Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-(4-Nitrophenyl)-1H-imidazol-3-ium chloride

Halliru Ibrahim and Muhammad D. Bala*
School of Chemistry \& Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
Correspondence e-mail: bala@ukzn.ac.za

Received 19 October 2012; accepted 14 December 2012
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.029 ; w R$ factor $=0.076$; data-to-parameter ratio $=15.8$.

In the title salt, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2}^{+} \cdot \mathrm{Cl}^{-}$, the least-squares planes of the imidazolium and benzene rings are almost coplanar, making a dihedral angle of $4.59(1)^{\circ}$. In the crystal, the chloride anion links the organic molecules through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, forming chains that run diagonally across the $b c$ face, which compliment strong $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between neighbouring molecules. These chains are connected to adjacent chains through two weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions, resulting in hydrogen-bonded sheets extending along the b and c axes. The absolute structure of the title compound was determined using a Flack x parameter of 0.00 (6) and a Hooft y parameter of 0.03 (2).

Related literature

For the synthesis of the title compound, see: Gnanamgari et al. (2009); Coberan \& Peris (2008); Singh et al., (2011). For the structure of imidazole with a bond to phenyl via carbon, see: Gayathri et al. (2010). For structure of imidazole with a bond to phenyl via nitrogen, see: Zheng et al. (2011). For the structure of nitrophenyl imidazole as a ligand in a complex, see: Singh et al. (2010, 2011). For related structures, see: Ishihara et al. (1992); Scheele et al., (2007). For our related work in this area, see: Ibrahim et al. (2012).

Experimental

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2}^{+} \cdot \mathrm{Cl}^{-}$	$V=997.21(10) \AA^{3}$
$M_{r}=225.64$	$Z=4$
Orthorhombic, $P n a 2_{1}$	Mo $K \alpha$ radiation
$a=14.6042(8) \AA$	$\mu=0.37 \mathrm{~mm}^{-1}$
$b=12.1781(7) \AA$	$T=173 \mathrm{~K}$
$c=5.6070(3) \AA$	$0.54 \times 0.16 \times 0.15 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$T_{\text {min }}=0.524, T_{\text {max }}=0.746$

20153 measured reflections 2217 independent reflections 2120 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.060$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e} \AA^{-3}$
$w R\left(F^{2}\right)=0.076$
$S=1.09$
2217 reflections
140 parameters
8 restraints
H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3}$
Absolute structure: Flack (1983),
Hooft et al. (2010), Spek (2009);
Hooft parameter $=0.03$ (2),
856 Bijvoet pairs
Flack parameter: 0.00 (6)

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.92(2)$	$2.08(2)$	$2.9976(17)$	$178(2)$
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{Cl} 1$	0.93	2.80	$3.5898(19)$	144
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.93	2.52	$3.4286(17)$	166
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.29	$3.181(2)$	161
Symmetry codes: (i) $-x+\frac{3}{2}, y+\frac{1}{2}, z-\frac{3}{2} ;\left(\right.$ (ii) $x-\frac{1}{2},-y+\frac{1}{2}, z-1$.				

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINTPlus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

We thank the NRF and the University of KwaZulu-Natal for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NR2034).

References

Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA..
Coberan, R. \& Peris, E. (2008). Organometallics, 27, 1954-1958.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gayathri, P., Thiruvalluvar, A., Srinivasan, N., Jayabharathi, J. \& Butcher, R. J. (2010). Acta Cryst. E66, o2519.

Gnanamgari, D., Sauer, E. L. O., Schley, N. D., Butler, C., Incarvito, C. D. \& Crabtree, R. H. (2009). Organometallics, 28, 321-325.
Hooft, R. W. W., Straver, L. H. \& Spek, A. L. (2010). J. Appl. Cryst. 43, 665668.

Ibrahim, H., Bala, M. D. \& Omondi, B. (2012). Acta Cryst. E68, o2305.
Ishihara, M., Tonogaki, M., Ohba, S., Saito, Y., Okazaki, M., Katoh, T. \& Kamiyama, K. (1992). Acta Cryst. C48, 184-188.
Scheele, U. J., Meyer, F. \& Dechert, S. (2007). Tetrahedron Lett. 48, 8366-8370.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Singh, A. K., Kumar, P., Yadav, M. \& Pandey, D. S. (2010). J. Organomet. Chem. 695, 567-573.
Singh, A. K., Kumar, P., Yadav, M. \& Pandey, D. S. (2011). Bull. Chem. Soc. Jpn, 84, 205-210.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Zheng, Z., Geng, W.-Q., Wu, Z.-C. \& Zhou, H.-P. (2011). Acta Cryst. E67, o524.

supporting information

Acta Cryst. (2013). E69, o114 [https://doi.org/10.1107/S1600536812050878]

1-(4-Nitrophenyl)-1H-imidazol-3-ium chloride

Halliru Ibrahim and Muhammad D. Bala

S1. Comment

Since the isolation of the first stable free carbene, imidazolium based N-heterocyclic carbene ligands (NHC) ligands have recieved wide interest from researchers because substituted imidazolium salts are major precursors to the NHCs commonly employed in organometallic chemistry and catalysis for the stabilization of metal centers. Recently Gayathri et al., (2010) have reported structural analogues of the title compound with imidazole bond to phenyl via carbon, while Zheng et al., (2011) have reported the structure with imidazole bond to phenyl via nitrogen. For the structure of nitrophenyl imidazole as a ligand in a metal complex, see: (Singh et al., 2010 and 2011). Structures of related compounds were reported by Ishihara et al., (1992), Scheele et al., (2007) and Ibrahim et al., (2012). Hence, the title compound was obtained in an attempt to synthesize an imidazolium salt by the coupling of 2-chloromethylpyridine hydrochloride with p nitrophenyl imidazole using the method reported by Gnanamgari et al., (2009). Coberan \& Peris (2008) and Singh et al., (2011) have also reported synthesis of similar compounds. The grey solid obtained was recrystallized from methanol:ethyl acetate (1:1) solvent system. The planes of the imidazolium and phenyl rings in (I) are almost coplanar. Analysis of the absolute structure using likelihood methods (Hooft et al., 2010) was performed using PLATON (Spek, 2009). The Hooft y-parameter was determined to be 0.03 (2) which corroborated the Flack parameter $x=0.00$ (6). These results in conjunction with a correlation coefficient of 0.997 for the Bijvoet normal probability plot indicate that the absolute structure is correctly assigned. In the title compound, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2}$. Cl , the L.S. planes of the imidazolium (N1$\mathrm{C} 4)$ and phenyl (C5-C10) rings are almost coplanar with a dihedral angle of $4.59(1)^{\circ}$. In the crystal, the chloride atom links the organic molecules through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds forming chains that run diagonally across the $b c$ face which compliment strong intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between neighbouring molecules. These chains are connected to adjacent chains through two weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions resulting in hydrogen bonded sheets extending along the b and c axes.

S2. Experimental

To a 150 ml round bottom flask containing DMSO (30 ml , MERCK) was added imidazole ($0.01 \mathrm{~mol}, 0.68 \mathrm{~g}$, Fluka AG) and $\mathrm{KOH}(0.015 \mathrm{~mol}, 0.84 \mathrm{~g}, \mathrm{MERCK})$ then stirred at room temperature for 2 h . This was followed by the dropwise addition of a solution of 1-chloro-4-nitrobenzene (Fluka, $0.01 \mathrm{~mol}, 1.57 \mathrm{~g}$) in DMSO (5 ml), and refluxed at $100^{\circ} \mathrm{C}$ for 24 h . The resulting solution was first chilled and then dilute with distilled water until neutral. The organic component was extracted using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CHCl}_{3}(1: 1,3 \times 20 \mathrm{ml})$ and then dried with anhydrous MgSO 4 and concetrated under vacuum yielding 2.081 g of pure (I). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.36(d; 2 H$) 7.96(\mathrm{~s} ; 1 \mathrm{H}), 7.57(\mathrm{~d} ; 2 \mathrm{H})$ and $7.25(1 \mathrm{H})$ p.p.m.. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 146.6, 142.3, 135.7, 132.04, 126.1, 121.4 and 117.9 p.p.m.. IR (ATR): 3112(=C—H), 2924(sp ${ }^{3}$ $\mathrm{C}-\mathrm{H}), 1596(\mathrm{C}=\mathrm{N}), 1503$ and $1370\left(\right.$ aromatic $\left.\mathrm{NO}_{2}\right), 1049\left(\mathrm{C}-\mathrm{N}\right.$ medium) and 845 (p-subsituted benzene) cm^{-1}.

S3. Refinement

Carbon-bound H -atoms were placed in calculated positions $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ for aromatic H atoms; $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$] and were included in the refinement in the riding model. The nitrogen-bound H atom was located on a difference Fourier map and refined freely with isotropic parameters.

Figure 1
ORTEP diagram of compound (I). Thermal ellipsoids are represented at the 50% probability level.

Figure 2
Packing diagram showing hydrogen bonding interactions in a crystal of (I) viewed along crystallographic c axis.

1-(4-Nitrophenyl)-1H-imidazol-3-ium chloride

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} . \mathrm{Cl}^{-}$
$M_{r}=225.64$
Orthorhombic, $\mathrm{Pna2}_{1}$
Hall symbol: P 2c -2n
$a=14.6042$ (8) \AA
$b=12.1781$ (7) \AA
$c=5.6070(3) \AA$
$V=997.21(10) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\text {min }}=0.524, T_{\text {max }}=0.746$
$F(000)=464$
$D_{\mathrm{x}}=1.503 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9896 reflections
$\theta=2.2-28.3^{\circ}$
$\mu=0.37 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, colourless
$0.54 \times 0.16 \times 0.15 \mathrm{~mm}$

20153 measured reflections
2217 independent reflections
2120 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-17 \rightarrow 19$
$k=-16 \rightarrow 16$
$l=-7 \rightarrow 6$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.076$
$S=1.09$
2217 reflections
140 parameters
8 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0354 P)^{2}+0.3302 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.30 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}$

Absolute structure: Flack (1983), Hooft et al. (2010) and Spek (2009); Hooft parameter $=$ 0.03(2), 856 Bijvoet pairs

Absolute structure parameter: 0.00 (6)

Special details

Experimental. Carbon-bound $\mathrm{H}-$ atoms were placed in calculated positions $[\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic H atoms; $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})\right]$ and were included in the refinement in the riding model. The nitrogen-bound H atom was located on a difference Fourier map and refined freely with isotropic parameters.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
C2	$0.61881(11)$	$0.39839(13)$	$-0.1020(3)$	$0.0241(5)$
H2	0.5556	0.4068	-0.0918	0.029^{*}
C4	$0.76184(13)$	$0.41464(15)$	$-0.2179(4)$	$0.0308(5)$
H4	0.8131	0.4368	-0.3039	0.037^{*}
C3	$0.76136(12)$	$0.34674(15)$	$-0.0291(4)$	$0.0303(4)$
H3	0.8120	0.3132	0.0402	0.036^{*}
N3	$0.54484(10)$	$0.08365(11)$	$0.8199(3)$	$0.0274(3)$
N2	$0.67050(9)$	$0.33611(11)$	$0.0429(3)$	$0.0210(3)$
N1	$0.67229(10)$	$0.44554(12)$	$-0.2608(3)$	$0.0251(3)$
O1	$0.46671(9)$	$0.09724(10)$	$0.8910(3)$	$0.0323(4)$
O2	$0.59895(10)$	$0.01721(12)$	$0.9069(3)$	$0.0406(4)$
H1	$0.6548(14)$	$0.4898(17)$	$-0.386(4)$	$0.030(5)^{*}$
C11	$0.88518(2)$	$0.09410(3)$	$0.84010(10)$	$0.02647(12)$
C8	$0.57713(11)$	$0.14961(13)$	$0.6161(3)$	$0.0217(3)$
C9	$0.66889(12)$	$0.14545(14)$	$0.5571(4)$	$0.0303(4)$
H9	0.7093	0.1022	0.6443	0.036^{*}
C10	$0.69939(11)$	$0.20704(13)$	$0.3655(4)$	$0.0300(4)$
H10	0.7608	0.2048	0.3216	0.036^{*}
C5	$0.63843(11)$	$0.27213(12)$	$0.2387(3)$	$0.0204(3)$
C6	$0.54623(11)$	$0.27679(13)$	$0.3038(4)$	$0.0264(4)$

H6	0.5058	0.3212	0.2196	$0.032 *$
C7	$0.51553(11)$	$0.21484(13)$	$0.4943(4)$	$0.0260(4)$
H7	0.4543	0.2170	0.5397	0.031^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	$0.0202(8)$	$0.0223(7)$	$0.0297(13)$	$0.0005(6)$	$-0.0001(7)$	$0.0027(7)$
C4	$0.0233(9)$	$0.0369(9)$	$0.0323(13)$	$0.0006(7)$	$0.0030(8)$	$0.0051(8)$
C3	$0.0172(8)$	$0.0356(10)$	$0.0380(12)$	$0.0008(7)$	$0.0036(8)$	$0.0068(8)$
N3	$0.0293(7)$	$0.0286(6)$	$0.0242(9)$	$-0.0071(5)$	$-0.0034(8)$	$0.0010(6)$
N2	$0.0173(6)$	$0.0196(6)$	$0.0262(8)$	$-0.0004(5)$	$0.0005(6)$	$-0.0007(6)$
N1	$0.0247(7)$	$0.0232(6)$	$0.0274(8)$	$-0.0002(5)$	$-0.0003(6)$	$0.0013(6)$
O1	$0.0286(7)$	$0.0373(6)$	$0.0311(9)$	$-0.0060(5)$	$0.0047(6)$	$0.0014(6)$
O2	$0.0347(7)$	$0.0438(8)$	$0.0432(10)$	$-0.0032(6)$	$-0.0100(6)$	$0.0205(7)$
C11	$0.01823(18)$	$0.02836(18)$	$0.0328(2)$	$-0.00189(13)$	$-0.00026(19)$	$0.0061(2)$
C8	$0.0231(8)$	$0.0202(7)$	$0.0219(9)$	$-0.0046(6)$	$-0.0016(7)$	$0.0000(6)$
C9	$0.0231(8)$	$0.0295(9)$	$0.0382(12)$	$0.0013(7)$	$-0.0040(8)$	$0.0089(8)$
C10	$0.0161(7)$	$0.0326(8)$	$0.0415(12)$	$0.0018(6)$	$-0.0002(8)$	$0.0085(9)$
C5	$0.0210(8)$	$0.0190(6)$	$0.0214(8)$	$-0.0021(6)$	$-0.0001(6)$	$-0.0009(6)$
C6	$0.0202(7)$	$0.0256(7)$	$0.0333(12)$	$0.0044(6)$	$-0.0007(8)$	$0.0034(7)$
C7	$0.0196(8)$	$0.0278(8)$	$0.0307(10)$	$0.0016(6)$	$0.0022(7)$	$-0.0005(7)$

Geometric parameters (\AA, ${ }^{\circ}$)

C2-N1	1.316 (2)	N1-H1	0.92 (2)
$\mathrm{C} 2-\mathrm{N} 2$	1.343 (2)	C8-C7	1.381 (2)
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	C8-C9	1.381 (2)
$\mathrm{C} 4-\mathrm{C} 3$	1.343 (3)	C9-C10	1.384 (3)
$\mathrm{C} 4-\mathrm{N} 1$	1.382 (2)	C9-H9	0.9300
C4-H4	0.9300	C10-C5	1.388 (2)
C3-N2	1.393 (2)	C10-H10	0.9300
C3-H3	0.9300	C5-C6	1.396 (2)
N3-O1	1.220 (2)	C6-C7	1.382 (3)
N3-O2	1.232 (2)	C6-H6	0.9300
N3-C8	1.474 (2)	C7-H7	0.9300
N2-C5	1.425 (2)		
N1-C2-N2	108.78 (15)	C7-C8-C9	122.31 (17)
N1-C2-H2	125.6	C7-C8-N3	119.25 (15)
N2-C2-H2	125.6	C9-C8-N3	118.43 (16)
C3-C4-N1	107.45 (16)	C8-C9-C10	118.58 (16)
C3-C4-H4	126.3	C8-C9-H9	120.7
N1-C4-H4	126.3	C10-C9-H9	120.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2$	106.90 (16)	C9-C10-C5	120.04 (15)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	126.5	C9-C10-H10	120.0
N2-C3-H3	126.5	C5-C10- H 10	120.0
$\mathrm{O} 1-\mathrm{N} 3-\mathrm{O} 2$	124.04 (17)	C10-C5-C6	120.53 (17)

$\mathrm{O} 1-\mathrm{N} 3-\mathrm{C} 8$	$118.59(14)$
$\mathrm{O} 2-\mathrm{N} 3-\mathrm{C} 8$	$117.37(15)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	$107.90(15)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 5$	$126.14(14)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 5$	$125.95(15)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	$108.96(16)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	$127.3(13)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1$	$123.7(13)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2$	$0.1(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	$0.8(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 5$	$179.69(15)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2$	$-0.6(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 5$	$-179.45(15)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	$-0.7(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 2$	$0.4(2)$
$\mathrm{O} 1-\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 7$	$-7.6(2)$
$\mathrm{O} 2-\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 7$	$171.90(17)$
$\mathrm{O} 1-\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 9$	$171.10(16)$
$\mathrm{O} 2-\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 9$	$-9.4(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-1.5(3)$
$\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$179.81(16)$

$\mathrm{C} 10-\mathrm{C} 5-\mathrm{N} 2$	$119.73(15)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{N} 2$	$119.73(15)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$119.50(15)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	120.2
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.2
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$119.02(16)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	120.5
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	120.5
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$0.7(3)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6$	$0.4(3)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5-\mathrm{N} 2$	$179.43(17)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 10$	$176.61(17)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 10$	$-4.7(3)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6$	$-4.4(3)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6$	$174.27(17)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-0.8(3)$
$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-179.81(15)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$1.1(3)$
$\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$179.81(16)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$0.0(3)$

Hydrogen-bond geometry (A, o)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl1}{ }^{\mathrm{i}}$	$0.92(2)$	$2.08(2)$	$2.9976(17)$	$178(2)$
$\mathrm{C} 9 — \mathrm{H} 9 \cdots \mathrm{Cl1}$	0.93	2.80	$3.5898(19)$	144
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.93	2.52	$3.4286(17)$	166
$\mathrm{C} 4 — \mathrm{H} 4 \cdots 2^{\mathrm{i}}$	0.93	2.29	$3.181(2)$	161

Symmetry codes: (i) $-x+3 / 2, y+1 / 2, z-3 / 2$; (ii) $x-1 / 2,-y+1 / 2, z-1$.

