

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-(2-Cyanobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridin-2-yl acetate

Xiao-Shuai Xie,^{a,b} Shuai Mu,^c Ying Liu^d* and Deng-Ke Liu^d

^aTianjin First Central Hospital, Tianjin 300192, People's Republic of China, ^bTianjin Medical University, Tianjin 300070, People's Republic of China, ^cSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and ^dTianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China Correspondence e-mail: liudk@tjipr.com

Received 1 April 2013; accepted 8 April 2013

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.098; data-to-parameter ratio = 15.1.

In the title molecule, $C_{17}H_{16}N_2O_2S$, the tetrahydropyridine ring exhibits a half-chair conformation. The mean planes of the ester chain and benzene ring are twisted by 5.5 (1) and 81.32 (5)°, respectively, from the plane of thiophene ring. In the crystal, weak $C-H \cdots O$ interactions link molecules related by translation along [100] into chains.

Related literature

For the crystal structures of related compounds, see: Wang *et al.* (2010); Yang *et al.* (2012). For details of the synthesis, see: Zhou *et al.* (2011).

Experimental

Crystal data	
C17H16N2O2S	
$M_r = 312.38$	
Monoclinic, $P2_1/n$	
a = 14.174 (3) Å	

b = 5.9321 (12) Å c = 18.796 (4) Å $\beta = 99.06 (3)^{\circ}$ $V = 1560.7 (5) \text{ Å}^{3}$ Z = 4Cu $K\alpha$ radiation $\mu = 1.91 \text{ mm}^{-1}$

Data collection

Rigaku Saturn diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC,
2005)
$T_{\min} = 0.636, T_{\max} = 0.678$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.098$ S = 1.083034 reflections 201 parameters

Table 1 Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $C11-H11\cdots O2^i$ 0.952.533.3346 (19)143

Symmetry code: (i) x + 1, y, z.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *CrystalStructure* (Rigaku/MSC, 2005).

This project was supported by the National Major Scientific and Technological Special Project for "Significant New Drugs Development" (No. 2013ZX09102014). The authors also thank Mr Hai-Bin Song of Nankai University for the X-ray crystallographic determination and helpful suggestions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5399).

References

- Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Z.-M., Zhao, J. & Xu, G. (2010). Acta Cryst. E66, 01354.
- Yang, J., Chen, N., Sun, H., Cao, X.-X. & Liu, D.-K. (2012). Acta Cryst. E68, 01053.
- Zhou, Y. S., Wang, P. B., Liu, Y., Chen, J. F., Yue, N. & Liu, D. K. (2011). Acta Pharm. Sin. 46, 70–74.

organic compounds

 $0.26 \times 0.24 \times 0.22 \text{ mm}$

16000 measured reflections 3034 independent reflections

2819 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 113 K

 $R_{\rm int} = 0.045$

1 restraint

 $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min}$ = -0.28 e Å⁻³

supporting information

Acta Cryst. (2013). E69, o713 [https://doi.org/10.1107/S1600536813009513]

5-(2-Cyanobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridin-2-yl acetate

Xiao-Shuai Xie, Shuai Mu, Ying Liu and Deng-Ke Liu

S1. Comment

As a continuation of our structural study of tetrahydrothienopyridine derivatives (Yang *et al.*, 2012), herein we present the crystal structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compounds 5-[(2-cyclopropylcarbonyl)(2- fluorophenyl)methyl]-4,5,6,7-tetrahydrothieno[3,2-*c*]pyridin- 2-yl acetate (Prasugrel) (Wang *et al.*, 2010) and 5-(2-chlorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-*c*]pyridin-2-yl acetate (Yang *et al.*, 2012). The ester chain in (I) is almost planar with a mean deviation of 0.0021 Å. The tetrahydropyridine ring exhibits a half-chair conformation. The mean planes of the ester chain and benzene ring are twisted at 5.5 (1) and 81.32 (5)°, respectively, from the plane of thiophene ring. In the crystal, weak C—H…O interactions (Table 1) link the molecules related by translation in [100] into chains.

S2. Experimental

The title compound was prepared according to the method of Zhou *et al.* (2011). 19.2 g of 5,6,7,7a-tetrahydrothieno[3,2-c]pyridin-2(4*H*)-one hydrochloride and 29 g of *N*-methyl morpholine were dissolved in 100 ml of CHCl₃. 42.6 g of 2-(bromomethyl)benzonitrile was dropwised into the mixture and then refluxed for 4 h. After filtration, the resulting filtrate was evaporated under reduced pressure. The residue was dissolved in diethyl ether, adjust the pH=5 to get 2-{(2-oxo-7,7a-dihydrothieno [3,2-c]pyridin-5(2*H*,4*H*,6*H*)-yl)methyl} benzonitrile as an intermediate. The intermediate, together with 14.5 g of *N*-methyl morpholine and 10 g of acetic anhydride was dissolved in 150 ml of acetonitrile and stirred under 30°C for 2 h. The mixture was evaporated under reduced pressure and yellow oil was obtained. The oil was dissolved in CHCl₃, washed with saturated brines for 3 times. The crude product was purified by silica gel chromatography to give white powder. Colorless single crystals were grown from a methanol solution.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with d(C-H) = 0.95 - 0.99 Å, and U_{iso} (H) = 1.5 or 1.2 $U_{eq}(C)$.

Figure 1

The molecular structure of (I) showing the atom-numbering scheme and 50% probability displacement ellipsoids.

5-(2-Cyanobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridin-2-yl acetate

Crystal data	
$C_{17}H_{16}N_2O_2S$ $M_r = 312.38$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 14.174 (3) Å b = 5.9321 (12) Å c = 18.796 (4) Å $\beta = 99.06$ (3)° V = 1560.7 (5) Å ³ Z = 4	F(000) = 656 $D_x = 1.329 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54187 \text{ Å}$ Cell parameters from 2001 reflections $\theta = 27.6-72.2^{\circ}$ $\mu = 1.91 \text{ mm}^{-1}$ T = 113 K Prism, colourless $0.26 \times 0.24 \times 0.22 \text{ mm}$
Data collection	
Rigaku Saturn diffractometer Radiation source: fine-focus sealed tube Multilayer monochromator Detector resolution: 14.63 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku/MSC, 2005) $T_{min} = 0.636, T_{max} = 0.678$	16000 measured reflections 3034 independent reflections 2819 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$ $\theta_{max} = 72.5^{\circ}, \theta_{min} = 3.6^{\circ}$ $h = -17 \rightarrow 17$ $k = -7 \rightarrow 7$ $l = -17 \rightarrow 23$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.098$ S = 1.08 3034 reflections 201 parameters 1 restraint Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0608P)^2 + 0.3535P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.30$ e Å ⁻³ $\Delta\rho_{min} = -0.28$ e Å ⁻³

Extinction correction: *SHELXL97* (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.0040 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.07455 (2)	0.16825 (5)	0.143145 (17)	0.02086 (13)
01	0.02603 (6)	-0.21422 (16)	0.06058 (5)	0.0237 (2)
O2	-0.09148 (7)	-0.05922 (19)	0.11147 (6)	0.0356 (3)
N1	0.38740 (7)	0.30018 (18)	0.16585 (6)	0.0202 (3)
N2	0.64150 (12)	0.3514 (3)	0.02028 (9)	0.0527 (4)
C1	0.09324 (9)	-0.0540 (2)	0.08710 (7)	0.0201 (3)
C2	0.18393 (9)	-0.0624 (2)	0.07280 (7)	0.0201 (3)
H2	0.2064	-0.1715	0.0425	0.024*
C3	0.24163 (9)	0.1132 (2)	0.10896 (7)	0.0187 (3)
C4	0.19251 (9)	0.2503 (2)	0.14809 (7)	0.0196 (3)
C5	0.23440 (9)	0.4496 (2)	0.19049 (7)	0.0216 (3)
H5A	0.2447	0.4142	0.2426	0.026*
H5B	0.1904	0.5799	0.1820	0.026*
C6	0.32936 (9)	0.5055 (2)	0.16606 (7)	0.0217 (3)
H6A	0.3175	0.5712	0.1170	0.026*
H6B	0.3643	0.6183	0.1990	0.026*
C7	0.34597 (9)	0.1510(2)	0.10650 (7)	0.0206 (3)
H7A	0.3800	0.0047	0.1106	0.025*
H7B	0.3537	0.2201	0.0598	0.025*
C8	0.48585 (9)	0.3588 (2)	0.15919 (8)	0.0245 (3)
H8A	0.5078	0.4827	0.1931	0.029*
H8B	0.4879	0.4140	0.1097	0.029*
C9	0.55298 (9)	0.1608 (2)	0.17475 (7)	0.0207 (3)
C10	0.62212 (9)	0.1119 (2)	0.13184 (8)	0.0255 (3)
C11	0.68601 (10)	-0.0673 (3)	0.14838 (9)	0.0321 (3)
H11	0.7327	-0.0980	0.1185	0.038*
C12	0.68115 (10)	-0.1995 (2)	0.20814 (9)	0.0311 (3)
H12	0.7242	-0.3218	0.2195	0.037*
C13	0.61310 (10)	-0.1526 (2)	0.25154 (8)	0.0276 (3)
H13	0.6097	-0.2425	0.2929	0.033*
C14	0.54986 (9)	0.0252 (2)	0.23487 (8)	0.0250 (3)
H14	0.5035	0.0551	0.2651	0.030*
C15	0.63104 (11)	0.2481 (3)	0.06926 (9)	0.0351 (4)

supporting information

C16	-0.06452 (9)	-0.2078 (2)	0.07641 (8)	0.0233 (3)
C17	-0.12011 (10)	-0.4073 (2)	0.04513 (8)	0.0270 (3)
H17A	-0.1192	-0.4134	-0.0069	0.040*
H17B	-0.1862	-0.3947	0.0539	0.040*
H17C	-0.0914	-0.5451	0.0678	0.040*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01803 (19)	0.0246 (2)	0.0204 (2)	0.00246 (11)	0.00426 (13)	-0.00427 (11)
01	0.0176 (5)	0.0254 (5)	0.0282 (5)	-0.0002 (4)	0.0038 (4)	-0.0072 (4)
O2	0.0237 (5)	0.0417 (6)	0.0437 (7)	-0.0034 (4)	0.0123 (5)	-0.0190 (5)
N1	0.0178 (5)	0.0186 (5)	0.0246 (6)	0.0000 (4)	0.0041 (4)	0.0001 (4)
N2	0.0543 (10)	0.0658 (11)	0.0433 (9)	0.0074 (8)	0.0242 (8)	0.0159 (8)
C1	0.0199 (6)	0.0217 (6)	0.0185 (6)	0.0014 (5)	0.0017 (5)	-0.0015 (5)
C2	0.0205 (6)	0.0205 (6)	0.0191 (6)	0.0041 (5)	0.0028 (5)	-0.0012 (5)
C3	0.0197 (6)	0.0200 (6)	0.0163 (6)	0.0024 (5)	0.0025 (5)	0.0022 (5)
C4	0.0191 (6)	0.0221 (6)	0.0174 (6)	0.0026 (5)	0.0028 (5)	0.0005 (5)
C5	0.0225 (6)	0.0216 (6)	0.0209 (7)	0.0025 (5)	0.0046 (5)	-0.0020 (5)
C6	0.0250 (6)	0.0179 (6)	0.0225 (7)	0.0009 (5)	0.0050 (5)	-0.0001 (5)
C7	0.0202 (6)	0.0202 (6)	0.0219 (7)	0.0014 (5)	0.0051 (5)	-0.0013 (5)
C8	0.0207 (6)	0.0224 (6)	0.0310 (8)	-0.0028 (5)	0.0063 (5)	0.0020 (5)
С9	0.0167 (6)	0.0218 (6)	0.0234 (7)	-0.0039 (5)	0.0020 (5)	-0.0015 (5)
C10	0.0214 (6)	0.0303 (7)	0.0255 (7)	-0.0028 (5)	0.0059 (5)	-0.0009 (6)
C11	0.0236 (7)	0.0369 (8)	0.0376 (9)	0.0032 (6)	0.0103 (6)	-0.0024 (7)
C12	0.0217 (7)	0.0268 (7)	0.0433 (9)	0.0026 (5)	0.0009 (6)	0.0013 (6)
C13	0.0242 (7)	0.0268 (7)	0.0303 (8)	-0.0040 (5)	0.0003 (6)	0.0052 (6)
C14	0.0226 (6)	0.0275 (7)	0.0257 (7)	-0.0023 (5)	0.0058 (5)	0.0011 (6)
C15	0.0322 (8)	0.0425 (9)	0.0337 (8)	0.0026 (7)	0.0152 (7)	0.0033 (7)
C16	0.0182 (6)	0.0285 (7)	0.0231 (7)	0.0011 (5)	0.0028 (5)	-0.0003 (5)
C17	0.0229 (7)	0.0270 (7)	0.0306 (8)	-0.0010 (5)	0.0029 (6)	-0.0025 (6)

Geometric parameters (Å, °)

<u>S1—C4</u>	1.7297 (13)	C7—H7A	0.9900
S1—C1	1.7338 (13)	C7—H7B	0.9900
O1-C16	1.3629 (16)	C8—C9	1.5109 (18)
01—C1	1.3819 (16)	C8—H8A	0.9900
O2—C16	1.1987 (17)	C8—H8B	0.9900
N1—C8	1.4625 (16)	C9—C14	1.393 (2)
N1-C6	1.4702 (16)	C9—C10	1.394 (2)
N1—C7	1.4716 (17)	C10—C11	1.399 (2)
N2-C15	1.135 (2)	C10—C15	1.449 (2)
C1—C2	1.3549 (18)	C11—C12	1.381 (2)
C2—C3	1.4284 (18)	C11—H11	0.9500
С2—Н2	0.9500	C12—C13	1.386 (2)
C3—C4	1.3594 (18)	C12—H12	0.9500
С3—С7	1.5037 (17)	C13—C14	1.388 (2)

supporting information

C4—C5	1,4955 (18)	С13—Н13	0.9500
C5—C6	1.5256 (18)	C14—H14	0.9500
С5—Н5А	0.9900	C16—C17	1.4905 (19)
С5—Н5В	0.9900	С17—Н17А	0.9800
C6—H6A	0.9900	С17—Н17В	0.9800
C6—H6B	0.9900	С17—Н17С	0.9800
			0.5000
C4—S1—C1	90.43 (6)	N1—C8—C9	112.25 (10)
C16—O1—C1	121.43 (10)	N1—C8—H8A	109.2
C8—N1—C6	110.18 (10)	С9—С8—Н8А	109.2
C8—N1—C7	110.52 (10)	N1—C8—H8B	109.2
C6—N1—C7	110.09 (10)	С9—С8—Н8В	109.2
C2—C1—O1	121.66 (11)	H8A—C8—H8B	107.9
C2—C1—S1	112.89 (10)	C14—C9—C10	117.63 (12)
01	125.42 (9)	C14—C9—C8	120.42 (12)
C1—C2—C3	111.65 (11)	C10—C9—C8	121.90 (12)
C1—C2—H2	124.2	C9-C10-C11	121.26 (13)
C3—C2—H2	124.2	C9-C10-C15	120.83(13)
C4-C3-C2	112 94 (11)	$C_{11} - C_{10} - C_{15}$	117.90(13)
C4-C3-C7	121.15(12)	C12-C11-C10	119.92 (13)
$C^2 - C^3 - C^7$	125.90(11)	C12—C11—H11	120.0
C_{3} C_{4} C_{5}	123.50(11) 124.54(12)	C10-C11-H11	120.0
$C_3 - C_4 - S_1$	112 08 (10)	$C_{11} - C_{12} - C_{13}$	119 56 (14)
C_{5} C_{4} S_{1}	123 38 (9)	$C_{11} - C_{12} - H_{12}$	120.2
C4-C5-C6	107.86 (10)	C13 - C12 - H12	120.2
C4 - C5 - H5A	110.1	C12 - C12 - C12	120.2
C6-C5-H5A	110.1	$C_{12} = C_{13} = H_{13}$	110.0
C4-C5-H5B	110.1	C12 - C13 - H13	119.9
C6 C5 H5B	110.1	C_{13} C_{14} C_{9}	117.7
$H_{5A} = C_5 = H_{5B}$	108 /	$C_{13} = C_{14} = C_{3}$	121.34 (13)
N1 C6 C5	100.4	C_{13} C_{14} H_{14}	119.3
N1C6H6A	109.93 (10)	$N_{2} = C_{14} = 1114$	117.3 177.22(17)
C_{5} C_{6} H_{6A}	109.7	$N_2 = C_{15} = C_{10}$	177.32(17) 122.22(12)
C_{3}	109.7	02 - 016 - 017	122.22(12)
N1 - C0 - H0B	109.7	02 - 010 - 017	127.33(12)
	109.7	01 - 010 - 017	110.45 (11)
HOA - CO - HOB	108.2	C16 - C17 - H17R	109.5
NI = C7 = U7A	110.09 (10)		109.5
NI = C / = H / A	109.0	$\Pi / A - C I / - \Pi / B$	109.5
$C_3 - C_7 - \Pi_7 A$	109.0		109.5
NI - C / - H / B	109.0	H1/A - C1/-H1/C	109.5
$C_3 - C_7 - H/B$	109.6	HI/B - CI/-HI/C	109.5
H/A—C/—H/B	108.2		
C16—O1—C1—C2	178.55 (12)	C4—C3—C7—N1	16.65 (17)
C16-01-C1-S1	0.90 (18)	C2—C3—C7—N1	-163.09 (12)
C4 = S1 = C1 = C2	-0.56(11)	C6-N1-C8-C9	167.62 (11)
C4 = S1 = C1 = O1	177.27 (12)	C7-N1-C8-C9	-70.50(14)
01 - 01 - 02 - 03	-176.86(11)	N1 - C8 - C9 - C14	-4634(17)
01 01 02 03	1,0.00 (11)		10.04 (17)

S1—C1—C2—C3 C1—C2—C3—C4 C1—C2—C3—C7	1.06 (14) -1.16 (16) 178.60 (12)	N1—C8—C9—C10 C14—C9—C10—C11 C8—C9—C10—C11	136.16 (13) 0.2 (2) 177.72 (13)
$C_2 = C_3 = C_4 = C_5$ $C_7 = C_3 = C_4 = C_5$ $C_2 = C_3 = C_4 = S_1$	-1/9.07(12) 1.2 (2) 0.74 (15)	C14 - C9 - C10 - C13 C8 - C9 - C10 - C15 C9 - C10 - C12	-1.2(2)
$C_2 = C_3 = C_4 = S_1$ $C_7 = C_3 = C_4 = S_1$ $C_1 = S_1 = C_4 = C_3$	-179.03(10) -0.12(11)	$C_{10} = C_{10} = C_{11} = C_{12}$ $C_{10} = C_{10} = C_{11} = C_{12}$ $C_{10} = C_{11} = C_{12}$ $C_{13} = C_{13}$	178.99(14)
C1 = S1 = C4 = C5 C1 = S1 = C4 = C5 C3 = C4 = C5 = C6	-0.12 (11) 179.69 (11)	C10-C11-C12-C13 C11-C12-C13-C14 C12-C13-C14	-0.3(2) 0.4(2) -0.2(2)
$S_{1} - C_{4} - C_{5} - C_{6}$ $S_{1} - C_{4} - C_{5} - C_{6}$	-164.94(10) -166.73(11)	C12 - C13 - C14 - C13 C10 - C9 - C14 - C13 C8 - C9 - C14 - C13	-0.1(2) -17770(12)
C7-N1-C6-C5 C4-C5-C6-N1	71.13 (13) -49.11 (14)	$C_{1} = C_{1} = C_{1} = C_{1}$ $C_{2} = C_{1} = C_{1} = C_{1}$ $C_{1} = C_{1} = C_{1}$ $C_{1} = C_{1} = C_{1}$ $C_{2} = C_{2}$ $C_{2} =$	162 (4) -17 (4)
C8—N1—C7—C3 C6—N1—C7—C3	-173.55 (10) -51.61 (13)	C1	3.0 (2) -176.31 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11···O2 ⁱ	0.95	2.53	3.3346 (19)	143

Symmetry code: (i) x+1, y, z.