organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{2,7-Dimethoxy-8-[4-(2-methylpropyl)benzoyl]naphthalen-1-yl][4-(2-methylpropyl)phenyl]methanone

Kosuke Sasagawa, Daichi Hijikata, Rei Sakamoto, Akiko **Okamoto* and Noriyuki Yonezawa**

Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan Correspondence e-mail: aokamoto@cc.tuat.ac.jp

Received 27 October 2012; accepted 7 November 2012

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.126; data-to-parameter ratio = 15.0.

In the molecule of the title compound, $C_{34}H_{36}O_4$, the two 4isobutylbenzoyl groups at the 1- and 8-positions of the naphthalene ring system are aligned almost antiparallel, and the benzene rings make a dihedral angle of $21.59(7)^{\circ}$. The dihedral angles between the benzene rings and the naphthalene ring system are 69.26 (6) and 64.29 (5)°. There are no classical hydrogen bonds in the structure, but inversionrelated molecules engage in π - π stacking, with an interplanar spacing between related naphthalene groups of 3.4120 (16) Å.

Related literature

For details of the formation reaction of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Hijikata et al. (2010); Muto et al. (2010); Sasagawa, Hijikata et al. (2011); Sasagawa, Muto et al. (2011); Sasagawa et al. (2012).

Experimental

Crystal data $C_{34}H_{36}O_4$

 $M_r = 508.63$

Monoclinic, $P2_1/c$	Z = 4
a = 18.5280 (4) Å	Cu $K\alpha$ radiation
b = 7.83885 (15) Å	$\mu = 0.60 \text{ mm}^{-1}$
c = 20.2304 (4) Å	T = 193 K
$\beta = 103.642 \ (1)^{\circ}$	$0.60 \times 0.40 \times 0.05 \text{ mm}$
$V = 2855.33 (10) \text{ Å}^3$	
Data collection	
Rigaku R-AXIS RAPID	50913 measured reflections
diffractometer	5237 independent reflections
Absorption correction: numerical	3838 reflections with $I > 2\sigma(I)$
(NUMABS; Higashi, 1999)	$R_{\rm int} = 0.052$
$T_{\min} = 0.714, \ T_{\max} = 0.971$	
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.042$	350 parameters
$wR(F^2) = 0.126$	H-atom parameters constrained

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

 $\Delta \rho_{\rm max} = 0.17 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.15$ e Å⁻³

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for technical advice. This work was partially supported by a Sasagawa Scientific Research Grant from the Japan Science Society.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2455).

References

S = 1.12

5237 reflections

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridgeational Laboratory, Tennessee, USA.
- Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.
- Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.
- Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.
- Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sasagawa, K., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2119.
- Sasagawa, K., Hijikata, D., Sakamoto, R., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2596.
- Sasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, 03354.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o3348 [doi:10.1107/S1600536812045953]

{2,7-Dimethoxy-8-[4-(2-methylpropyl)benzoyl]naphthalen-1-yl}[4-(2-methyl-propyl)phenyl]methanone

Kosuke Sasagawa, Daichi Hijikata, Rei Sakamoto, Akiko Okamoto and Noriyuki Yonezawa

S1. Comment

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto *et al.*, 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as [2,7-dimethoxy-8-(4-methylbenzoyl)-1-naphthyl](4-methylphenyl)methanone [1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene] (Muto *et al.*, 2010), {8-[4-(bromomethyl)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(bromomethyl)phenyl]methanone [1,8-bis(4-bromomethylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa, Hijikata *et al.*, 2011), {8-[4-(butoxy)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(butoxy)phenyl]methanone [1,8-bis(4-butoxylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa, Muto *et al.*, 2011), [2,7-dimethoxynaphthalene] (Sasagawa *et al.*, 2012). The aroyl groups in these compounds are almost perpendicular to the naphthalene rings, and are oriented in opposite directions (*anti*-orientation). Moreover, we have also clarified that the aroyl groups of 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata *et al.*, 2010) are oriented in the same direction (*syn*-orientation). As part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, 1,8-diaroylatednaphthalene bearing isobutyl groups, is discussed in this article.

The molecular structure of the title compound is displayed in Fig 1. Two 4-isobutylbenzoyl groups are situated in the *anti*-orientation. The dihedral angle between the best planes of the two phenyl rings is 21.59 (7)°. The dihedral angles between the best planes of the 4-isobutylphenyl rings and the naphthalene ring are 69.26 (6)° and 64.29 (5)°.

The C=O bond of the ketonic carbonyl moiety (C12=O4), carbon atom (C31) of isobutyl groups, and benzene ring lie on the same plane [torsion angles O4—C12—C19—C24 = 2.49 (18)°; C31—C22—C23—C24 = 176.11 (14)°]. The corresponding torsion angles in the other aroyl group are 172.86 (12)° [O3—C11—C13—C14] and 178.36 (17)° [C27—C16—C17—C18], respectively.

In the molecular packing, C—H···O interactions between the carbonyl oxygen atoms and hydrogen atoms of benzene ring are observed along *b* axis. The C—H···O interactions effectively contribute to stabilization of the molecular alignment (C21—H21···O4 = 2.34 Å; symmetry code: x,-1 + y, z; Fig. 2).

S2. Experimental

To a 50 ml flask, 4-isobutylbenzoic acid (1.96 g, 11.0 mmol), phosphorus pentoxide–methanesulfonic acid mixture (P_2O_5 –MsOH [1/10 *w/w*]; 22.0 ml) were placed and stirred at 333 K. To the solution thus obtained, 2,7-dimethoxy-naphthalene (941 mg, 5.0 mmol) was added. After the reaction mixture was stirred at 333 K for 1.0 h, the reaction mixture was poured into ice-cold water (30 ml). The aqueous layer was extracted with CHCl₃ (15 ml × 3). The combined extracts were washed with 2 *M* aqueous NaOH followed by washing with brine. The organic layers thus obtained were

dried over anhydrous MgSO₄. The solvent was removed under reduced pressure to give cake (100% yield). The crude product was purified by recrystallization from methanol (32% yield). Colorless platelet single crystals suitable for X-ray diffraction were obtained by repeated crystallization from ethanol.

Spectroscopic Data:

¹H-NMR δ (300 MHz, CDCl₃): 0.91 (12*H*, d, *J* = 6.6 Hz), 1.89 (2*H*, m, *J*= 6.6 Hz), 2.49 (4*H*, d, *J* = 6.6 Hz), 3.68 (6*H*, s), 7.09 (4*H*, d, *J* = 7.5 Hz), 7.20 (2*H*, d, *J* = 9.0 Hz), 7.59(2*H*, d, *J* = 7.5 Hz), 7.95 (4*H*, d, *J* = 9.0 Hz)

¹³C-NMR δ (75 MHz, CDCl₃): 22.3, 29.3, 45.4, 56.2, 111.1, 121.5, 125.3, 128.5, 128.9, 129.4, 131.7, 136.4, 146.7, 156.0, 196.2 p.p.m.

IR (KBr): 2952 (CH₃), 2911 (CH₂), 1652 (C=O), 1605, 1510, 1460 (Ar) cm⁻¹

HRMS (m/z): [M+H]⁺ calcd. for C₃₄H₃₇O₄, 509.2692, found, 509.2608

m.p.= 472.0-474.0 K

S3. Refinement

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic), 0.98 (methyl) Å, 0.99 (methylene) and 1.00 (methyne) with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

An ellipsoid plot of the title compound (50% probability). Hydrogen atoms are shown as small spheres of arbitrary radius.

Figure 2

A view of the packing of the title compound viewed roughly down the crystallographic a axis. A chain of C—H···O interactions that propagates parallel to b is indicated by dotted lines.

{2,7-Dimethoxy-8-[4-(2-methylpropyl)benzoyl]naphthalen-1-yl}[4-(2-methylpropyl)phenyl]methanone

Crystal data	
$C_{34}H_{36}O_4$ $M_r = 508.63$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc $a = 18.5280 (4) \text{ Å}$ $b = 7.83885 (15) \text{ Å}$ $c = 20.2304 (4) \text{ Å}$ $\beta = 103.642 (1)^\circ$ $V = 2855.33 (10) \text{ Å}^3$ $Z = 4$	F(000) = 1088 $D_x = 1.183 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54187 \text{ Å}$ Cell parameters from 26694 reflections $\theta = 3.7-68.3^{\circ}$ $\mu = 0.60 \text{ mm}^{-1}$ T = 193 K Platelet, colorless $0.60 \times 0.40 \times 0.05 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: numerical (<i>NUMABS</i> ; Higashi, 1999) $T_{min} = 0.714, T_{max} = 0.971$	50913 measured reflections 5237 independent reflections 3838 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 68.2^{\circ}, \theta_{min} = 4.5^{\circ}$ $h = -21 \rightarrow 22$ $k = -9 \rightarrow 9$ $l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.126$	$w = 1/[\sigma^2(F_o^2) + (0.0662P)^2]$
S = 1.12	where $P = (F_o^2 + 2F_c^2)/3$
5237 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
350 parameters	$\Delta ho_{ m max} = 0.17 \ m e \ m \AA^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0022 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
01	0.66145 (6)	0.32112 (15)	0.61940 (5)	0.0635 (3)
02	0.53292 (5)	0.00068 (13)	0.27977 (5)	0.0576 (3)
03	0.71658 (5)	0.02470 (13)	0.51300 (5)	0.0553 (3)
O4	0.67422 (5)	0.26567 (12)	0.36980 (5)	0.0527 (3)
C1	0.62041 (8)	0.22224 (18)	0.50872 (7)	0.0453 (3)
C2	0.60247 (8)	0.29086 (19)	0.56568 (7)	0.0509 (4)
C3	0.52803 (9)	0.3152 (2)	0.56905 (8)	0.0565 (4)
Н3	0.5168	0.3669	0.6079	0.068*
C4	0.47275 (9)	0.26432 (19)	0.51642 (8)	0.0555 (4)
H4	0.4227	0.2778	0.5195	0.067*
C5	0.42902 (8)	0.13689 (19)	0.40346 (8)	0.0537 (4)
Н5	0.3793	0.1477	0.4078	0.064*
C6	0.44203 (8)	0.0687 (2)	0.34550 (8)	0.0547 (4)
H6	0.4019	0.0305	0.3102	0.066*
C7	0.51556 (8)	0.05545 (18)	0.33848 (7)	0.0478 (4)
C8	0.57515 (7)	0.10547 (17)	0.38983 (6)	0.0434 (3)
С9	0.56242 (7)	0.17307 (17)	0.45187 (6)	0.0440 (3)
C10	0.48732 (8)	0.19171 (18)	0.45706 (7)	0.0478 (4)
C11	0.70027 (8)	0.1766 (2)	0.51402 (6)	0.0469 (4)
C12	0.65026 (7)	0.12146 (18)	0.37335 (6)	0.0428 (3)
C13	0.75748 (8)	0.3109 (2)	0.52059 (6)	0.0481 (4)
C14	0.73950 (9)	0.4833 (2)	0.51447 (7)	0.0545 (4)
H14	0.6890	0.5170	0.5068	0.065*

C15	0.79377 (9)	0.6062 (2)	0.51933 (8)	0.0600 (4)
H15	0.7802	0.7233	0.5149	0.072*
C16	0.86786 (9)	0.5603 (2)	0.53064 (8)	0.0638 (4)
C17	0.88575 (9)	0.3888 (3)	0.53645 (10)	0.0737 (5)
H17	0.9363	0.3555	0.5441	0.088*
C18	0.83170 (9)	0.2650(2)	0.53138 (8)	0.0641 (4)
H18	0.8454	0.1479	0.5353	0.077*
C19	0.69369 (8)	-0.02869(17)	0.36131 (6)	0.0422 (3)
C20	0.66833 (8)	-0.19549 (18)	0.36293 (6)	0.0465 (4)
H20	0.6214	-0.2158	0.3729	0.056*
C21	0.71025 (8)	-0.33134 (19)	0.35037 (7)	0.0498 (4)
H21	0.6919	-0.4441	0.3518	0.060*
C22	0.77954 (8)	-0.30609(19)	0.33551 (7)	0.0486 (4)
C23	0.80510 (8)	-0.1394 (2)	0.33565 (8)	0.0550 (4)
H23	0.8524	-0.1189	0.3267	0.066*
C24	0.76339 (8)	-0.00324 (19)	0.34854 (7)	0.0515 (4)
H24	0.7825	0.1093	0.3487	0.062*
C25	0.65039 (10)	0.4214 (2)	0.67461 (8)	0.0731 (5)
H25A	0.6249	0.5275	0.6572	0.088*
H25B	0.6986	0.4483	0.7050	0.088*
H25C	0.6200	0.3577	0.6998	0.088*
C26	0.47399 (9)	-0.0512 (2)	0.22480 (7)	0.0619 (4)
H26A	0.4946	-0.0948	0.1877	0.074*
H26B	0.4417	0.0466	0.2086	0.074*
H26C	0.4451	-0.1412	0.2402	0.074*
C27	0.92724 (10)	0.6961 (3)	0.53805 (11)	0.0823 (6)
H27A	0.9138	0.7750	0.4989	0.099*
H27B	0.9748	0.6408	0.5364	0.099*
C28	0.93864 (10)	0.7998 (3)	0.60370(11)	0.0817 (6)
H28	0.8907	0.8588	0.6035	0.098*
C29	0.99748 (11)	0.9370 (3)	0.60563 (15)	0.1205 (9)
H29A	1.0451	0.8829	0.6053	0.145*
H29B	1.0028	1.0053	0.6471	0.145*
H29C	0.9824	1.0111	0.5657	0.145*
C30	0.95729 (12)	0.6876 (3)	0.66594 (12)	0.1083 (8)
H30A	0.9650	0.7586	0.7069	0.130*
H30B	1.0027	0.6232	0.6663	0.130*
H30C	0.9163	0.6081	0.6652	0.130*
C31	0.82253 (8)	-0.4543 (2)	0.31722 (7)	0.0565 (4)
H31A	0.8271	-0.5429	0.3528	0.068*
H31B	0.8732	-0.4154	0.3168	0.068*
C32	0.78695 (9)	-0.5339(2)	0.24818 (8)	0.0579 (4)
H32	0.7387	-0.5866	0.2514	0.069*
C33	0.77059 (10)	-0.4010(3)	0.19229 (8)	0.0755 (5)
H33A	0.7348	-0.3180	0.2019	0.091*
H33B	0.7497	-0.4567	0.1486	0.091*
H33C	0.8167	-0.3422	0.1902	0.091*
C34	0.83574 (9)	-0.6740 (2)	0.23036 (9)	0.0711 (5)

supporting information

H34A	0.8819	-0.6240	0.2235	0.085*
H34B	0.8095	-0.7311	0.1885	0.085*
H34C	0.8473	-0.7571	0.2675	0.085*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0687 (7)	0.0842 (8)	0.0372 (5)	0.0057 (6)	0.0118 (5)	-0.0101 (5)
O2	0.0578 (6)	0.0690 (8)	0.0419 (5)	-0.0008 (5)	0.0037 (4)	-0.0095 (5)
O3	0.0656 (7)	0.0522 (7)	0.0466 (6)	0.0076 (5)	0.0103 (5)	0.0012 (5)
O4	0.0626 (6)	0.0452 (6)	0.0515 (6)	-0.0059 (5)	0.0161 (5)	0.0028 (5)
C1	0.0543 (8)	0.0444 (9)	0.0385 (7)	0.0016 (6)	0.0132 (6)	0.0038 (6)
C2	0.0615 (9)	0.0520 (9)	0.0402 (7)	0.0029 (7)	0.0144 (7)	0.0031 (6)
C3	0.0670 (10)	0.0617 (10)	0.0456 (8)	0.0080 (8)	0.0229 (7)	0.0026 (7)
C4	0.0595 (9)	0.0571 (10)	0.0549 (9)	0.0059 (7)	0.0238 (7)	0.0094 (7)
C5	0.0483 (8)	0.0528 (10)	0.0607 (9)	-0.0002 (7)	0.0139 (7)	0.0073 (7)
C6	0.0525 (9)	0.0526 (10)	0.0552 (9)	-0.0028 (7)	0.0049 (7)	-0.0003 (7)
C7	0.0523 (8)	0.0459 (9)	0.0436 (8)	-0.0006 (7)	0.0082 (6)	0.0009 (6)
C8	0.0505 (8)	0.0394 (8)	0.0399 (7)	0.0011 (6)	0.0098 (6)	0.0043 (6)
C9	0.0520 (8)	0.0402 (8)	0.0405 (7)	0.0011 (6)	0.0120 (6)	0.0064 (6)
C10	0.0525 (8)	0.0447 (9)	0.0484 (8)	0.0018 (7)	0.0165 (7)	0.0079 (6)
C11	0.0587 (9)	0.0518 (10)	0.0294 (6)	0.0052 (7)	0.0090 (6)	0.0023 (6)
C12	0.0529 (8)	0.0437 (9)	0.0304 (6)	-0.0037 (7)	0.0072 (6)	0.0026 (6)
C13	0.0525 (9)	0.0558 (10)	0.0358 (7)	0.0014 (7)	0.0099 (6)	-0.0001 (6)
C14	0.0521 (9)	0.0589 (11)	0.0492 (8)	0.0019 (7)	0.0056 (7)	0.0025 (7)
C15	0.0640 (10)	0.0599 (11)	0.0540 (9)	-0.0040 (8)	0.0094 (7)	0.0004 (8)
C16	0.0617 (10)	0.0731 (12)	0.0600 (10)	-0.0103 (9)	0.0213 (8)	-0.0056 (8)
C17	0.0517 (10)	0.0813 (14)	0.0927 (13)	0.0007 (9)	0.0260 (9)	-0.0087 (11)
C18	0.0587 (10)	0.0632 (11)	0.0731 (11)	0.0066 (8)	0.0207 (8)	-0.0032 (9)
C19	0.0499 (8)	0.0452 (9)	0.0311 (6)	-0.0029 (6)	0.0088 (6)	0.0016 (6)
C20	0.0533 (8)	0.0480 (9)	0.0401 (7)	-0.0033 (7)	0.0149 (6)	0.0020 (6)
C21	0.0593 (9)	0.0467 (9)	0.0450 (8)	-0.0014 (7)	0.0157 (7)	0.0011 (6)
C22	0.0532 (9)	0.0534 (10)	0.0366 (7)	0.0029 (7)	0.0055 (6)	-0.0010 (6)
C23	0.0484 (8)	0.0610 (10)	0.0569 (9)	-0.0039 (7)	0.0155 (7)	-0.0073 (7)
C24	0.0524 (9)	0.0503 (9)	0.0523 (8)	-0.0067 (7)	0.0134 (7)	-0.0032 (7)
C25	0.0917 (13)	0.0783 (12)	0.0477 (9)	0.0079 (10)	0.0132 (8)	-0.0148 (9)
C26	0.0693 (10)	0.0641 (11)	0.0460 (8)	-0.0106 (8)	0.0011 (7)	-0.0051 (7)
C27	0.0692 (12)	0.0886 (15)	0.0965 (14)	-0.0146 (10)	0.0342 (10)	-0.0076 (11)
C28	0.0573 (11)	0.0841 (14)	0.1007 (15)	-0.0095 (10)	0.0126 (10)	-0.0137 (12)
C29	0.0759 (14)	0.1112 (19)	0.173 (3)	-0.0314 (13)	0.0276 (15)	-0.0368 (18)
C30	0.0873 (15)	0.125 (2)	0.0978 (17)	0.0013 (14)	-0.0075 (12)	-0.0127 (15)
C31	0.0556 (9)	0.0624 (10)	0.0497 (8)	0.0084 (8)	0.0089 (7)	-0.0037 (7)
C32	0.0522 (9)	0.0668 (11)	0.0553 (9)	0.0009 (8)	0.0141 (7)	-0.0109 (8)
C33	0.0761 (12)	0.1001 (15)	0.0466 (9)	0.0150 (11)	0.0072 (8)	-0.0064 (9)
C34	0.0699 (11)	0.0795 (13)	0.0663 (11)	0.0052 (9)	0.0208 (9)	-0.0192 (9)

Geometric parameters (Å, °)

01—C2	1.3679 (17)	C20—H20	0.9500
O1—C25	1.4198 (17)	C21—C22	1.4000 (19)
O2—C7	1.3707 (16)	C21—H21	0.9500
O2—C26	1.4218 (16)	C22—C23	1.389 (2)
O3—C11	1.2297 (16)	C22—C31	1.5034 (19)
O4—C12	1.2227 (15)	C23—C24	1.3786 (19)
C1—C2	1.3814 (18)	C23—H23	0.9500
C1—C9	1.4292 (19)	C24—H24	0.9500
C1-C11	1.502 (2)	C25—H25A	0.9800
C2—C3	1.410(2)	C25—H25B	0.9800
C3—C4	1.352 (2)	C25—H25C	0.9800
С3—Н3	0.9500	C26—H26A	0.9800
C4—C10	1.4113 (19)	C26—H26B	0.9800
C4—H4	0.9500	C26—H26C	0.9800
C5—C6	1.361 (2)	C27—C28	1.528 (3)
C5—C10	1.4053 (19)	C27—H27A	0.9900
С5—Н5	0.9500	C27—H27B	0.9900
С6—С7	1.406 (2)	C28—C30	1.508 (3)
С6—Н6	0.9500	C28—C29	1.526 (3)
С7—С8	1.3823 (18)	C28—H28	1.0000
С8—С9	1.4322 (18)	C29—H29A	0.9800
C8—C12	1.5107 (18)	C29—H29B	0.9800
C9—C10	1.4274 (18)	С29—Н29С	0.9800
C11—C13	1.478 (2)	С30—Н30А	0.9800
C12—C19	1.4781 (18)	С30—Н30В	0.9800
C13—C18	1.388 (2)	С30—Н30С	0.9800
C13—C14	1.391 (2)	C31—C32	1.530 (2)
C14—C15	1.379 (2)	C31—H31A	0.9900
C14—H14	0.9500	C31—H31B	0.9900
C15—C16	1.385 (2)	C32—C33	1.515 (2)
C15—H15	0.9500	C32—C34	1.519 (2)
C16—C17	1.383 (3)	С32—Н32	1.0000
C16—C27	1.513 (2)	С33—Н33А	0.9800
C17—C18	1.381 (2)	С33—Н33В	0.9800
C17—H17	0.9500	С33—Н33С	0.9800
C18—H18	0.9500	C34—H34A	0.9800
C19—C24	1.3898 (19)	C34—H34B	0.9800
C19—C20	1.3923 (18)	C34—H34C	0.9800
C20—C21	1.3765 (18)		
C2—O1—C25	118.99 (12)	C21—C22—C31	120.63 (13)
C7—O2—C26	118.26 (11)	C24—C23—C22	121.51 (14)
C2—C1—C9	119.55 (13)	C24—C23—H23	119.2
C2C1C11	117.40 (12)	C22—C23—H23	119.2
C9-C1-C11	122.30 (12)	C23—C24—C19	120.72 (14)
O1—C2—C1	115.22 (13)	C23—C24—H24	119.6

O1—C2—C3	123.04 (13)	C19—C24—H24	119.6
C1—C2—C3	121.58 (13)	O1—C25—H25A	109.5
C4—C3—C2	119.34 (14)	O1—C25—H25B	109.5
С4—С3—Н3	120.3	H25A—C25—H25B	109.5
С2—С3—Н3	120.3	O1—C25—H25C	109.5
C3—C4—C10	121.85 (14)	H25A—C25—H25C	109.5
C3—C4—H4	119.1	H25B—C25—H25C	109.5
C10—C4—H4	119.1	O2—C26—H26A	109.5
C6—C5—C10	121.66 (13)	O2—C26—H26B	109.5
С6—С5—Н5	119.2	H26A—C26—H26B	109.5
С10—С5—Н5	119.2	O2—C26—H26C	109.5
C5—C6—C7	119.25 (14)	H26A—C26—H26C	109.5
С5—С6—Н6	120.4	H26B—C26—H26C	109.5
С7—С6—Н6	120.4	C16—C27—C28	114.11 (15)
O2—C7—C8	115.53 (12)	С16—С27—Н27А	108.7
O2—C7—C6	122.79 (13)	С28—С27—Н27А	108.7
C8—C7—C6	121.61 (13)	С16—С27—Н27В	108.7
C7—C8—C9	119.74 (12)	С28—С27—Н27В	108.7
C7—C8—C12	118.15 (12)	H27A—C27—H27B	107.6
C9—C8—C12	120.88 (12)	C30—C28—C29	111.62 (19)
C10—C9—C1	118.29 (12)	C30—C28—C27	111.91 (18)
C10—C9—C8	117.86 (12)	C29—C28—C27	110.40 (18)
C1—C9—C8	123.85 (12)	C30—C28—H28	107.6
C5—C10—C4	120.89 (13)	C29—C28—H28	107.6
C5—C10—C9	119.80 (13)	C27—C28—H28	107.6
C4—C10—C9	119.30 (13)	С28—С29—Н29А	109.5
O3—C11—C13	121.17 (13)	C28—C29—H29B	109.5
O3—C11—C1	118.13 (14)	H29A—C29—H29B	109.5
C13—C11—C1	120.70 (13)	С28—С29—Н29С	109.5
O4—C12—C19	120.49 (12)	H29A—C29—H29C	109.5
O4—C12—C8	117.11 (12)	H29B—C29—H29C	109.5
C19—C12—C8	122.40 (12)	С28—С30—Н30А	109.5
C18—C13—C14	118.28 (15)	C28—C30—H30B	109.5
C18—C13—C11	119.50 (14)	H30A—C30—H30B	109.5
C14—C13—C11	122.19 (13)	С28—С30—Н30С	109.5
C15—C14—C13	121.14 (15)	H30A—C30—H30C	109.5
C15—C14—H14	119.4	H30B-C30-H30C	109.5
C13—C14—H14	119.4	C22—C31—C32	113.63 (12)
C14—C15—C16	120.51 (16)	С22—С31—Н31А	108.8
C14—C15—H15	119.7	С32—С31—Н31А	108.8
C16—C15—H15	119.7	С22—С31—Н31В	108.8
C17—C16—C15	118.37 (16)	С32—С31—Н31В	108.8
C17—C16—C27	121.43 (16)	H31A—C31—H31B	107.7
C15—C16—C27	120.19 (17)	C33—C32—C34	110.21 (13)
C18—C17—C16	121.46 (16)	C33—C32—C31	111.58 (14)
C18—C17—H17	119.3	C34—C32—C31	111.05 (13)
C16—C17—H17	119.3	С33—С32—Н32	107.9
C17—C18—C13	120.23 (16)	C34—C32—H32	107.9

C17—C18—H18	119.9	С31—С32—Н32	107.9
C13—C18—H18	119.9	С32—С33—Н33А	109.5
C24—C19—C20	118.21 (13)	С32—С33—Н33В	109.5
C24—C19—C12	118.82 (12)	H33A—C33—H33B	109.5
C20—C19—C12	122.96 (12)	С32—С33—Н33С	109.5
C21—C20—C19	120.92 (13)	H33A—C33—H33C	109.5
С21—С20—Н20	119.5	H33B—C33—H33C	109.5
С19—С20—Н20	119.5	С32—С34—Н34А	109.5
C20—C21—C22	121.07 (13)	C32—C34—H34B	109.5
C20—C21—H21	119.5	H34A—C34—H34B	109.5
C22—C21—H21	119.5	С32—С34—Н34С	109.5
C23—C22—C21	117.51 (13)	H34A—C34—H34C	109.5
C_{23} C_{22} C_{31}	121.81 (13)	H34B—C34—H34C	109.5
			10,00
C25—O1—C2—C1	167.69 (14)	C9—C8—C12—O4	-59.53 (17)
C25—O1—C2—C3	-16.9 (2)	C7—C8—C12—C19	-71.74 (16)
C9—C1—C2—O1	174.96 (12)	C9—C8—C12—C19	120.94 (14)
C11—C1—C2—O1	4.7 (2)	O3—C11—C13—C18	-5.3 (2)
C9—C1—C2—C3	-0.6 (2)	C1-C11-C13-C18	174.38 (13)
C11—C1—C2—C3	-170.86 (13)	O3—C11—C13—C14	172.88 (13)
O1—C2—C3—C4	-172.57 (14)	C1-C11-C13-C14	-7.42 (19)
C1—C2—C3—C4	2.6 (2)	C18—C13—C14—C15	-0.3 (2)
C2—C3—C4—C10	-1.9 (2)	C11—C13—C14—C15	-178.56 (12)
C10—C5—C6—C7	-1.1 (2)	C13—C14—C15—C16	-0.2 (2)
C26—O2—C7—C8	-179.50 (13)	C14—C15—C16—C17	0.4 (2)
C26—O2—C7—C6	-2.6 (2)	C14—C15—C16—C27	-178.11 (15)
C5—C6—C7—O2	-174.82 (14)	C15—C16—C17—C18	-0.2 (3)
C5—C6—C7—C8	1.9 (2)	C27—C16—C17—C18	178.35 (16)
O2—C7—C8—C9	176.77 (12)	C16—C17—C18—C13	-0.4 (3)
C6—C7—C8—C9	-0.2 (2)	C14—C13—C18—C17	0.6 (2)
O2—C7—C8—C12	9.30 (19)	C11—C13—C18—C17	178.87 (14)
C6-C7-C8-C12	-167.63 (13)	O4—C12—C19—C24	2.49 (18)
C2-C1-C9-C10	-2.1 (2)	C8—C12—C19—C24	-178.00 (12)
C11—C1—C9—C10	167.73 (12)	O4—C12—C19—C20	-178.28 (12)
C2—C1—C9—C8	178.13 (13)	C8—C12—C19—C20	1.24 (18)
C11—C1—C9—C8	-12.1 (2)	C24—C19—C20—C21	-1.77 (19)
C7—C8—C9—C10	-2.21 (19)	C12—C19—C20—C21	178.99 (12)
C12—C8—C9—C10	164.91 (12)	C19—C20—C21—C22	-0.1 (2)
C7—C8—C9—C1	177.60 (13)	C20—C21—C22—C23	1.6 (2)
C12—C8—C9—C1	-15.3 (2)	C20—C21—C22—C31	-175.83 (12)
C6—C5—C10—C4	179.11 (14)	C21—C22—C23—C24	-1.3 (2)
C6—C5—C10—C9	-1.3 (2)	C31—C22—C23—C24	176.11 (13)
C3—C4—C10—C5	178.87 (14)	C22—C23—C24—C19	-0.5 (2)
C3—C4—C10—C9	-0.7 (2)	C20—C19—C24—C23	2.1 (2)
C1—C9—C10—C5	-176.89 (12)	C12—C19—C24—C23	-178.65 (12)
C8—C9—C10—C5	2.9 (2)	C17—C16—C27—C28	-108.6 (2)
C1—C9—C10—C4	2.7 (2)	C15—C16—C27—C28	69.9 (2)
C8—C9—C10—C4	-177.46 (12)	C16—C27—C28—C30	56.9 (2)
	· · ·		

C2-C1-C11-O3	111.13 (15)	C16—C27—C28—C29	-178.08 (17)
C9—C1—C11—O3	-58.87 (18)	C23—C22—C31—C32	-108.55 (16)
C2-C1-C11-C13	-68.58 (17)	C21—C22—C31—C32	68.78 (18)
C9—C1—C11—C13	121.42 (15)	C22—C31—C32—C33	52.40 (18)
C7—C8—C12—O4	107.79 (15)	C22—C31—C32—C34	175.80 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C21—H21···O4 ⁱ	0.95	2.34	3.2716 (18)	167

Symmetry code: (i) x, y-1, z.