0.081 (2)	0.098 (3)	0.0171 (18)	0.001 (2)	0.007 (3)
C202	0.041 (2)	0.080 (3)	0.084 (3)	0.003 (2)	-0.001 (2)	0.010 (3)
C203	0.094 (5)	0.185 (8)	0.154 (7)	0.070 (5)	-0.007 (5)	-0.073 (6)
C201	0.049 (3)	0.090 (4)	0.138 (5)	0.010 (3)	0.004 (3)	0.013 (4)
O201	0.0446 (19)	0.112 (3)	0.131 (4)	0.0012 (19)	0.018 (2)	0.028 (3)
N31	0.285 (12)	0.108 (10)	0.034 (7)	0.057 (10)	0.031 (9)	-0.024 (9)
C31A	0.296 (17)	0.070 (15)	0.055 (11)	-0.019 (14)	0.002 (15)	0.018 (12)
C31B	0.310 (19)	0.106 (14)	0.058 (13)	0.036 (16)	-0.054 (15)	-0.004 (12)
C31C	0.301 (14)	0.100 (11)	0.052 (10)	0.057 (11)	0.030 (12)	0.010 (11)
031	0.293 (19)	0.149 (12)	0.064 (7)	0.061 (12)	0.002 (15)	0.001 (10)
N32	0.31 (2)	0.136 (15)	0.047 (9)	0.014 (16)	0.053 (16)	0.010 (12)
C32B	0.34 (2)	0.13 (2)	0.045 (13)	-0.03 (2)	0.010 (19)	-0.013 (18)
C32C	0.38 (3)	0.095 (15)	0.032 (11)	0.051 (19)	0.061 (15)	0.000 (10)
C32A	0.35 (2)	0.17 (2)	0.071 (15)	0.027 (19)	0.043 (19)	0.029 (15)
O32	0.39 (3)	0.26 (3)	0.061 (11)	0.14 (2)	-0.011 (18)	0.060 (16)
N33	0.261 (11)	0.078 (8)	0.043 (7)	0.057 (9)	0.005 (8)	-0.020 (7)
C33A	0.243 (15)	0.049 (12)	0.043 (10)	-0.032 (11)	0.019 (12)	-0.018 (9)
C33C	0.307 (17)	0.030 (7)	0.029 (7)	0.007 (9)	-0.020 (10)	-0.005 (6)
C33B	0.267 (14)	0.083 (9)	0.040 (7)	0.059 (11)	-0.025 (11)	-0.009 (9)
O33	0.236 (15)	0.097 (8)	0.094 (10)	0.040 (11)	-0.001 (10)	0.003 (7)

Geometric parameters (Å, °)

Zr01—0103	2.093 (2)	C12A—H12A	0.96
Zr01—O102	2.100 (2)	C12A—H12B	0.96
Zr01—O101	2.106 (2)	C12A—H12C	0.96
Zr01—O104	2.118 (2)	C124—C123	1.360 (4)
Zr01—N104	2.399 (2)	C124—H124	0.93
Zr01—N103	2.401 (3)	C103—H103	0.93
Zr01—N101	2.435 (3)	C13A—C123	1.505 (5)
Zr01—N102	2.438 (3)	C13A—H13A	0.96
N102—C110	1.310 (4)	C13A—H13B	0.96
N102—C118	1.367 (4)	C13A—H13C	0.96
O101—C108	1.325 (4)	C106—C105	1.361 (6)
O104—C135	1.345 (4)	C106—H106	0.93
N104—C128	1.329 (4)	C11B—H11A	0.96
N104—C136	1.365 (4)	C11B—H11B	0.96
O103—C126	1.340 (4)	C11B—H11C	0.96
N101—C101	1.330 (4)	C105—C11A	1.506 (6)
N101—C109	1.374 (4)	C13B—H13D	0.96
N103—C119	1.314 (4)	C13B—H13E	0.96
N103—C127	1.365 (4)	C13B—H13F	0.96
O102—C117	1.343 (4)	C12B—H12D	0.96
C116—C117	1.380 (4)	C12B—H12E	0.96
C116—C115	1.413 (5)	C12B—H12F	0.96
C116—C12B	1.510 (4)	C14A—C132	1.531 (5)
C128—C129	1.408 (4)	C14A—H14D	0.96
C128—H128	0.93	C14A—H14E	0.96
C110—C111	1.407 (5)	C14A—H14F	0.96
C110—H110	0.93	C130—H130	0.93
C122—C127	1.412 (4)	C11A—H11D	0.96
C122—C121	1.416 (4)	C11A—H11E	0.96
C122—C123	1.421 (4)	C11A—H11F	0.96
C107—C108	1.395 (5)	N201—C201	1.307 (7)
C107—C106	1.422 (5)	N201—C203	1.422 (8)
C107—C11B	1.486 (5)	N201—C202	1.461 (6)
C125—C126	1.373 (4)	C202—H20A	0.96
C125—C124	1.418 (5)	C202—H20B	0.96
C125—C13B	1.508 (4)	С202—Н20С	0.96
C121—C120	1.361 (4)	C203—H20D	0.96
C121—H121	0.93	С203—Н20Е	0.96
C118—C117	1.412 (4)	C203—H20F	0.96
C118—C113	1.424 (5)	C201—O201	1.169 (7)
C111—C112	1.377 (5)	C201—H201	0.93
C111—H111	0.93	N31—C31B	1.341 (17)
C109—C104	1.408 (5)	N31—C31C	1.387 (17)
C109—C108	1.419 (5)	N31—C31A	1.430 (16)
C120—C119	1.410 (5)	C31A—H31A	0.96
C120—H120	0.93	C31A—H31B	0.96

C114 C115	1 272 (4)	C21A H21C	0.06
	1.372(4)	CITA-HILL	0.90
	1.424 (4)	C31B—H31D	0.96
C114—C12A	1.509 (5)	C31B—H31E	0.96
C129—C130	1.356 (5)	C31B—H31F	0.96
С129—Н129	0.93	C31C—O31	1.29 (2)
С119—Н119	0.93	C31C—H31J	0.93
C134—C135	1.381 (5)	N32—C32C	1.338 (17)
C134—C133	1.417 (5)	N32—C32A	1.359 (18)
C134—C14B	1.497 (4)	N32—C32B	1.422 (18)
C127—C126	1.417 (4)	C32B—H32A	0.96
C135—C136	1.419 (4)	C32B—H32B	0.96
C131—C132	1.405 (5)	C32B—H32C	0.96
C131—C136	1.413 (4)	C32C—H32D	0.96
C131—C130	1.421 (4)	С32С—Н32Е	0.96
C112—C113	1.406 (5)	C32C—H32F	0.96
C112—H112	0.93	C32A—O32	1.27 (2)
C115—H115	0.93	C32A—H32J	0.93
C101-C102	1 406 (5)	N33—C33B	1 343 (16)
C101—H101	0.93	N33—C33C	1.392(15)
C102 - C103	1 375 (6)	N33-C33A	1.392(15) 1.418(15)
C102 - H102	0.93	C33A—H33A	0.96
C102 $C103$	1.421 (6)	C33A H33B	0.96
C104 - C105	1.421(0) 1.428(6)	C33A H33C	0.96
C104 $U103$ $C104$ $U103$	1.428 (0)	C32C 1122D	0.90
C14D $H14A$	0.96		0.96
CI4B—HI4B	0.96	C33C—H33E	0.96
CI4B—HI4C	0.96	C33C—H33F	0.96
C133—C132	1.374 (5)	C33B—O33	1.28 (2)
С133—Н133	0.93	С33В—Н33Ј	0.93
O103—Zr01—O102	141.21 (8)	H12A—C12A—H12B	109.5
O103—Zr01—O101	87.00 (8)	C114—C12A—H12C	109.5
O102—Zr01—O101	103.47 (9)	H12A—C12A—H12C	109.5
O103—Zr01—O104	106.07 (8)	H12B—C12A—H12C	109.5
O102—Zr01—O104	89.13 (8)	C123—C124—C125	124.9 (3)
O101—Zr01—O104	141.02 (8)	C123—C124—H124	117.5
0103 - Zr01 - N104	74.36 (8)	C125—C124—H124	117.5
0102 - Zr01 - N104	143 99 (8)	0101 - C108 - C107	122.7(3)
0101 - 7r01 - N104	78 77 (9)	0101 - C108 - C109	1122.7(3)
0104 - 7r01 - N104	70.22 (8)	C107 - C108 - C109	118.9(3)
0103 - 7r01 - N103	70.55 (8)	C102 - C103 - C104	110.3(3)
0103 - 2101 - 10103	70.33 (8)	C102 - C103 - C104	120.3(3)
O_{102} $- 2_{101}$ $- 10103$ O_{101} 7_{*01} N_{102}	17.47 (0) 142 52 (9)	$C_{102} - C_{103} - H_{103}$	117.7 110.0
0101—2101—IN103 0104 7:01 N102	$142.32(\delta)$	$C_{104} - C_{103} - H_{103}$	119.9
0104—Zr01—N103	/3.38 (8)	C123 - C12A - H13A	109.5
N104—Zr01—N103	120.68 (9)	C123—C13A—H13B	109.5
0103—Zr01—N101	143.46 (8)	H13A—C13A—H13B	109.5
O102—Zr01—N101	73.70 (8)	C123—C13A—H13C	109.5
O101—Zr01—N101	70.11 (9)	H13A—C13A—H13C	109.5
O104—Zr01—N101	78.70 (9)	H13B—C13A—H13C	109.5

N104—Zr01—N101	73.50 (8)	C105—C106—C107	125.9 (4)
N103—Zr01—N101	142.84 (8)	C105—C106—H106	117.1
O103—Zr01—N102	77.60 (8)	C107—C106—H106	117.1
O102—Zr01—N102	69.70 (8)	C107—C11B—H11A	109.5
O101—Zr01—N102	74.80 (8)	C107—C11B—H11B	109.5
O104—Zr01—N102	143.28 (8)	H11A—C11B—H11B	109.5
N104—Zr01—N102	142.11 (8)	C107—C11B—H11C	109.5
N103—Zr01—N102	71.36 (8)	H11A—C11B—H11C	109.5
N101—Zr01—N102	120.46 (9)	H11B—C11B—H11C	109.5
C110—N102—C118	119.1 (3)	C106—C105—C104	117.3 (4)
C110—N102—Zr01	128.5 (2)	C106—C105—C11A	122.3 (4)
C118—N102—Zr01	112.45 (19)	C104—C105—C11A	120.3 (4)
C108 - O101 - Zr01	124.0 (2)	C125—C13B—H13D	109.5
C135—O104—Zr01	123.64 (18)	C125—C13B—H13E	109.5
C128—N104—C136	118.2 (3)	H13D—C13B—H13E	109.5
$C_{128} N_{104} T_{r01}$	127.7(2)	C125—C13B—H13F	109.5
$C_{136} N_{104} Z_{r01}$	127.7(2) 114 05 (18)	H13D - C13B - H13F	109.5
$C_{126} - O_{103} - Z_{r01}$	123 28 (17)	H13E—C13B—H13F	109.5
C101 - N101 - C109	1190(3)	C116-C12B-H12D	109.5
C101 - N101 - 7r01	128.1(2)	C116 $C12B$ $H12B$	109.5
C109 - N101 - 7r01	112 3 (2)	H12D-C12B-H12E	109.5
C_{119} N103 $-C_{127}$	112.5(2) 118.8(3)	C116—C12B—H12F	109.5
$C_{119} = N_{103} = Z_{r01}$	128.3(2)	H12D— $C12B$ — $H12F$	109.5
C_{127} N103 Z_{r01}	112 86 (19)	H12F $C12B$ $H12F$	109.5
$C_{117} = O_{102} = Z_{r01}$	124 72 (18)	C132 - C14A - H14D	109.5
$C_{117} - C_{116} - C_{115}$	121.72(10) 1181(3)	C132 $C14A$ $H14F$	109.5
C_{117} C_{116} C_{12B}	120.9(3)	$H_{14}D_{}C_{14}A_{}H_{14}F_{}H_{1$	109.5
C_{115} C_{116} C_{12B}	120.9(3) 120.9(3)	C_{132} C_{144} H_{14F}	109.5
N104-C128-C129	120.9(3) 122.6(3)	H14D— $C14A$ — $H14F$	109.5
N104—C128—H128	118 7	H14F $C14A$ $H14F$	109.5
C_{129} C_{128} H_{128}	118.7	$C_{129} - C_{130} - C_{131}$	109.3 120.3(3)
N102-C110-C111	122 7 (3)	$C_{129} - C_{130} - H_{130}$	119.9
N102—C110—H110	118 7	$C_{12} = C_{130} = H_{130}$	119.9
C111—C110—H110	118.7	$C_{124} - C_{123} - C_{122}$	117.3 (3)
C_{127} C_{122} C_{121}	116.7	C124 - C123 - C122	117.5(3) 122 5 (3)
$C_{127} - C_{122} - C_{123}$	110.4(3) 118 5 (3)	$C_{122} - C_{123} - C_{13A}$	122.3(3) 120.1(3)
$C_{121} - C_{122} - C_{123}$	1251(3)	C_{133} C_{132} C_{131}	120.1(3) 1176(3)
C108 - C107 - C106	125.1(3) 116.8(3)	C_{133} C_{132} C_{144}	117.0(3) 121.8(4)
$C_{108} - C_{107} - C_{11B}$	110.8(3)	C_{131} C_{132} C_{14A}	121.6(4) 120.6(3)
$C_{106} - C_{107} - C_{11B}$	117.0(3) 123.4(3)	C105-C11A-H11D	109.5
$C_{126} - C_{125} - C_{124}$	123.4(3) 118 4 (3)	C105—C11A—H11F	109.5
$C_{126} - C_{125} - C_{13B}$	110.4(3) 1201(3)	$H_{11}D_{-}C_{11}A_{-}H_{11}E$	109.5
C124 - C125 - C13B	120.1(3) 121 4 (3)	C105-C11A-H11F	109.5
C120 - C121 - C122	121.7(3) 1203(3)	$H_{11}D_{-11}A_{-11}H_{11}F$	109.5
C120 C121 - C122	110.8	H11F_C11A_H11F	109.5
С122—С121—П121	119.8	$C_{201} N_{201} C_{203}$	109.5
N102—C118—C117	115.5 (3)	$C_{201} = N_{201} = C_{203}$	120.3(0) 118 9(5)
N102—C118—C113	122 5 (3)	$C_{201} = N_{201} = C_{202}$	110.9(5)
1102 0110 - 0113	144.3 (3)	0203 11201 0202	117.7 (3)

C117—C118—C113	122.0 (3)	N201—C202—H20A	109.5
C112—C111—C110	119.0 (3)	N201—C202—H20B	109.5
C112—C111—H111	120.5	H20A—C202—H20B	109.5
C110—C111—H111	120.5	N201—C202—H20C	109.5
N101—C109—C104	122.8 (3)	H20A—C202—H20C	109.5
N101—C109—C108	114.6 (3)	H20B—C202—H20C	109.5
C104—C109—C108	122.5 (3)	N201—C203—H20D	109.5
C121—C120—C119	119.0 (3)	N201—C203—H20E	109.5
C121—C120—H120	120.5	H20D—C203—H20E	109.5
C119—C120—H120	120.5	N201—C203—H20F	109.5
C115—C114—C113	116.5 (3)	H20D—C203—H20F	109.5
C115—C114—C12A	122.9 (3)	$H_{20E} = C_{203} = H_{20E}$	109.5
C_{113} C_{114} C_{12A}	120.5(3)	0201 - C201 - N201	132.4 (7)
0102 - C117 - C116	124.3(3)	O201 - C201 - H201	113.8
0102 - C117 - C118	116.9 (3)	N201—C201—H201	113.8
$C_{116} - C_{117} - C_{118}$	118.8 (3)	C31B - N31 - C31C	129 (2)
C_{130} C_{129} C_{128}	119.5 (3)	C31B N31 $C31A$	1184(19)
C130 - C129 - H129	120.2	C31C - N31 - C31A	113.1 (16)
C128 - C129 - H129	120.2	N31—C31A—H31A	109 5
N103—C119—C120	120.2 122.7(3)	N31—C31A—H31B	109.5
N103—C119—H119	118.6	H31A—C31A—H31B	109.5
C120-C119-H119	118.6	N31—C31A—H31C	109.5
C_{135} C_{134} C_{133}	117.8 (3)	H31A - C31A - H31C	109.5
$C_{135} - C_{134} - C_{14B}$	121.3(3)	H_{31B} C_{31A} H_{31C}	109.5
C_{133} $-C_{134}$ $-C_{14B}$	121.9(3) 120.9(3)	N31—C31B—H31D	109.5
N103-C127-C122	120.9(3)	N31—C31B—H31F	109.5
N103 - C127 - C122	122.7(3) 114.9(3)	H31D—C31B—H31F	109.5
$C_{122} - C_{127} - C_{126}$	114.9(3) 122 4 (3)	N31—C31B—H31F	109.5
0104 - C135 - C134	122.4(3) 1240(3)	H31D—C31B—H31F	109.5
0104 - C135 - C136	124.0(3) 117.2(3)	H31E - C31B - H31F	109.5
C_{134} C_{135} C_{136}	117.2(5) 118.8(3)	031 - C31C - N31	105.5 106.0(18)
C_{132} C_{131} C_{136}	110.0(3)	O_{31} $C_{31}C$ H_{311}	127
C_{132} C_{131} C_{130}	119.0(3) 124.7(3)	N31_C31C_H311	127
C_{136} C_{131} C_{130}	124.7(3)	$C_{32}C_{N32}C_{32}A$	127 1183(18)
$C_{111} - C_{112} - C_{113}$	110.3(5)	$C_{32}C_{N_{32}}C_{32}R_{32}$	117.8(19)
C111-C112-H112	119.8	$C_{32} = N_{32} = C_{32} = C_{32}$	117.0(19) 123.9(19)
C113_C112_H112	119.8	N32_C32B_H324	109.5
C114 - C115 - C116	125 5 (3)	N32-C32B-H32R	109.5
$C_{114} = C_{115} = C_{116}$	125.5 (5)	H32A C32B H32B	109.5
C116_C115_H115	117.2	N32_C32B_H32C	109.5
N101-C101-C102	117.2 122.0 (3)	$H_{32} = C_{32} = H_{32} C_{32}$	109.5
N101-C101-H101	110	$H_{32}R = C_{32}B = H_{32}C$	109.5
C102-C101-H101	119	N32—C32C—H32D	109.5
C_{112} C_{113} C_{114}	124 7 (3)	N32H32E	109.5
$C_{112} = C_{113} = C_{114}$	127.7(3) 1163(3)	H32D_C32C_H32E	109.5
C114 - C113 - C118	118.9 (3)	N32_C32C_H32E	109.5
C103-C102-C101	119 5 (3)	H32D_C32C_H32F	109.5
C103 - C102 - H102	120.3	H32F-C32C-H32F	109.5
$\mathbf{x}_{1}\mathbf{y}_{2}$ $\mathbf{x}_{1}\mathbf{y}_{2}$ $11\mathbf{y}_{2}$	140.0		10/.0

C101—C102—H102	120.3	O32—C32A—N32	121 (3)
C109—C104—C103	116.4 (3)	O32—C32A—H32J	119.4
C109—C104—C105	118.5 (4)	N32—C32A—H32J	119.4
C103—C104—C105	125.1 (3)	C33B—N33—C33C	126.8 (17)
N104—C136—C131	123.2 (3)	C33B—N33—C33A	124.9 (17)
N104—C136—C135	114.8 (3)	C33C—N33—C33A	107.1 (14)
C131—C136—C135	122.0 (3)	N33—C33A—H33A	109.5
C134—C14B—H14A	109.5	N33—C33A—H33B	109.5
C134—C14B—H14B	109.5	H33A—C33A—H33B	109.5
H14A—C14B—H14B	109.5	N33—C33A—H33C	109.5
C134—C14B—H14C	109.5	H33A—C33A—H33C	109.5
H14A—C14B—H14C	109.5	H33B—C33A—H33C	109.5
H14B—C14B—H14C	109.5	N33—C33C—H33D	109.5
C132—C133—C134	124.8 (4)	N33—C33C—H33E	109.5
С132—С133—Н133	117.6	H33D—C33C—H33E	109.5
С134—С133—Н133	117.6	N33—C33C—H33F	109.5
O103—C126—C125	124.4 (3)	H33D—C33C—H33F	109.5
O103—C126—C127	117.3 (2)	H33E—C33C—H33F	109.5
C125—C126—C127	118.3 (3)	O33—C33B—N33	122 (2)
C114—C12A—H12A	109.5	O33—C33B—H33J	119.1
C114—C12A—H12B	109.5	N33—C33B—H33J	119.1

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C14 <i>A</i> —H14 <i>E</i> ···O201 ⁱ	0.96	2.43	3.358 (7)	161

Symmetry code: (i) -x+3/2, y+1/2, z-1/2.